Nitrogen-Rich Covalent Triazine Frameworks as High-I Carbon Capture and Storage

Chemistry of Materials 27, 8001-8010

DOI: 10.1021/acs.chemmater.5b03330

Citation Report

#	Article	IF	CITATIONS
4	Soft Photocatalysis: Organic Polymers for Solar Fuel Production. Chemistry of Materials, 2016, 28, 5191-5204.	3.2	208
5	Synthesis of Twoâ€dimensional Microporous Carbonaceous Polymer Nanosheets and Their Application as Highâ€performance CO ₂ Capture Sorbent. Chemistry - an Asian Journal, 2016, 11, 1849-1855.	1.7	11
6	Indolo[3,2-b]carbazole-containing hypercrosslinked microporous polymer networks for gas storage and separation. Microporous and Mesoporous Materials, 2016, 228, 231-236.	2.2	27
7	Target Synthesis of an Azo (Nâ•N) Based Covalent Organic Framework with High CO ₂ -over-N ₂ Selectivity and Benign Gas Storage Capability. Journal of Chemical & Engineering Data, 2016, 61, 1904-1909.	1.0	42
8	Covalent Triazine-Based Frameworks with Ultramicropores and High Nitrogen Contents for Highly Selective CO ₂ Capture. Environmental Science & Technology, 2016, 50, 4869-4876.	4.6	173
9	Triazineâ€Based Porous Organic Polymer with Good CO ₂ Gas Adsorption Properties and an Efficient Organocatalyst for the Oneâ€Pot Multicomponent Condensation Reaction. ChemCatChem, 2016, 8, 3089-3098.	1.8	27
10	Narrow bandgap thienothiadiazole-based conjugated porous polymers: from facile direct arylation polymerization to tunable porosities and optoelectronic properties. Polymer Chemistry, 2016, 7, 6413-6421.	1.9	45
11	Troger's base functionalized covalent triazine frameworks for CO ₂ capture. RSC Advances, 2016, 6, 94365-94372.	1.7	25
12	s-Triazine-based functional monomers with thermocrosslinkable propargyl units: Synthesis and conversion to the heat-resistant polymers. Polymer, 2016, 102, 301-307.	1.8	31
13	<i>In Situ</i> Doping Strategy for the Preparation of Conjugated Triazine Frameworks Displaying Efficient CO ₂ Capture Performance. Journal of the American Chemical Society, 2016, 138, 11497-11500.	6.6	200
14	Ordered Mesoporous Polymers for Biomass Conversions and Crossâ€Coupling Reactions. ChemSusChem, 2016, 9, 2496-2504.	3.6	27
15	Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution. Journal of Membrane Science, 2016, 520, 583-595.	4.1	107
16	Solvothermal synthesis of hierarchically nanoporous organic polymers with tunable nitrogen functionality for highly selective capture of CO ₂ . Journal of Materials Chemistry A, 2016, 4, 13063-13070.	5.2	78
17	Substitution Effect Guided Synthesis of Task-Specific Nanoporous Polycarbazoles with Enhanced Carbon Capture. Macromolecules, 2016, 49, 5325-5330.	2.2	38
18	Recyclable and efficient heterogenized Rh and Ir catalysts for the transfer hydrogenation of carbonyl compounds in aqueous medium. Green Chemistry, 2016, 18, 6456-6461.	4.6	45
19	Inexpensive polyphenylene network polymers with enhanced microporosity. Journal of Materials Chemistry A, 2016, 4, 10110-10113.	5.2	66
20	Self-Exfoliated Guanidinium-Based Ionic Covalent Organic Nanosheets (iCONs). Journal of the American Chemical Society, 2016, 138, 2823-2828.	6.6	407
21	Rational design and synthesis of a porous, task-specific polycarbazole for efficient CO ₂ capture. Chemical Communications, 2016, 52, 4454-4457.	2.2	55

#	Article	IF	CITATIONS
22	Two linkers are better than one: enhancing CO ₂ capture and separation with porous covalent triazine-based frameworks from mixed nitrile linkers. Journal of Materials Chemistry A, 2017, 5, 3609-3620.	5.2	86
23	Unraveling Surface Basicity and Bulk Morphology Relationship on Covalent Triazine Frameworks with Unique Catalytic and Gas Adsorption Properties. Advanced Functional Materials, 2017, 27, 1605672.	7.8	72
24	Charged Covalent Triazine Frameworks for CO ₂ Capture and Conversion. ACS Applied Materials & Interfaces, 2017, 9, 7209-7216.	4.0	270
25	Targeted Drug Delivery in Covalent Organic Nanosheets (CONs) via Sequential Postsynthetic Modification. Journal of the American Chemical Society, 2017, 139, 4513-4520.	6.6	475
26	Promoting and Tuning Porosity of Flexible Ether-Linked Phthalazinone-Based Covalent Triazine Frameworks Utilizing Substitution Effect for Effective CO ₂ Capture. ACS Applied Materials & Interfaces, 2017, 9, 13201-13212.	4.0	64
27	Transforming waste expanded polystyrene foam into hyper-crosslinked polymers for carbon dioxide capture and separation. Chemical Engineering Journal, 2017, 323, 557-564.	6.6	71
28	Mechanochemical Friedel–Crafts Alkylation—A Sustainable Pathway Towards Porous Organic Polymers. Angewandte Chemie, 2017, 129, 6963-6967.	1.6	47
29	Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution. Chemical Communications, 2017, 53, 5854-5857.	2.2	206
30	Solventâ€Free Selfâ€Assembly to the Synthesis of Nitrogenâ€Doped Ordered Mesoporous Polymers for Highly Selective Capture and Conversion of CO ₂ . Advanced Materials, 2017, 29, 1700445.	11.1	162
31	Mechanochemical Friedel–Crafts Alkylation—A Sustainable Pathway Towards Porous Organic Polymers. Angewandte Chemie - International Edition, 2017, 56, 6859-6863.	7.2	150
32	A mixed-linker approach towards improving covalent triazine-based frameworks for CO2 capture and separation. Microporous and Mesoporous Materials, 2017, 241, 303-315.	2.2	49
33	Superacid-promoted synthesis of highly porous hypercrosslinked polycarbazoles for efficient CO ₂ capture. Chemical Communications, 2017, 53, 7645-7648.	2.2	32
34	Preparation of covalent triazine frameworks with imidazolium cations embedded in basic sites and their application for CO ₂ capture. Journal of Materials Chemistry A, 2017, 5, 8576-8582.	5.2	69
35	1,4-Phenylenediamine based covalent triazine framework as an electro catalyst. Polymer, 2017, 109, 315-320.	1.8	39
36	Porous Organic Materials: Strategic Design and Structure–Function Correlation. Chemical Reviews, 2017, 117, 1515-1563.	23.0	961
37	Covalent Cross-Linking of Porous Poly(ionic liquid) Membrane via a Triazine Network. ACS Macro Letters, 2017, 6, 1-5.	2.3	29
38	Carbon dioxide capture in amorphous porous organic polymers. Journal of Materials Chemistry A, 2017, 5, 1334-1347.	5.2	236
39	Recent advances in the synthesis of covalent organic frameworks for CO 2 capture. Journal of CO2 Utilization, 2017, 17, 137-161.	3.3	94

#	Article	IF	CITATIONS
40	1,3,5-Triazine-Based Microporous Polymers with Tunable Porosities for CO ₂ Capture and Fluorescent Sensing. Macromolecules, 2017, 50, 8512-8520.	2.2	89
41	From covalent triazine-based frameworks to N-doped porous carbon/reduced graphene oxide nanosheets: efficient electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 23170-23178.	5.2	60
42	Solid-State Synthesis of Conjugated Nanoporous Polycarbazoles. ACS Macro Letters, 2017, 6, 1056-1059.	2.3	42
43	Aqueous and Templateâ€Free Synthesis of Meso–Macroporous Polymers for Highly Selective Capture and Conversion of Carbon Dioxide. ChemSusChem, 2017, 10, 4144-4149.	3.6	30
44	Microporous organic polymers involving thiadiazolopyridine for high and selective uptake of greenhouse gases at low pressure. Chemical Communications, 2017, 53, 10576-10579.	2.2	25
45	A Covalent Triazine Framework, Functionalized with Ir/N-Heterocyclic Carbene Sites, for the Efficient Hydrogenation of CO ₂ to Formate. Chemistry of Materials, 2017, 29, 6740-6748.	3.2	116
46	Facile Method for the Preparation of Covalent Triazine Framework coated Monoliths as Catalyst Support: Applications in C1 Catalysis. ACS Applied Materials & Interfaces, 2017, 9, 26060-26065.	4.0	41
47	Design and preparation of porous carbons from conjugated polymer precursors. Materials Today, 2017, 20, 629-656.	8.3	133
48	Revisiting Nitrogen Species in Covalent Triazine Frameworks. Langmuir, 2017, 33, 14278-14285.	1.6	165
49	lonic-Liquid-Based Heterogeneous Covalent Triazine Framework Cobalt Catalyst for the Direct Synthesis of Methyl 3-Hydroxybutyrate from Propylene Oxide. Inorganic Chemistry, 2017, 56, 7270-7277.	1.9	33
50	Salt templated synthesis of hierarchical covalent triazine frameworks. Microporous and Mesoporous Materials, 2017, 239, 190-194.	2.2	19
51	A fluorine-containing hydrophobic covalent triazine framework with excellent selective CO ₂ capture performance. Journal of Materials Chemistry A, 2018, 6, 6370-6375.	5.2	105
52	"Greener―and modular synthesis of triazine-based conjugated porous polymers <i>via</i> direct arylation polymerization: structure–function relationship and photocatalytic application. Polymer Chemistry, 2018, 9, 1972-1982.	1.9	43
53	Covalent Triazineâ€based Frameworks—Tailorâ€made Catalysts and Catalyst Supports for Molecular and Nanoparticulate Species. ChemCatChem, 2018, 10, 1753-1771.	1.8	80
54	Conjugated Microporous Polymers with Extended π-Structures for Organic Vapor Adsorption. Macromolecules, 2018, 51, 947-953.	2.2	80
55	Porous Polymer Bearing Polyphenolic Organic Building Units as a Chemotherapeutic Agent for Cancer Treatment. ACS Omega, 2018, 3, 529-535.	1.6	18
56	Highâ€Performance Activated Carbons Synthesized from Nanocellulose for CO ₂ Capture and Extremely Selective Removal of Volatile Organic Compounds. Advanced Sustainable Systems, 2018, 2, 1700147.	2.7	41
57	Carbon dioxide capture in the presence of water by an amine-based crosslinked porous polymer. Journal of Materials Chemistry A, 2018, 6, 6455-6462.	5.2	39

#	Article	IF	CITATIONS
58	Construction of Nitrogen-Containing Hierarchical Porous Polymers and Its Application on Carbon Dioxide Capturing. Industrial & Engineering Chemistry Research, 2018, 57, 5291-5300.	1.8	19
59	Nitrogen-Enriched Nanoporous Polytriazine for High-Performance Supercapacitor Application. ACS Sustainable Chemistry and Engineering, 2018, 6, 5895-5902.	3.2	49
60	Knitting polycyclic aromatic hydrocarbon-based microporous organic polymers for efficient CO ₂ capture. RSC Advances, 2018, 8, 10347-10354.	1.7	24
61	Effective Acetylene/Ethylene Separation at Ambient Conditions by a Pigmentâ€Based Covalentâ€Triazine Framework. Macromolecular Rapid Communications, 2018, 39, 1700468.	2.0	52
62	Newly Designed Covalent Triazine Framework Based on Novel N-Heteroaromatic Building Blocks for Efficient CO ₂ and H ₂ Capture and Storage. ACS Applied Materials & Interfaces, 2018, 10, 1244-1249.	4.0	68
63	A facile synthesis tool of nanoporous carbon for promising H ₂ , CO ₂ , and CH ₄ sorption capacity and selective gas separation. Journal of Materials Chemistry A, 2018, 6, 23087-23100.	5.2	51
64	Pyrolyzed Triazine-Based Nanoporous Frameworks Enable Electrochemical CO ₂ Reduction in Water. ACS Applied Materials & Interfaces, 2018, 10, 43588-43594.	4.0	29
65	Highly Porous Covalent Triazine Frameworks for Reversible Iodine Capture and Efficient Removal of Dye. Industrial & Engineering Chemistry Research, 2018, 57, 15114-15121.	1.8	64
66	Selfâ€Assembled, Fluorineâ€Rich Porous Organic Polymers: A Class of Mechanically Stiff and Hydrophobic Materials. Chemistry - A European Journal, 2018, 24, 11771-11778.	1.7	8
67	Construction of triphenylamine functional phthalazinone-based covalent triazine frameworks for effective CO2 capture. Polymer, 2018, 151, 65-74.	1.8	17
68	Novel Covalent Triazine Framework for High-Performance CO ₂ Capture and Alkyne Carboxylation Reaction. ACS Applied Materials & Interfaces, 2018, 10, 27972-27978.	4.0	78
69	Carbonization of covalent triazine-based frameworks <i>via</i> ionic liquid induction. Journal of Materials Chemistry A, 2018, 6, 15564-15568.	5.2	13
70	Rational Design of Porous Covalent Triazine-Based Framework Composites as Advanced Organic Lithium-Ion Battery Cathodes. Materials, 2018, 11, 937.	1.3	19
71	Enhancing Gas Sorption and Separation Performance via Bisbenzimidazole Functionalization of Highly Porous Covalent Triazine Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 26678-26686.	4.0	52
72	Synthesis of Nitrogen-Rich Polymers by Click Polymerization Reaction and Gas Sorption Property. Molecules, 2018, 23, 1732.	1.7	11
73	Molecular Rh(III) and Ir(III) Catalysts Immobilized on Bipyridine-Based Covalent Triazine Frameworks for the Hydrogenation of CO2 to Formate. Catalysts, 2018, 8, 295.	1.6	26
74	Geometry variation in porous covalent triazine polymer (CTP) for CO ₂ adsorption. New Journal of Chemistry, 2018, 42, 15488-15496.	1.4	22
75	Preparation and Properties of Magnetic-fluorescent Microporous Polymer Microspheres. Chemical Research in Chinese Universities, 2018, 34, 684-690.	1.3	7

#	Article	IF	CITATIONS
76	Acetylacetone Covalent Triazine Framework: An Efficient Carbon Capture and Storage Material and a Highly Stable Heterogeneous Catalyst. Chemistry of Materials, 2018, 30, 4102-4111.	3.2	78
77	Sustainable nanoporous carbon for CO2, CH4, N2, H2 adsorption and CO2/CH4 and CO2/N2 separation. Energy, 2018, 158, 9-16.	4.5	49
78	Porous Organic Polymer-Derived Carbon Composite as a Bimodal Catalyst for Oxygen Evolution Reaction and Nitrophenol Reduction. ACS Omega, 2018, 3, 6251-6258.	1.6	36
79	A heterogenized cobaltate catalyst on a bis-imidazolium-based covalent triazine framework for hydroesterification of epoxides. New Journal of Chemistry, 2018, 42, 12256-12262.	1.4	27
80	Hollow Covalent Triazine Frameworks with Variable Shell Thickness and Morphology. Advanced Functional Materials, 2019, 29, 1904781.	7.8	80
81	Trends in Solid Adsorbent Materials Development for CO ₂ Capture. ACS Applied Materials & Interfaces, 2019, 11, 34533-34559.	4.0	215
82	A Microporous Organic Copolymer for Selective CO ₂ Capture under Humid Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 13941-13948.	3.2	29
83	Optical Properties of Isolated and Covalent Organic Framework-Embedded Ruthenium Complexes. Journal of Physical Chemistry A, 2019, 123, 6854-6867.	1.1	7
84	Switching on and off Interlayer Correlations and Porosity in 2D Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 12570-12581.	6.6	130
85	Influence of fluorination on CO ₂ adsorption in materials derived from fluorinated covalent triazine framework precursors. Journal of Materials Chemistry A, 2019, 7, 17277-17282.	5.2	47
86	Pore Surface Engineering of Covalent Triazine Frameworks@MoS ₂ Electrocatalyst for the Hydrogen Evolution Reaction. ChemSusChem, 2019, 12, 5032-5040.	3.6	38
87	Novel hexaazatrinaphthalene-based covalent triazine frameworks as high-performance platforms for efficient carbon capture and storage. Microporous and Mesoporous Materials, 2019, 290, 109650.	2.2	18
88	Direct Synthesis of Microporous Bicarbazoleâ€Based Covalent Triazine Frameworks for Highâ€Performance Energy Storage and Carbon Dioxide Uptake. ChemPlusChem, 2019, 84, 1767-1774.	1.3	48
89	Synthesis and Characterization of Covalent Triazine Framework CTF-1@Polysulfone Mixed Matrix Membranes and Their Gas Separation Studies. Frontiers in Chemistry, 2019, 7, 693.	1.8	17
90	Porous Cationic Covalent Triazineâ€Based Frameworks as Platforms for Efficient CO ₂ and Iodine Capture. Chemistry - an Asian Journal, 2019, 14, 3259-3263.	1.7	35
91	Covalent triazine frameworks for carbon dioxide capture. Journal of Materials Chemistry A, 2019, 7, 22848-22870.	5.2	106
92	Eco-Friendly Fabrication of a Highly Selective Amide-Based Polymer for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2019, 58, 18160-18167.	1.8	17
93	Covalent triazine frameworks: synthesis and applications. Journal of Materials Chemistry A, 2019, 7, 5153-5172.	5.2	433

#	Article	IF	CITATIONS
94	Preparation of triazine containing porous organic polymer for high performance supercapacitor applications. RSC Advances, 2019, 9, 1586-1590.	1.7	21
95	Playing with covalent triazine framework tiles for improved CO ₂ adsorption properties and catalytic performance. Beilstein Journal of Nanotechnology, 2019, 10, 1217-1227.	1.5	12
96	Nitrogenâ€Rich Porous Organic Polyamines for Stabilization of Highly Dispersed Metal Nanoparticles and Catalytic Application. Macromolecular Rapid Communications, 2019, 40, 1900100.	2.0	5
97	Rapid Polymerization of Aromatic Vinyl Monomers to Porous Organic Polymers via Acid Catalysis at Mild Condition. Macromolecular Rapid Communications, 2019, 40, e1900168.	2.0	4
98	High-nitrogen containing covalent triazine frameworks as basic catalytic support for the Cu-catalyzed Henry reaction. Journal of Catalysis, 2019, 375, 242-248.	3.1	28
99	Stable Covalent Organic Frameworks for Photochemical Applications. ChemPhotoChem, 2019, 3, 973-983.	1.5	48
100	Two dimensional graphene oxides converted to three dimensional P, N, F and B, N, F tri-doped graphene by ionic liquid for efficient catalytic performance. Carbon, 2019, 151, 53-67.	5.4	52
101	Dual Strategic Approach to Prepare Defluorinated Triazole-Embedded Covalent Triazine Frameworks with High Gas Uptake Performance. Chemistry of Materials, 2019, 31, 3929-3940.	3.2	36
102	Advances in Porous Organic Polymers for Efficient Water Capture. Chemistry - A European Journal, 2019, 25, 10262-10283.	1.7	82
103	Nitrogen Amelioration-Driven Carbon Dioxide Capture by Nanoporous Polytriazine. Langmuir, 2019, 35, 4893-4901.	1.6	21
104	Synthesis and Characterizations of s-Triazine Polymeric Complexes Including Epoxy Groups: Investigation of Their Magnetic and Thermal Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1701-1715.	1.9	6
105	The spirobifluorene-based fluorescent conjugated microporous polymers for reversible adsorbing iodine, fluorescent sensing iodine and nitroaromatic compounds. European Polymer Journal, 2019, 115, 37-44.	2.6	22
106	Microwave-assistant preparation of N/S co-doped hierarchical porous carbons for hydrogen adsorption. Chemical Engineering Journal, 2019, 367, 260-268.	6.6	30
107	Dehydrogenation of formic acid using molecular Rh and Ir catalysts immobilized on bipyridine-based covalent triazine frameworks. Sustainable Energy and Fuels, 2019, 3, 1042-1047.	2.5	29
108	Hydrogenation of CO ₂ to Formate using a Simple, Recyclable, and Efficient Heterogeneous Catalyst. Inorganic Chemistry, 2019, 58, 3717-3723.	1.9	66
109	Computational Investigation on the Electronic Structure and Functionalities of a Thiophene-Based Covalent Triazine Framework. ACS Omega, 2019, 4, 3556-3564.	1.6	12
110	Triphenylamine based conjugated microporous polymers for selective photoreduction of CO ₂ to CO under visible light. Green Chemistry, 2019, 21, 6606-6610.	4.6	58
111	Chemical fixation of carbon dioxide catalyzed <i>via</i> covalent triazine frameworks as metal free heterogeneous catalysts without a cocatalyst. Journal of Materials Chemistry A, 2019, 7, 26071-26076.	5.2	39

#	Article	IF	CITATIONS
112	Two-Dimensional Covalent Triazine Framework as a Promising Anode Material for Li-Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 30155-30164.	1.5	34
113	<i>N</i> , <i>N</i> ′-Bicarbazole-Based Covalent Triazine Frameworks as High-Performance Heterogeneous Photocatalysts. Macromolecules, 2019, 52, 9786-9791.	2.2	42
114	Straightforward preparation of fluorinated covalent triazine frameworks with significantly enhanced carbon dioxide and hydrogen adsorption capacities. Dalton Transactions, 2019, 48, 17612-17619.	1.6	15
115	Recent Advancements in the Synthesis of Covalent Triazine Frameworks for Energy and Environmental Applications. Polymers, 2019, 11, 31.	2.0	65
116	Sustainable Metallocavitand for Flue Gas-Selective Sorption: A Multiscale Study. Journal of Physical Chemistry C, 2019, 123, 3188-3202.	1.5	5
117	Newly designed 1,2,3-triazole functionalized covalent triazine frameworks with exceptionally high uptake capacity for both CO ₂ and H ₂ . Journal of Materials Chemistry A, 2019, 7, 1055-1068.	5.2	57
118	Preparation of benzodiimidazole-containing covalent triazine frameworks for enhanced selective CO2 capture and separation. Microporous and Mesoporous Materials, 2019, 276, 213-222.	2.2	15
119	Post-functionalization of hydroxyl-appended covalent triazine framework via borrowing hydrogen strategy for effective CO2 capture. Microporous and Mesoporous Materials, 2020, 292, 109765.	2.2	18
120	Effect of Building Block Transformation in Covalent Triazineâ€Based Frameworks for Enhanced CO 2 Uptake and Metalâ€Free Heterogeneous Catalysis. Chemistry - A European Journal, 2020, 26, 1548-1557.	1.7	23
121	An artificial photosynthesis system comprising a covalent triazine framework as an electron relay facilitator for photochemical carbon dioxide reduction. Journal of Materials Chemistry C, 2020, 8, 192-200.	2.7	43
122	CO2 capture performance and environmental impact of copolymers of ethylene glycol dimethacrylate with acrylamide, methacrylamide and triallylamine. Journal of Environmental Chemical Engineering, 2020, 8, 103536.	3.3	6
123	The synthesis and characterization of s-Triazine polymer complexes containing epoxy groups. Journal of Molecular Structure, 2020, 1203, 127370.	1.8	4
124	Structural and Photophysical Properties of Various Polypyridyl Ligands: A Combined Experimental and Computational Study. ChemPhysChem, 2020, 21, 2489-2505.	1.0	5
125	A review on CO2 capture via nitrogen-doped porous polymers and catalytic conversion as a feedstock for fuels. Journal of Cleaner Production, 2020, 277, 123999.	4.6	45
126	Hydrogen and CO2 storage in high surface area covalent triazine–based frameworks. Materials Today Energy, 2020, 18, 100506.	2.5	16
127	Covalent Triazine Framework Nanoparticles via Sizeâ€Controllable Confinement Synthesis for Enhanced Visibleâ€Light Photoredox Catalysis. Angewandte Chemie, 2020, 132, 18526-18531.	1.6	6
128	Covalent Triazine Framework Nanoparticles via Sizeâ€Controllable Confinement Synthesis for Enhanced Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2020, 59, 18368-18373.	7.2	60
129	Nanoconfinement of Molecular Magnesium Borohydride Captured in a Bipyridine-Functionalized Metal–Organic Framework. ACS Nano, 2020, 14, 10294-10304.	7.3	40

ARTICLE IF CITATIONS Post synthesis of a glycine-functionalized covalent triazine framework with excellent CO2 capture 130 2.2 9 performance. Microporous and Mesoporous Materials, 2020, 306, 110475. Building Nâ€Heterocyclic Carbene into Triazineâ€Linked Polymer for Multiple CO₂ Utilization. 3.6 ChemSusChem, 2020, 13, 5996-6004. Alkylamine Incorporation in Amidoxime Functionalized Polymers of Intrinsic Microporosity for Gas 132 9 1.8 Capture and Separation. Energy Technology, 2020, 8, 2000419. Illustrating the Role of Quaternary-N of BINOL Covalent Triazine-Based Frameworks in Oxygen Reduction and Hydrogen Evolution Reactions. ACS Applied Materials & amp; Interfaces, 2020, 12, 4.0 44689-44699. Fluorescent conjugated microporous polymer (CMP) derived sensor array for multiple 134 4.0 29 Organic/Inorganic contaminants detection. Sensors and Actuators B: Chemical, 2020, 320, 128448. Long-lasting direct capture of xylene from air using covalent-triazine frameworks through multiple C-Hâ \in | $\ddot{I}\in$ weak interactions. Chemical Engineering Journal, 2020, 400, 125888. 6.6 Metal-free activation of molecular oxygen by covalent triazine frameworks for selective aerobic 136 4.7 58 oxidation. Science Advances, 2020, 6, eaaz2310. Inâ€...Situ Generation of Electrolyte inside Pyridineâ€Based Covalent Triazine Frameworks for Direct 3.6 14 Supercapacitor Integration. ChemSusChem, 2020, 13, 3192-3198. Preparation and Catalytic Performance of Microporous Polymer/Au Nanoparticles Composite 138 0.4 0 Microspheres. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 464-468. Room-Temperature Synthesis of Hollow Carbazole-Based Covalent Triazine Polymers with Multiactive Sites for Efficient Iodine Capture-Catalysis Cascade Application. ACS Applied Polymer Materials, 2020, 2, 3704-3713. Phenylamino-, Phenoxy-, and Benzenesulfenyl-Linked Covalent Triazine Frameworks for 140 2.4 33 CO₂ Capture. ACS Applied Nano Materials, 2020, 3, 2889-2898. Surpassing Robeson Upper Limit for CO2/N2 Separation with Fluorinated Carbon Molecular Sieve 5.8 Membranes. CheM, 2020, 6, 631-645. Bipyridinium-Based Ionic Covalent Triazine Frameworks for CO₂, SO₂, and NO 142 4.0 65 Capture. ACS Applied Materials & amp; Interfaces, 2020, 12, 8614-8621. Covalent triazine frameworks – a sustainable perspective. Green Chemistry, 2020, 22, 1038-1071. 143 4.6 138 Microporous organic polymers as CO2 adsorbents: advances and challenges. Materials Today 144 2.542 Advances, 2020, 6, 100052. CO₂ hydrogenation to formic acid over heterogenized ruthenium catalysts using a fixed 145 70 bed reactor with separation units. Green Chemistry, 2020, 22, 1639-1649. Ultrastable conductive microporous covalent triazine frameworks based on pyrene moieties provide 146 high-performance CO₂ uptake and supercapacitance. New Journal of Chemistry, 2020, 44, 1.4 49 8241-8253. Direct Zâ€Scheme Heterojunction of SnS₂/Sulfurâ€Bridged Covalent Triazine Frameworks for Visibleâ€Lightâ€Driven CŎ₂Photoreduction. ChemSusChem, 2020, 13, 6278-6283.

#	Article	IF	CITATIONS
148	Conjugate Microporous Polymer-Derived Conductive Porous Carbon Nanoparticles with Narrow Pore-Size Distribution for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2020, 3, 4553-4561.	2.4	19
149	Boosting Visibleâ€Lightâ€Driven H ₂ Evolution of Covalent Triazine Framework from Water by Modifying Ni(II) Pyrimidineâ€2â€thiolate Cocatalyst. ChemCatChem, 2021, 13, 958-965.	1.8	10
150	Redox of Dual-Radical Intermediates in a Methylene-Linked Covalent Triazine Framework for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 514-521.	4.0	40
151	Two-dimensional crystalline covalent triazine frameworks <i>via</i> dual modulator control for efficient photocatalytic oxidation of sulfides. Journal of Materials Chemistry A, 2021, 9, 16405-16410.	5.2	29
152	Metal–organic and Covalent Organic Frameworks Incorporating Ru Species. , 2021, , 389-427.		1
153	Thienyltriazine based conjugated porous organic polymers: tuning of the porosity and band gap, and CO ₂ capture. Materials Advances, 2021, 2, 7473-7481.	2.6	14
154	Monte Carlo Simulation and Experimental Studies of CO2, CH4 and Their Mixture Capture in Porous Carbons. Molecules, 2021, 26, 2413.	1.7	12
155	Covalent Triazine Frameworks Based on the First Pseudo-Octahedral Hexanitrile Monomer via Nitrile Trimerization: Synthesis, Porosity, and CO2 Gas Sorption Properties. Materials, 2021, 14, 3214.	1.3	9
156	From n- to p-Type Material: Effect of Metal Ion on Charge Transport in Metal–Organic Materials. ACS Applied Materials & Interfaces, 2021, 13, 52055-52062.	4.0	10
157	Efficiently Selective Oxidation of H ₂ S to Elemental Sulfur over Covalent Triazine Framework Catalysts. ACS Applied Materials & Interfaces, 2021, 13, 34124-34133.	4.0	21
158	High acidity- and radiation-resistant triazine-based POPs for recovery of Pd(II) from nuclear fission products. Chemical Engineering Journal, 2022, 430, 132618.	6.6	23
159	Ultrahigh water sorption on highly nitrogen doped carbonaceous materials derived from uric acid. Journal of Colloid and Interface Science, 2021, 602, 880-888.	5.0	9
160	Accelerating CO2 transport through nanoconfined magnetic ionic liquid in laminated BN membrane. Chemical Engineering Journal, 2021, 423, 130309.	6.6	24
161	Ionothermal synthesis of phosphonitrilic-core covalent triazine frameworks for carbon dioxide capture. Chemical Engineering Journal, 2022, 429, 132160.	6.6	30
162	Rational design of covalent triazine frameworks based on pore size and heteroatomic toward high performance supercapacitors. Journal of Colloid and Interface Science, 2022, 606, 1534-1542.	5.0	18
163	Dual-functional two-dimensional covalent organic frameworks for water sensing and harvesting. Materials Chemistry Frontiers, 2021, 5, 4193-4201.	3.2	41
164	Covalent organic frameworks (COFs) for electrochemical applications. Chemical Society Reviews, 2021, 50, 6871-6913.	18.7	461
165	A Pd confined hierarchically conjugated covalent organic polymer for hydrogenation of nitroaromatics: catalysis, kinetics, thermodynamics and mechanism. Green Chemistry, 2020, 22, 4295-4303.	4.6	49

#	Article	IF	CITATIONS
166	Covalent triazine frameworks for the selective sorption of palladium from highly acidic radioactive liquid wastes. Journal of Materials Chemistry A, 2021, 9, 27320-27331.	5.2	20
167	Porous Organic Polymers for Catalytic Conversion of Carbon Dioxide. Chemistry - an Asian Journal, 2021, 16, 3833-3850.	1.7	14
168	Electronically Conjugated Multifunctional Covalent Triazine Framework for Unprecedented CO ₂ Selectivity and Highâ€Power Flexible Supercapacitor. Advanced Functional Materials, 2022, 32, 2107442.	7.8	24
169	A bisimidazolium-based cationic covalent triazine framework for CO2 capture and dye adsorption. European Polymer Journal, 2021, 161, 110821.	2.6	4
170	CO ₂ Capture & Separation in Microporous Materials: A Comparison Between Porous Carbon and Flexible MOFs. Korean Journal of Materials Research, 2018, 28, 417-422.	0.1	0
171	Design and synthesis of novel pyridine-rich cationic covalent triazine framework for CO2 capture and conversion. Microporous and Mesoporous Materials, 2022, 329, 111526.	2.2	29
172	Electrochemical Construction of a Polymer-Metal Complex Surface Network for Selective Determination of Dopamine in Blood Serum. Analytical Letters, 2022, 55, 1249-1268.	1.0	3
173	Effect of the Thermal Treatment of Fe/N/C Catalysts for the Oxygen Reduction Reaction Synthesized by Pyrolysis of Covalent Organic Frameworks. Industrial & Engineering Chemistry Research, 2021, 60, 18759-18769.	1.8	12
174	Graphitic Azaâ€Fused Ï€â€Conjugated Networks: Construction, Engineering, and Taskâ€Specific Applications. Advanced Materials, 2022, 34, e2107947.	11.1	17
175	Covalent triazine framework (CTF-0) surface as a smart sensing material for the detection of CWAs and industrial pollutants. Materials Science in Semiconductor Processing, 2022, 139, 106334.	1.9	21
176	Synthesis methods of microporous organic polymeric adsorbents: a review. Polymer Chemistry, 2021, 12, 6962-6997.	1.9	11
177	Tailoring morphological and chemical properties of covalent triazine frameworks for dual CO2 and H2 adsorption. International Journal of Hydrogen Energy, 2022, 47, 8434-8445.	3.8	12
178	All-cellulose-based freestanding porous carbon nanocomposites and their versatile applications. Composites Part B: Engineering, 2022, 232, 109602.	5.9	17
179	Threeâ€Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angewandte Chemie, 2022, 134, .	1.6	2
180	Threeâ€Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
181	Asymmetric poly (vinyl alcohol)/Schiff base network framework hybrid pervaporation membranes for ethanol dehydration. European Polymer Journal, 2022, 162, 110924.	2.6	16
182	Covalent triazine frameworks based on triphenylpyridine building block for high-performance supercapacitor and selective CO2 capture. Materials Chemistry and Physics, 2022, 281, 125850.	2.0	18
183	Triazine 2D Nanosheets as a New Class of Nanomaterials: Crystallinity, Properties and Applications. Colloids and Interfaces, 2022, 6, 20.	0.9	3

#	Article	IF	CITATIONS
184	Tuning the porosity of ionic covalent triazine frameworks using auxiliary monomers for highly efficient CO2 and I2 capture. Journal of Polymer Research, 2022, 29, 1.	1.2	1
185	2D metal-free heterostructure of covalent triazine framework/g-C3N4 for enhanced photocatalytic CO2 reduction with high selectivity. Chinese Journal of Catalysis, 2022, 43, 1306-1315.	6.9	74
187	Momentary click nitrile synthesis enabled by an aminoazanium reagent. Organic Chemistry Frontiers, 2022, 9, 3420-3427.	2.3	5
188	Azo-Linked Porous Organic Polymers for Selective Carbon Dioxide Capture and Metal Ion Removal. ACS Omega, 2022, 7, 14535-14543.	1.6	13
189	In Situ Prepared NRCPFs as Highly Active Photo Platforms for in Situ Bond Formation Between Aryldiazonium Salts and Heteroarenes. Photochemistry and Photobiology, 2022, 98, 748-753.	1.3	11
190	Mechanochemistry-driven phase transformation of crystalline covalent triazine frameworks assisted by alkaline molten salts. Journal of Materials Chemistry A, 2022, 10, 14310-14315.	5.2	2
191	Functionalized Triazines and Tetrazines: Synthesis and Applications. Topics in Current Chemistry, 2022, 380, .	3.0	15
192	Soft Self-Templating Approach-Derived Covalent Triazine Framework with Bimodal Nanoporosity for Efficient Radioactive Iodine Capture for Safe Nuclear Energy. ACS Applied Nano Materials, 2022, 5, 8783-8793.	2.4	8
193	Recent developments in <scp> CO ₂ </scp> capture, utilization, related materials, and challenges. International Journal of Energy Research, 2022, 46, 16241-16263.	2.2	14
194	Highly Efficient Iodine Capture and CO ₂ Adsorption using a Triazineâ€Based Conjugated Microporous Polymers. ChemistrySelect, 2022, 7, .	0.7	6
195	Single-Atom Pd Catalysts Supported on Covalent Triazine Frameworks for Hydrogen Production from Formic Acid. ACS Applied Nano Materials, 2022, 5, 12887-12896.	2.4	13
196	Design of a Novel Naphtiridineâ€based Covalent Triazine Framework for Carbon Dioxide Capture and Storage Applications. ChemistrySelect, 0, , .	0.7	0
197	Porous organic polymers for CO ₂ capture, separation and conversion. Chemical Society Reviews, 2022, 51, 9831-9852.	18.7	83
198	Mediator-Free Self-Powered Bioassay for Wide-Range Detection of Dissolved Carbon Dioxide. Analytical Chemistry, 2022, 94, 16033-16041.	3.2	1
199	New carbazole-based conjugated frameworks for carbon dioxide capture and water purification: Insights on the adsorptive sites' chemistry. Microporous and Mesoporous Materials, 2023, 349, 112427.	2.2	1
200	Covalent Triazine Frameworks (CTFs): Synthesis, Crystallization, and Photocatalytic Water Splitting. Chemistry - A European Journal, 2023, 29, .	1.7	11
201	Fabrication of hybrid covalent triazine framework-zinc ferrite spinel to uplift visible light–driven photocatalytic organic pollutant degradation. Environmental Science and Pollution Research, 2023, 30, 39961-39977.	2.7	3
202	Metalloporphyrin and triazine integrated nitrogen-rich frameworks as high-performance platform for CO2 adsorption and conversion under ambient pressure. Separation and Purification Technology, 2023, 310, 123151.	3.9	13

#	Article	IF	CITATIONS
203	Dual Role of Ligand for Porphyrin-Based Covalent Organic Framework Exfoliation and Turn-Up Fluorescence Sensing. ACS Applied Polymer Materials, 2023, 5, 784-790.	2.0	7
204	Advances in the Synthesis of Covalent Triazine Frameworks. ACS Omega, 2023, 8, 4527-4542.	1.6	29
205	Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coordination Chemistry Reviews, 2023, 483, 215066.	9.5	29
206	Evaluating the emerging adsorbents for performance improvement of adsorption desalination cum cooling system. International Communications in Heat and Mass Transfer, 2023, 142, 106661.	2.9	7
207	Covalent Organic Frameworks for Extracting Water from Air. Angewandte Chemie - International Edition, 2023, 62, .	7.2	14
208	Covalent Organic Frameworks for Extracting Water from Air. Angewandte Chemie, 0, , .	1.6	1
209	Solar thermal swing adsorption on porous carbon monoliths for high-performance CO2 capture. Nano Research, 2023, 16, 10617-10625.	5.8	2
210	A recyclable rhodium catalyst anchored onto a bipyridine covalent triazine framework for transfer hydrogenation of N-heteroarenes in water. Green Chemistry, 2023, 25, 3267-3277.	4.6	4
211	TM-Free and TM-Catalyzed Mechanosynthesis of Functional Polymers. Polymers, 2023, 15, 1853.	2.0	3
218	Polymeric adsorbents for gas adsorption. , 2024, , 205-258.		0
220	Recent progress in advanced covalent organic framework composites for environmental remediation. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	0