What if the Electrical Conductivity of Graphene Is Signi Graphene–Semiconductor Composite-Based Photoca

ACS Applied Materials & amp; Interfaces 7, 27948-27958

DOI: 10.1021/acsami.5b10298

Citation Report

#	Article	IF	CITATIONS
1	Manganese functionalized mesoporous molecular sieves Ti-HMS as a Fenton-like catalyst for dyes wastewater purification by advanced oxidation processes. Journal of Environmental Chemical Engineering, 2016, 4, 4653-4660.	3.3	18
2	Decorating geometry- and size-controlled sub-20 nm Pd nanocubes onto 2D TiO ₂ nanosheets for simultaneous H ₂ evolution and 1,1-diethoxyethane production. Journal of Materials Chemistry A, 2016, 4, 18366-18377.	5.2	90
3	Insight into the Origin of Boosted Photosensitive Efficiency of Graphene from the Cooperative Experiment and Theory Study. Journal of Physical Chemistry C, 2016, 120, 27091-27103.	1.5	37
4	Graphene-doped Bi2S3 nanorods as visible-light photoelectrochemical aptasensing platform for sulfadimethoxine detection. Biosensors and Bioelectronics, 2016, 86, 636-642.	5.3	100
5	Synergistically Enhanced Electrocatalytic Performance of an N-Doped Graphene Quantum Dot-Decorated 3D MoS ₂ –Graphene Nanohybrid for Oxygen Reduction Reaction. ACS Omega, 2016, 1, 971-980.	1.6	96
6	Structural diversity of graphene materials and their multifarious roles in heterogeneous photocatalysis. Nano Today, 2016, 11, 351-372.	6.2	283
7	Efficient utilization of photogenerated electrons and holes for photocatalytic selective organic syntheses in one reaction system using a narrow band gap CdS photocatalyst. Green Chemistry, 2016, 18, 3628-3639.	4.6	101
8	Reduced Graphene Oxide – Zinc Sulfide Composite for Solar Light Responsive Photo Current Generation and Photocatalytic 4â€Nitrophenol Reduction. ChemistrySelect, 2017, 2, 537-545.	0.7	41
9	Visible light responsive Cu2MoS4 nanosheets incorporated reduced graphene oxide for efficient degradation of organic pollutant. Applied Surface Science, 2017, 418, 128-137.	3.1	24
10	Reduced Graphene Oxide ―Zinc Phthalocyanine Composites as Fascinating Material for Optoelectronic and Photocatalytic Applications. ChemistrySelect, 2017, 2, 3297-3305.	0.7	23
11	Inorganic semiconductors-graphene composites in photo(electro)catalysis: Synthetic strategies, interaction mechanisms and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 33, 132-164.	5.6	54
12	Photoredox catalysis over graphene aerogel-supported composites. Journal of Materials Chemistry A, 2018, 6, 4590-4604.	5.2	171
13	Revealing the Doubleâ€Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO ₂ Nanotube Arrays@RGO/MoS ₂ Heterostructure. Small, 2018, 14, e1704531.	5.2	49
14	Facile synthesis and structural analysis of graphene oxide decorated with iron-cerium carbonate for visible-light driven rapid degradation of organic dyes. Journal of Environmental Chemical Engineering, 2018, 6, 2616-2626.	3.3	9
15	Efficient infrared light promoted degradation of volatile organic compounds over photo-thermal responsive Pt-rGO-TiO2 composites. Applied Catalysis B: Environmental, 2018, 233, 260-271.	10.8	106
16	Rational utilization of highly conductive, commercial Elicarb graphene to advance the graphene-semiconductor composite photocatalysis. Applied Catalysis B: Environmental, 2018, 224, 424-432.	10.8	45
17	RGOâ€ZnSe Photocatalyst towards Solarâ€Lightâ€Assisted Degradation of Tetracycline Antibiotic Water Pollutant. ChemistrySelect, 2018, 3, 10214-10219.	0.7	15
18	An adaptive geometry regulation strategy for 3D graphene materials: towards advanced hybrid photocatalysts. Chemical Science, 2018, 9, 8876-8882.	3.7	29

#	Article	IF	CITATIONS
19	Anion-controlled sulfidation for decoration of graphene oxide with iron cobalt sulfide for rapid sonochemical dyes removal in the absence of light. Applied Catalysis A: General, 2018, 561, 49-58.	2.2	12
20	3D Semiconducting Polymer/Graphene Networks: Toward Sensitive Photocathodic Enzymatic Bioanalysis. Analytical Chemistry, 2018, 90, 9687-9690.	3.2	27
21	A facile and efficient method to directly synthesize TiO2/rGO with enhanced photocatalytic performance. Superlattices and Microstructures, 2018, 121, 1-8.	1.4	22
22	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	23.0	1,591
23	3D graphene/AgBr/Ag cascade aerogel for efficient photocatalytic disinfection. Applied Catalysis B: Environmental, 2019, 245, 343-350.	10.8	87
24	Efficient visible-light-driven water remediation by 3D graphene aerogel-supported nitrogen-doped carbon quantum dots. Catalysis Today, 2019, 335, 160-165.	2.2	21
25	Molten salt conversion of polyethylene terephthalate waste into graphene nanostructures with high surface area and ultra-high electrical conductivity. Applied Surface Science, 2019, 476, 539-551.	3.1	51
26	Efficient visible-light photocatalyst synthesized by modifying SnO with activated carbon. Materials Research Express, 2019, 6, 015603.	0.8	3
27	Controlling the surface chemistry of graphene oxide: Key towards efficient ZnO-GO photocatalysts. Catalysis Today, 2020, 357, 350-360.	2.2	50
29	Oxygen vacancies mediated charge separation and collection in Pt/WO3 nanosheets for enhanced photocatalytic performance. Applied Surface Science, 2020, 507, 145133.	3.1	54
30	Semiconducting metal oxides empowered by graphene and its derivatives: Progresses and critical perspective on selected functional applications. Journal of Applied Physics, 2020, 128, .	1.1	18
31	Zero-degree photochemical synthesis of highly dispersed Pt/TiO2 for enhanced photocatalytic hydrogen generation. Journal of Alloys and Compounds, 2020, 849, 156634.	2.8	16
32	Metal organic framework-derived porous Fe2N nanocubes by rapid-nitridation for efficient photocatalytic hydrogen evolution. Materials Advances, 2020, 1, 1161-1167.	2.6	22
33	Branched Alkylamine–Reduced Graphene Oxide Hybrids as a Dual Proton–Electron Conductor and Organic-Only Water-Splitting Photocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 10829-10838.	4.0	40
34	Facet Engineering of Pd Nanocrystals for Enhancing Photocatalytic Hydrogenation: Modulation of the Schottky Barrier Height and Enrichment of Surface Reactants. ACS Applied Materials & Interfaces, 2021, 13, 13044-13054.	4.0	53
35	Recent Advances in Transition Metal Nitrideâ€Based Materials for Photocatalytic Applications. Advanced Functional Materials, 2021, 31, 2100553.	7.8	80
36	Synergistic Redox Reaction for Value-Added Organic Transformation via Dual-Functional Photocatalytic Systems. ACS Catalysis, 2021, 11, 4613-4632.	5.5	69
37	TiO2/reduced hydroxylated graphene nanocomposite photocatalysts: Improved electron–hole separation and migration. Materials Chemistry and Physics, 2021, 270, 124796.	2.0	15

CITATION REPORT

#	Article	IF	CITATIONS
38	Reduced graphene oxide-ZnO hybrid composites as photocatalysts: The role of nature of the molecular target in catalytic performance. Ceramics International, 2021, 47, 19346-19355.	2.3	10
39	Roles of Graphene Oxide in Heterogeneous Photocatalysis. ACS Materials Au, 2021, 1, 37-54.	2.6	56
40	High-pressure synthesis of rGO/TiO2 and rGO/TiO2/Cu catalysts for efficient CO2 reduction under solar light. Journal of Supercritical Fluids, 2021, 174, 105265.	1.6	8
41	Molten Salt Conversion of Plastics into Highly Conductive Carbon Nanostructures. , 2020, , 109-140.		1
42	Multifunctional graphene-based composite photocatalysts oriented by multifaced roles of graphene in photocatalysis. Chinese Journal of Catalysis, 2022, 43, 708-730.	6.9	65
43	Red Phosphorus: An Up-and-Coming Photocatalyst on the Horizon for Sustainable Energy Development and Environmental Remediation. Chemical Reviews, 2022, 122, 3879-3965.	23.0	58
44	Synergetic effects of Ni and graphene as promotors for TiO2 as photocatalysts for efficient hydrogen production. MRS Communications, 0, , .	0.8	0
45	<i>In situ</i> construction of graphdiyne based heterojunctions by a deprotection-free approach for photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2023, 11, 3380-3387.	5.2	17

CITATION REPORT