Ultrahigh-throughput discovery of promiscuous enzymetagenomics

Nature Communications 6, 10008 DOI: 10.1038/ncomms10008

Citation Report

#	Article	IF	CITATIONS
1	Metagenomics of Thermophiles with a Focus on Discovery of Novel Thermozymes. Frontiers in Microbiology, 2016, 7, 1521.	1.5	98
2	Evolving Enzymes for Biocatalysis. , 2016, , 1-17.		4
3	Harnessing the power of microbial metabolism. Current Opinion in Microbiology, 2016, 31, 63-69.	2.3	11
4	Droplet microfluidics for microbiology: techniques, applications and challenges. Lab on A Chip, 2016, 16, 2168-2187.	3.1	326
5	Metagenomics-Guided Mining of Commercially Useful Biocatalysts from Marine Microorganisms. Advances in Food and Nutrition Research, 2016, 78, 1-26.	1.5	17
7	Simultaneous prediction of enzyme orthologs from chemical transformation patterns for <i>de novo</i> metabolic pathway reconstruction. Bioinformatics, 2016, 32, i278-i287.	1.8	15
8	Evolution of Enzyme Superfamilies: Comprehensive Exploration of Sequence–Function Relationships. Biochemistry, 2016, 55, 6375-6388.	1.2	56
9	Ultrahigh-throughput–directed enzyme evolution by absorbance-activated droplet sorting (AADS). Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7383-E7389.	3.3	210
10	67th Mosbacher Kolloquium: Protein Design: From First Principles to Biomedical Applications. ChemBioChem, 2016, 17, 1297-1300.	1.3	0
11	Recent advances in enzyme promiscuity. Sustainable Chemical Processes, 2016, 4, .	2.3	42
12	Beating the odds. Nature Chemical Biology, 2016, 12, 54-55.	3.9	19
13	Biochemical analysis on microfluidic chips. TrAC - Trends in Analytical Chemistry, 2016, 80, 213-231.	5.8	108
14	Whole cell biocatalysts: essential workers from Nature to the industry. Microbial Biotechnology, 2017, 10, 250-263.	2.0	181
15	Are <i>inÂvivo</i> selections on the path to extinction?. Microbial Biotechnology, 2017, 10, 46-49.	2.0	1
16	Time, space, and disorder in the expanding proteome universe. Proteomics, 2017, 17, 1600399.	1.3	19
17	Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica. Microbial Cell Factories, 2017, 16, 18.	1.9	95
18	A metagenomics approach for new biocatalyst discovery: application to transaminases and the synthesis of allylic amines. Green Chemistry, 2017, 19, 1134-1143.	4.6	34
19	Microfluidic train station: highly robust and multiplexable sorting of droplets on electric rails. Lab on A Chip, 2017, 17, 1024-1030.	3.1	29

#	Article	IF	CITATIONS
20	Discovering Protein-Coding Genes from the Environment: Time for the Eukaryotes?. Trends in Biotechnology, 2017, 35, 824-835.	4.9	18
21	Using natural products for drug discovery: the impact of the genomics era. Expert Opinion on Drug Discovery, 2017, 12, 475-487.	2.5	74
22	Exploring sequence space in search of functional enzymes using microfluidic droplets. Current Opinion in Chemical Biology, 2017, 37, 137-144.	2.8	88
23	High-throughput screening technologies for enzyme engineering. Current Opinion in Biotechnology, 2017, 48, 196-202.	3.3	99
24	Sensitive Detection of MMP9 Enzymatic Activities in Single Cell-Encapsulated Microdroplets as an Assay of Cancer Cell Invasiveness. ACS Sensors, 2017, 2, 626-634.	4.0	39
25	Synthetic Protein Switches: Theoretical and Experimental Considerations. Methods in Molecular Biology, 2017, 1596, 3-25.	0.4	3
26	Quantitative Affinity Determination by Fluorescence Anisotropy Measurements of Individual Nanoliter Droplets. Analytical Chemistry, 2017, 89, 1092-1101.	3.2	27
27	Metagenomic Cosmid Libraries Suitable for Functional Screening in Proteobacteria. , 2017, , 1-11.		2
28	Metagenomics: novel enzymes from non-culturable microbes. FEMS Microbiology Letters, 2017, 364, .	0.7	114
29	Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence–Function Space and Genome Context to Discover Novel Functions. Biochemistry, 2017, 56, 4293-4308.	1.2	179
30	Directing enzyme devolution for biosynthesis of alkanols and 1,n-alkanediols from natural polyhydroxy compounds. Metabolic Engineering, 2017, 44, 70-80.	3.6	12
31	RNA-aptamers-in-droplets (RAPID) high-throughput screening for secretory phenotypes. Nature Communications, 2017, 8, 332.	5.8	112
32	Electrically Tunable Dye Emission via Microcavity Integrated PDMS Gel Actuator. ACS Applied Materials & Interfaces, 2017, 9, 29193-29202.	4.0	3
33	Metagenome Analysis: a Powerful Tool for Enzyme Bioprospecting. Applied Biochemistry and Biotechnology, 2017, 183, 636-651.	1.4	96
34	Shining a light on enzyme promiscuity. Current Opinion in Structural Biology, 2017, 47, 167-175.	2.6	133
35	Engineering â€~cell robots' for parallel and highly sensitive screening of biomolecules under in vivo conditions. Scientific Reports, 2017, 7, 15145.	1.6	4
36	Biotransformations in microflow systems: Bridging the gap between academia and industry. Journal of Flow Chemistry, 2017, 7, 111-117.	1.2	31
37	Ultrahigh-Throughput Improvement and Discovery of Enzymes Using Droplet-Based Microfluidic Screening. Micromachines, 2017, 8, 128.	1.4	47

ARTICLE IF CITATIONS # Evolving Enzymes for Biocatalysis., 2017, , 271-287. 0 38 Directed Evolution of Protein Catalysts. Annual Review of Biochemistry, 2018, 87, 131-157. 5.0 Exploration of Enzyme Diversity by Integrating Bioinformatics with Expression Analysis and 40 5.5 58 Biochemical Characterization. ACS Catalysis, 2018, 8, 2402-2412. Speeding up enzyme discovery and engineering with ultrahigh-throughput methods. Current Opinion 103 in Structural Biology, 2018, 48, 149-156. Getting Momentum: From Biocatalysis to Advanced Synthetic Biology. Trends in Biochemical Sciences, 42 3.7 70 2018, 43, 180-198. Designing Laplace Pressure Pattern for Microdroplet Manipulation. Langmuir, 2018, 34, 639-645. 1.6 Use of photoswitchable fluorescent proteins for droplet-based microfluidic screening. Journal of 44 0.7 12 Microbiological Methods, 2018, 147, 59-65. Efficient molecular evolution to generate enantioselective enzymes using a dual-channel microfluidic 5.8 droplet screening platform. Nature Communications, 2018, 9, 1030. Ultrahigh-Throughput Screening of Single-Cell Lysates for Directed Evolution and Functional Metagenomics. Methods in Molecular Biology, 2018, 1685, 297-309. 0.4 46 16 Underground metabolism: network-level perspective and biotechnological potential. Current Opinion 3.3 in Biotechnology, 2018, 49, 108-114. Human Gut Microbiome: Function Matters. Trends in Microbiology, 2018, 26, 563-574. 48 3.5 458 The fourth wave of biocatalysis is approaching. Philosophical Transactions Series A, Mathematical, 1.6 108 Physical, and Engineering Sciences, 2018, 376, 20170063. Determinants and Prediction of Esterase Substrate Promiscuity Patterns. ACS Chemical Biology, 2018, 50 1.6 106 13, 225-234. Extending the application of biocatalysis to meet the challenges of drug development. Nature Reviews 13.8 Chemistry, 2018, 2, 409-421. Recent Advances in Function-based Metagenomic Screening. Genomics, Proteomics and Bioinformatics, 52 3.0 105 2018, 16, 405-415. Coding of Experimental Conditions in Microfluidic Droplet Assays Using Colored Beads and Machine Learning Supported Image Analysis. Small, 2019, 15, e1802384. Discovering novel hydrolases from hot environments. Biotechnology Advances, 2018, 36, 2077-2100. 54 6.0 38 Expanding biological applications using cell-free metabolic engineering: An overview. Metabolic Engineering, 2018, 50, 156-172.

#	Article	IF	CITATIONS
56	Ultra-high throughput functional enrichment of large monoamine oxidase (MAO-N) libraries by fluorescence activated cell sorting. Analyst, The, 2018, 143, 4747-4755.	1.7	19
57	Detection of antibiotics synthetized in microfluidic picolitre-droplets by various actinobacteria. Scientific Reports, 2018, 8, 13087.	1.6	52
58	Advances of Functional Metagenomics in Harnessing Thermozymes. , 2018, , 289-307.		3
59	Revealing Unexplored Sequence-Function Space Using Sequence Similarity Networks. Biochemistry, 2018, 57, 4651-4662.	1.2	58
60	A Mechanismâ€Based Approach to Screening Metagenomic Libraries for Discovery of Unconventional Glycosidases. Angewandte Chemie - International Edition, 2018, 57, 11359-11364.	7.2	22
61	Characterization of esterase activity from an Acetomicrobium hydrogeniformans enzyme with high structural stability in extreme conditions. Extremophiles, 2018, 22, 781-793.	0.9	10
62	A Genomic Outlook on Bioremediation: The Case of Arsenic Removal. Frontiers in Microbiology, 2018, 9, 820.	1.5	49
63	Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels. Biomedical Microdevices, 2018, 20, 72.	1.4	19
64	A Mechanismâ€Based Approach to Screening Metagenomic Libraries for Discovery of Unconventional Glycosidases. Angewandte Chemie, 2018, 130, 11529-11534.	1.6	5
65	Novel Biological Resources Screened From Uncultured Bacteria by a Metagenomic Method. , 2018, , 273-288.		4
66	Fast and Flexible Synthesis of Combinatorial Libraries for Directed Evolution. Methods in Enzymology, 2018, 608, 59-79.	0.4	11
67	Highâ€throughput dropletâ€based microfluidics for directed evolution of enzymes. Electrophoresis, 2019, 40, 2860-2872.	1.3	42
68	Microfluidic Chips for Life Sciences—A Comparison of Low Entry Manufacturing Technologies. Small, 2019, 15, e1901956.	5.2	20
69	Controlled Oil/Water Partitioning of Hydrophobic Substrates Extending the Bioanalytical Applications of Droplet-Based Microfluidics. Analytical Chemistry, 2019, 91, 10008-10015.	3.2	20
70	Single-cell activity screening in microfluidic droplets. Methods in Enzymology, 2019, 628, 95-112.	0.4	15
71	Site-Selective C–H Halogenation Using Flavin-Dependent Halogenases Identified via Family-Wide Activity Profiling. ACS Central Science, 2019, 5, 1844-1856.	5.3	69
72	A subfamily roadmap of the evolutionarily diverse glycoside hydrolase family 16 (GH16). Journal of Biological Chemistry, 2019, 294, 15973-15986.	1.6	118
73	Ultrahigh-throughput screening enables efficient single-round oxidase remodelling. Nature Catalysis, 2019, 2, 740-747.	16.1	74

#	Article	IF	Citations
74	The EFI Web Resource for Genomic Enzymology Tools: Leveraging Protein, Genome, and Metagenome Databases to Discover Novel Enzymes and Metabolic Pathways. Biochemistry, 2019, 58, 4169-4182.	1.2	441
75	Fluorescence-Activated Droplet Sorting for Single-Cell Directed Evolution. ACS Synthetic Biology, 2019, 8, 1430-1440.	1.9	82
76	Rational design of a high-throughput droplet sorter. Lab on A Chip, 2019, 19, 2220-2232.	3.1	24
77	Exploring the sequence, function, and evolutionary space of protein superfamilies using sequence similarity networks and phylogenetic reconstructions. Methods in Enzymology, 2019, 620, 315-347.	0.4	13
78	Retrosynthetic design of metabolic pathways to chemicals not found in nature. Current Opinion in Systems Biology, 2019, 14, 82-107.	1.3	84
79	Lateral transfer of organophosphate degradation (opd) genes among soil bacteria: mode of transfer and contributions to organismal fitness. Journal of Genetics, 2019, 98, 1.	0.4	15
80	Novel mutation in Cul7 gene in a family diagnosed with 3M syndrome. Journal of Genetics, 2019, 98, 1.	0.4	4
81	Towards the directed evolution of protein materials. MRS Communications, 2019, 9, 441-455.	0.8	21
82	The Promises and the Challenges of Biotransformations in Microflow. Biotechnology Journal, 2019, 14, e1800580.	1.8	45
83	Biosynthesis of High-Value Amino Acids by Synthetic Biology. , 2019, , 257-294.		2
84	Metagenomics in the Search for Industrial Enzymes. , 2019, , 419-451.		11
85	High-Throughput, Lysis-Free Screening for Sulfatase Activity Using <i>Escherichia coli</i> Autodisplay in Microdroplets. ACS Synthetic Biology, 2019, 8, 2690-2700.	1.9	25
86	Role of Enzymes in Synthesis of Biologically Important Organic Scaffolds. Asian Journal of Chemistry, 2019, 31, 2698-2706.	0.1	3
87	Bioprospecting Reveals Class III ω-Transaminases Converting Bulky Ketones and Environmentally Relevant Polyamines. Applied and Environmental Microbiology, 2019, 85, .	1.4	17
88	Application of the uridine auxotrophic host and synthetic nucleosides for a rapid selection of hydrolases from metagenomic libraries. Microbial Biotechnology, 2019, 12, 148-160.	2.0	10
89	Balancing Specificity and Promiscuity in Enzyme Evolution: Multidimensional Activity Transitions in the Alkaline Phosphatase Superfamily. Journal of the American Chemical Society, 2019, 141, 370-387.	6.6	35
90	Biosystems design by directed evolution. AICHE Journal, 2020, 66, e16716.	1.8	23
91	Microfluidic Droplets and Their Applications: Diagnosis, Drug Screening and the Discovery of Therapeutic Enzymes. IFMBE Proceedings, 2020, , 361-368.	0.2	0

#	Article	IF	CITATIONS
92	Bacterial Expression Systems for Enzymatic Activity in Droplet-Based Microfluidics. Analytical Chemistry, 2020, 92, 4908-4916.	3.2	23
93	Advances in ultrahigh-throughput screening for directed enzyme evolution. Chemical Society Reviews, 2020, 49, 233-262.	18.7	182
94	Mass Activated Droplet Sorting (MADS) Enables Highâ€Throughput Screening of Enzymatic Reactions at Nanoliter Scale. Angewandte Chemie - International Edition, 2020, 59, 4470-4477.	7.2	108
95	How enzyme promiscuity and horizontal gene transfer contribute to metabolic innovation. FEBS Journal, 2020, 287, 1323-1342.	2.2	42
96	Enzyme promiscuity – A light on the "darker―side of enzyme specificity. Biocatalysis and Biotransformation, 2020, 38, 81-92.	1.1	17
97	Ultrahigh throughput screening for enzyme function in droplets. Methods in Enzymology, 2020, 643, 317-343.	0.4	32
98	Innovations in CAZyme gene diversity and its modification for biorefinery applications. Biotechnology Reports (Amsterdam, Netherlands), 2020, 28, e00525.	2.1	32
99	Microfluidics for Biotechnology: Bridging Gaps to Foster Microfluidic Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 589074.	2.0	62
100	Coupling Droplet Microfluidics with Mass Spectrometry for Ultrahigh-Throughput Analysis of Complex Mixtures up to and above 30 Hz. Analytical Chemistry, 2020, 92, 12605-12612.	3.2	45
101	Droplet Microfluidics for Microbial Biotechnology. Advances in Biochemical Engineering/Biotechnology, 2020, , 129-157.	0.6	10
102	Asymmetric dynamic coupling promotes alternative evolutionary pathways in an enzyme dimer. Scientific Reports, 2020, 10, 18866.	1.6	2
103	Design, Screening, and Testing of Non-Rational Peptide Libraries with Antimicrobial Activity: In Silico and Experimental Approaches. Antibiotics, 2020, 9, 854.	1.5	20
104	Double emulsion flow cytometry with high-throughput single droplet isolation and nucleic acid recovery. Lab on A Chip, 2020, 20, 2062-2074.	3.1	65
105	A Rapid Method for the Selection of Amidohydrolases from Metagenomic Libraries by Applying Synthetic Nucleosides and a Uridine Auxotrophic Host. Catalysts, 2020, 10, 445.	1.6	3
106	EnzymeMiner: automated mining of soluble enzymes with diverse structures, catalytic properties and stabilities. Nucleic Acids Research, 2020, 48, W104-W109.	6.5	51
107	Double-Sided Microwells with a Stepped Through-Hole Membrane for High-Throughput Microbial Assays. Analytical Chemistry, 2020, 92, 9501-9510.	3.2	1
108	Collective Pulsing in Xeniid Corals: Part II—Using Computational Fluid Dynamics to Determine if There are Benefits to Coordinated Pulsing. Bulletin of Mathematical Biology, 2020, 82, 67.	0.9	1
109	"Development and application of analytical detection techniques for droplet-based microfluidics―A review. Analytica Chimica Acta, 2020, 1113, 66-84.	2.6	61

ARTICLE IF CITATIONS Winning the numbers game in enzyme evolution – fast screening methods for improved biotechnology 110 2.6 26 proteins. Current Opinion in Structural Biology, 2020, 63, 123-133. Protein Engineering for Improving and Diversifying Natural Product Biosynthesis. Trends in 114 Biotechnology, 2020, 38, 729-744. Deep learning guided image-based droplet sorting for on-demand selection and analysis of single cells 112 3.168 and 3D cell cultures. Lab on A Chip, 2020, 20, 889-900. Mass Activated Droplet Sorting (MADS) Enables Highâ€Throughput Screening of Enzymatic Reactions at Nanoliter Scale. Angewandte Chemie, 2020, 132, 4500-4507. Droplet Precise Selfâ€Splitting on Patterned Adhesive Surfaces for Simultaneous Multidetection. 114 1.6 5 Angewandte Chemie, 2020, 132, 10622-10626. Droplet Precise Selfâ€Splitting on Patterned Adhesive Surfaces for Simultaneous Multidetection. Angewandte Chemie - International Edition, 2020, 59, 10535-10539. High-throughput screening for efficient microbial biotechnology. Current Opinion in Biotechnology, 116 3.3 43 2020, 64, 141-150. Cellâ€Free Exploration of the Natural Product Chemical Space. ChemBioChem, 2021, 22, 84-91. 1.3 An ultrahighâ€throughput screening platform based on flow cytometric droplet sorting for mining 118 1.8 11 novel enzymes from metagenomic libraries. Environmental Microbiology, 2021, 23, 996-1008. Liquid Nanoparticles: Manipulating the Nucleation and Growth of Nanoscale Droplets. Angewandte 7.2 Chemie - International Edition, 2021, 60, 3047-3054. Growth amplification in ultrahigh-throughput microdroplet screening increases sensitivity of clonal 120 3.1 15 enzyme assays and minimizes phenotypic variation. Lab on A Chip, 2021, 21, 163-173. Liquid Nanoparticles: Manipulating the Nucleation and Growth of Nanoscale Droplets. Angewandte 1.6 Chemie, 2021, 133, 3084-3091. Synthesis and evaluation of sensitive coumarin-based fluorogenic substrates for discovery of \hat{l} -<i>N</i>-acetyl galactosaminidases through droplet-based screening. Organic and Biomolecular Chemistry, 2021, 19, 789-793. 122 1.5 5 Droplet-Based Microfluidic High-Throughput Screening of Enzyme Mutant Libraries Secreted by 0.4 Yarrowia lipolytica. Methods in Molecular Biology, 2021, 2307, 205-219. 125 Enzymatic strategies for asymmetric synthesis. RSC Chemical Biology, 2021, 2, 958-989. 2.0 34 Recent trends in biocatalysis. Chemical Society Reviews, 2021, 50, 8003-8049. Cell-free Directed Evolution of a Protease in Microdroplets at Ultrahigh Throughput. ACS Synthetic 127 1.9 53 Biology, 2021, 10, 252-257. "NADâ€display†Ultrahighâ€Throughput in Vitro Screening of NAD(H) Dehydrogenases Using Bead Display and Flow Cytometry. Angewandte Chemie - International Edition, 2021, 60, 9015-9021.

#	Article	IF	CITATIONS
132	"NADâ€display― Ultrahighâ€Throughput in Vitro Screening of NAD(H) Dehydrogenases Using Bead Display and Flow Cytometry. Angewandte Chemie, 2021, 133, 9097-9103.	1.6	1
133	Hydroxylation, Epoxidation, and Dehydrogenation of Capsaicin by a Microbial Promiscuous Cytochrome P450 105D7. Chemistry and Biodiversity, 2021, 18, e2000910.	1.0	4
134	Recent advances in droplet microfluidics for enzyme and cell factory engineering. Critical Reviews in Biotechnology, 2021, 41, 1023-1045.	5.1	16
135	Synthetic Enzyme atalyzed CO ₂ Fixation Reactions. ChemSusChem, 2021, 14, 1781-1804.	3.6	36
137	Recent Advances on Sorting Methods of High-Throughput Droplet-Based Microfluidics in Enzyme Directed Evolution. Frontiers in Chemistry, 2021, 9, 666867.	1.8	22
138	Identification of functional cytochrome P450 and ferredoxin from Streptomyces sp. EAS-AB2608 by transcriptional analysis and their heterologous expression. Applied Microbiology and Biotechnology, 2021, 105, 4177-4187.	1.7	4
139	Droplet-based microfluidic platform for high-throughput screening of Streptomyces. Communications Biology, 2021, 4, 647.	2.0	39
140	Strategies for Natural Products Discovery from Uncultured Microorganisms. Molecules, 2021, 26, 2977.	1.7	8
141	Biocatalysis. Nature Reviews Methods Primers, 2021, 1, .	11.8	255
142	Effective microbial bioremediation via the multi-omics approach: An overview of trends, problems and prospects. UMYU Journal of Microbiology Research, 2021, 6, 127-145.	0.1	8
143	Mosaic Ends Tagmentation (METa) Assembly for Highly Efficient Construction of Functional Metagenomic Libraries. MSystems, 2021, 6, e0052421.	1.7	2
144	A Titratable Cell Lysis-on-Demand System for Droplet-Compartmentalized Ultrahigh-Throughput Screening in Functional Metagenomics and Directed Evolution. ACS Synthetic Biology, 2021, 10, 1882-1894.	1.9	4
145	Discovery and Development of Promiscuous O-Glycan Hydrolases for Removal of Intact Sialyl T-Antigen. ACS Chemical Biology, 2021, 16, 2004-2015.	1.6	7
146	Directed Evolution: Methodologies and Applications. Chemical Reviews, 2021, 121, 12384-12444.	23.0	220
147	Droplet microfluidics on analysis of pathogenic microbes for wastewater-based epidemiology. TrAC - Trends in Analytical Chemistry, 2021, 143, 116333.	5.8	14
148	A roadmap for metagenomic enzyme discovery. Natural Product Reports, 2021, 38, 1994-2023.	5.2	76
149	Metagenomic Analysis of Low-Temperature Environments. , 2017, , 389-421.		4
150	Autonomous Science: Big Data Tools for Small Data Problems in Chemistry. RSC Theoretical and Computational Chemistry Series, 2020, , 450-487.	0.7	4

		CITATION REPORT		
#	Article		IF	Citations
151	Investigating host-microbiome interactions by droplet based microfluidics. Microbiome,	, 2020, 8, 141.	4.9	33
153	Ultrahighâ€Throughput Detection of Enzymatic Alcohol Dehydrogenase Activity in Micr Droplets with a Direct Fluorogenic Assay. ChemBioChem, 2021, 22, 3292-3299.	rofluidic	1.3	9
154	Two-Phase Biocatalysis in Microfluidic Droplets. Biosensors, 2021, 11, 407.		2.3	3
156	High-throughput screening for improving cellular and enzymatic properties. , 2020, , 15	3-181.		0
157	Single-Cell Microencapsulation for Evolution and Discovery of Biocatalysts. , 2022, , 67	3-694.		0
159	Single-Cell Microencapsulation for Evolution and Discovery of Biocatalysts. , 2020, , 1-2	2.		0
160	Ultrahigh-throughput screening in microfluidic droplets: a faster route to new enzymes. Biochemical Sciences, 2021, , .	. Trends in	3.7	6
161	Integration of Droplet Microfluidic Tools for Single-cell Functional Metagenomics: An Er Head Start. Genomics, Proteomics and Bioinformatics, 2021, 19, 504-518.	ngineering	3.0	4
162	Adventures on the Routes of Protein Evolution—In Memoriam Dan Salah Tawfik (1955 Molecular Biology, 2022, 434, 167462.	5–2021). Journal of	2.0	6
163	Metagenomic screening strategies for bioprospecting enzymes from environmental sar Conference Series: Earth and Environmental Science, 2022, 974, 012003.	nples. IOP	0.2	13
164	Toward hypothesis-driven, personalized microbiome screening. Cell Reports Methods, 2	.022, 2, 100139.	1.4	3
165	Unusual commonality in active site structural features of substrate promiscuous and sp enzymes. Journal of Structural Biology, 2022, 214, 107835.	pecialist	1.3	2
166	Microorganisms harbor keys to a circular bioeconomy making them useful tools in fight pollution and rising CO2 levels. Extremophiles, 2022, 26, 10.	ing plastic	0.9	24
167	Machine learning modeling of family wide enzyme-substrate specificity screens. PLoS C Biology, 2022, 18, e1009853.	omputational	1.5	41
168	Novel mutation in gene in a family diagnosed with 3M syndrome. Journal of Genetics, 2	019, 98, .	0.4	2
171	On Single-Cell Enzyme Assays in Marine Microbial Ecology and Biogeochemistry. Frontie Science, 2022, 9, .	ers in Marine	1.2	1
172	A Coupled Ketoreductaseâ€Ðiaphorase Assay for the Detection of Polyethylene Terephthalateâ€Hydrolyzing Activity. ChemSusChem, 2022, 15, .		3.6	3
173	Understanding microbial networks of farm animals through genomics, metagenomics a meta-omic approaches for livestock wellness and sustainability – A Review. Annals of 2022, 22, 839-853.	nd other Animal Science,	0.6	12

#	Article	IF	CITATIONS
174	Discovery and Biotechnological Exploitation of Glycoside-Phosphorylases. International Journal of Molecular Sciences, 2022, 23, 3043.	1.8	7
175	Metagenomic Approaches as a Tool to Unravel Promising Biocatalysts from Natural Resources: Soil and Water. Catalysts, 2022, 12, 385.	1.6	9
176	Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nature Reviews Microbiology, 2022, 20, 542-556.	13.6	139
177	Single-particle combinatorial multiplexed liposome fusion mediated by DNA. Nature Chemistry, 2022, 14, 558-565.	6.6	24
178	Advances in Metagenomics and Its Application in Environmental Microorganisms. Frontiers in Microbiology, 2021, 12, 766364.	1.5	54
179	Microfluidic screening and genomic mutation identification for enhancing cellulase production in Pichia pastoris. , 2022, 15, 50.		9
181	Mono― <i>O</i> â€functionalizations of Pittsburgh Green and Their Applications. European Journal of Organic Chemistry, 2022, 2022, .	1.2	0
182	Functional metagenomic screening identifies an unexpected β-glucuronidase. Nature Chemical Biology, 2022, 18, 1096-1103.	3.9	16
183	Complexity reduction and opportunities in the design, integration and intensification of biocatalytic processes for metabolite synthesis. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
185	Emerging microfluidic technologies for microbiome research. Frontiers in Microbiology, 0, 13, .	1.5	6
186	Gigavalent Display of Proteins on Monodisperse Polyacrylamide Hydrogels as a Versatile Modular Platform for Functional Assays and Protein Engineering. ACS Central Science, 2022, 8, 1182-1195.	5.3	6
188	Vector redesign and <scp>inâ€droplet cellâ€growth</scp> improves enrichment and recovery in live <i>Escherichia coli</i> . Microbial Biotechnology, 0, , .	2.0	2
190	High-Throughput Steady-State Enzyme Kinetics Measured in a Parallel Droplet Generation and Absorbance Detection Platform. Analytical Chemistry, 2022, 94, 16701-16710.	3.2	3
191	A lowâ€cost, highâ€throughput microfluidic nanoâ€culture platform for functional metagenomics. Biotechnology Progress, 2023, 39, .	1.3	0
192	Combinatorial assembly and design of enzymes. Science, 2023, 379, 195-201.	6.0	33
194	Ultrahigh-Throughput Directed Evolution of a Metal-Free α/β-Hydrolase with a Cys-His-Asp Triad into an Efficient Phosphotriesterase. Journal of the American Chemical Society, 2023, 145, 1083-1096.	6.6	15
195	Design and construction of a microfluidics workstation for high-throughput multi-wavelength fluorescence and transmittance activated droplet analysis and sorting. Nature Protocols, 2023, 18, 1090-1136.	5.5	8
196	Characterization of antibiotic resistomes by reprogrammed bacteriophage-enabled functional metagenomics in clinical strains. Nature Microbiology, 2023, 8, 410-423.	5.9	6

#	Article	IF	CITATIONS
198	Ultra-High-Throughput Absorbance-Activated Droplet Sorting for Enzyme Screening at Kilohertz Frequencies. Analytical Chemistry, 2023, 95, 4597-4604.	3.2	13
199	High-throughput microfluidic droplets in biomolecular analytical system: A review. Biosensors and Bioelectronics, 2023, 228, 115213.	5.3	3
200	Droplets microfluidics platform—A tool for single cell research. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	5
201	Droplet-based microfluidics. Nature Reviews Methods Primers, 2023, 3, .	11.8	27
219	Precision enzyme discovery through targeted mining of metagenomic data. Natural Products and Bioprospecting, 2024, 14, .	2.0	0
224	Biofoundries for plant-derived bioactive compounds. , 2024, , 257-283.		0