A review of Very Large Floating Structures (VLFS) for co

Ocean Engineering 109, 677-690

DOI: 10.1016/j.oceaneng.2015.09.012

Citation Report

#	Article	IF	CITATIONS
1	On retaining a multi-module floating structure in an amplitude death state. Ocean Engineering, 2016, 121, 134-142.	4.3	27
2	Analytical study on hydrodynamic performance of a raft-type wave power device. Journal of Marine Science and Technology, 2017, 22, 620-632.	2.9	11
3	Scattering of periodic surface waves by pile-group supported platform. Ocean Engineering, 2017, 146, 46-58.	4.3	6
4	Heave motion prediction of a large barge in random seas by using artificial neural network. AIP Conference Proceedings, 2017, , .	0.4	O
5	Reducing hydroelastic responses of pontoon-type VLFS using vertical elastic mooring lines. Marine Structures, 2018, 59, 251-270.	3.8	30
6	Optimized stiffness combination of a flexible-base hinged connector for very large floating structures. Marine Structures, 2018, 60, 151-164.	3.8	15
7	Experimental validation of network modeling method on a three-modular floating platform model. Coastal Engineering, 2018, 137, 92-102.	4.0	19
8	Hydroelastic analysis of articulated floating elastic plate based on Timoshenko–Mindlin plate theory. Ships and Offshore Structures, 2018, 13, 287-301.	1.9	6
9	Delta-type VLFS–Âhydrodynamic aspects. Ships and Offshore Structures, 2018, 13, 352-365.	1.9	4
10	Motion Responses of a Catenary-Taut-Hybrid Moored Single Module of a Semisubmersible Very Large Floating Structure in Multisloped Seabed. Journal of Offshore Mechanics and Arctic Engineering, 2018, 140, .	1.2	8
11	Spectral-based fatigue crack propagation prediction for very large floating structures. Marine Structures, 2018, 57, 193-206.	3.8	7
12	Adaptive optimal control of multi-modular floating platforms in random seas. Nonlinear Dynamics, 2018, 91, 863-876.	5.2	7
13	Impact of Connection Properties on Dynamic Response of Modular Floating Structures., 2018,,.		0
14	A floating model based on multi-center force applied to irregular floating objects*. , 2018, , .		O
15	Letter: Hydroelastic interactions between water waves and floating freshwater ice. Physics of Fluids, 2018, 30, .	4.0	37
16	Scattering of water waves by an inclined elastic plate in deep water. Ocean Engineering, 2018, 167, 221-228.	4.3	18
17	Mitigation of structural responses of a very large floating structure in the presence of vertical porous barrier. Ocean Engineering, 2018, 165, 505-527.	4.3	43
18	Motion responses of a catenary–taut–tendon hybrid moored single module of a semisubmersible-type VLFS over uneven seabed. Journal of Marine Science and Technology, 2019, 24, 780-798.	2.9	7

#	Article	IF	CITATIONS
19	Influence of Support Conditions on the Hydroelastic Behaviour of Floating Thick Elastic Plate. Journal of Marine Science and Application, 2019, 18, 295-313.	1.7	5
20	A shallow water mooring system design methodology combining NSGA-II with the vessel-mooring coupled model. Ocean Engineering, 2019, 190, 106417.	4.3	12
21	Reduction of hydroelastic response of a flexible floating structure by an annular flexible permeable membrane. Journal of Engineering Mathematics, 2019, 118, 73-99.	1.2	15
22	Vibration Control of Large Floating Offshore Structures by Means of Damping Plates: A Case Study. Lecture Notes in Civil Engineering, 2019, , 347-363.	0.4	0
23	Extracting energy while reducing hydroelastic responses of VLFS using a modular raft wec-type attachment. Applied Ocean Research, 2019, 84, 302-316.	4.1	24
24	Numerical investigation of the dynamic response and power capture performance of a VLFS with a wave energy conversion unit. Engineering Structures, 2019, 195, 62-83.	5.3	22
25	Hydrodynamic analysis of a modular multi-purpose floating structure system with different outermost connector types. Ocean Engineering, 2019, 176, 158-168.	4.3	45
26	An optimization method for stiffness configuration of flexible connectors for multi-modular floating systems. Ocean Engineering, 2019, 181, 134-144.	4.3	16
27	Wave radiation from multiple cylinders of arbitrary cross sections. Ocean Engineering, 2019, 184, 11-22.	4.3	13
28	Addressing global environmental megatrends by decoupling the causal chain through floating infrastructure. Futures, 2019, 113, 102420.	2.5	3
29	Expanding coastal cities – Proof of feasibility for modular floating structures (MFS). Journal of Cleaner Production, 2019, 222, 520-538.	9.3	17
30	A review of marine renewable energy storage. International Journal of Energy Research, 2019, 43, 6108-6150.	4.5	106
31	Performance characteristics of a conceptual ring-shaped spar-type VLFS with double-layered perforated-wall breakwater. Applied Ocean Research, 2019, 86, 28-39.	4.1	8
32	A comprehensive review and proposed architecture for offshore power system. International Journal of Electrical Power and Energy Systems, 2019, 111, 79-92.	5.5	36
33	Structural performance evaluation of innovative prestressed concrete floating fuel storage tanks. Structural Concrete, 2019, 20, 15-31.	3.1	9
34	Response control of a floating airport in heading waves with output saturation. JVC/Journal of Vibration and Control, 2019, 25, 571-580.	2.6	1
35	Optimization of modular raft WEC-type attachment to VLFS and module connections for maximum reduction in hydroelastic response and wave energy production. Ocean Engineering, 2019, 172, 407-421.	4.3	13
36	Multivariable oscillation control of a modularized floating airport with disturbance of uncertain waves. Journal of Sound and Vibration, 2019, 439, 310-328.	3.9	5

#	Article	IF	CITATIONS
37	A reflection on the trading of pollution rights via land use exchanges and controls: Coase Theorems, Coase's land use parable, and Schumpeterian innovations. Progress in Planning, 2020, 137, 100427.	4.3	8
38	Hydroelastic analysis of periodic arrays of multiple articulated floating elastic plate. Ships and Offshore Structures, 2020, 15, 280-295.	1.9	10
39	Wave Interaction With Floating Elastic Plate Based on the Timoshenko–Mindlin Plate Theory. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142, .	1.2	7
40	Wave diffraction from multiple truncated cylinders of arbitrary cross sections. Applied Mathematical Modelling, 2020, 77, 1425-1445.	4.2	14
41	Simplification of mooring line number for model testing based on equivalent of vessel/mooring coupled dynamics. Journal of Marine Science and Technology, 2020, 25, 573-588.	2.9	4
42	Hydrodynamic Responses and Loads of a Model Floating Hydrocarbon Storage Tank System for Concept Validation and Numerical Verification. Lecture Notes in Civil Engineering, 2020, , 155-171.	0.4	1
44	Two-mode WEC-type attachment for wave energy extraction and reduction of hydroelastic response of pontoon-type VLFS. Ocean Engineering, 2020, 197, 106875.	4.3	16
45	Hydrodynamic analysis of a novel modular floating structure system with central tension-leg platforms. Ships and Offshore Structures, 2020, 15, 1011-1022.	1.9	9
46	Experimental investigation on characteristic change of a scale-extendable chain-type floating structure. Ocean Engineering, 2020, 213, 107778.	4.3	8
47	Modular floating structures (MFS) for offshore dwelling a hydrodynamic analysis in the frequency domain. Ocean Engineering, 2020, 216, 107996.	4.3	12
48	Design Framework for a Modular Floating Container Terminal. Frontiers in Marine Science, 2020, 7, .	2.5	9
49	Hydroelastic response of floating elastic plate in the presence of vertical porous barriers. Ships and Offshore Structures, 2022, 17, 457-471.	1.9	9
50	Hydroelastic interaction between water waves and an array of circular floating porous elastic plates. Journal of Fluid Mechanics, 2020, 900, .	3.4	41
51	Wave energy converter and large floating platform integration: A review. Ocean Engineering, 2020, 213, 107768.	4.3	81
52	Bragg scattering of long waves by an array of floating flexible plates in the presence of multiple submerged trenches. Physics of Fluids, 2020, 32, .	4.0	37
53	Dynamic Response Characterization of Floating Structures Based on Numerical Simulations. Energies, 2020, 13, 5670.	3.1	7
54	Heaving wave energy converter-type attachments to a pontoon-type very large floating structure. Engineering Structures, 2020, 219, 110964.	5.3	12
55	Numerical and Experimental Investigation of Hydrodynamic Interactions of Two VLFS Modules Deployed in Tandem. China Ocean Engineering, 2020, 34, 46-55.	1.6	6

#	Article	IF	CITATIONS
56	Wind Turbines Offshore Foundations and Connections to Grid. Inventions, 2020, 5, 8.	2.5	9
57	On motion analysis and elastic response of floating offshore wind turbines. Journal of Ocean Engineering and Marine Energy, 2020, 6, 71-90.	1.7	20
58	Running Safety and Behavior Tests for a Scaled-Down Railway Vehicle Crossing a Floating Bridge. KSCE Journal of Civil Engineering, 2020, 24, 1750-1762.	1.9	2
59	Water-wave interaction with submerged porous elastic disks. Physics of Fluids, 2020, 32, .	4.0	44
60	Reliability of multi-purpose offshore-facilities: Present status and future direction in Australia. Chemical Engineering Research and Design, 2021, 148, 437-461.	5.6	30
61	Experimental evaluation of a mooring system simplification methodology for reducing mooring lines in a VLFS model testing at a moderate water depth. Ocean Engineering, 2021, 219, 107912.	4.3	5
62	The heaving motion of a porous disc submerged in deep water. Ocean Engineering, 2021, 219, 108290.	4.3	4
63	Mitigation of wave force on a circular flexible plate by a surface-piercing flexible porous barrier. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2021, 235, 586-599.	0.5	2
64	Very Large Floating Structures (VLFS): Overview., 2021,, 1-8.		0
65	Global analysis of sea level rise risk to airports. Climate Risk Management, 2021, 31, 100266.	3.2	23
66	Conceptual Design of a Modular Floating Multi-Purpose Island. Frontiers in Marine Science, 2021, 8, .	2.5	15
67	Investigation of water wave scattering by an elastic sea-bed of varying depth in two superposed fluids covered by an ice-sheet. Ocean Engineering, 2021, 221, 108510.	4.3	9
68	Risk-based ultimate strength design criteria for very large floating structure. Ocean Engineering, 2021, 223, 108627.	4.3	3
69	Mooring-Configurations Induced Decay Motions of a Buoy. Journal of Marine Science and Engineering, 2021, 9, 350.	2.6	5
70	Scaling strategies for multi-purpose floating structures physical modeling: state of art and new perspectives. Applied Ocean Research, 2021, 108, 102487.	4.1	21
71	A Novel Structural Configuration of Modular Floating Wind Farms With Self-Adaptive Property. Journal of Offshore Mechanics and Arctic Engineering, 2021, 143, .	1.2	4
72	Behavior of concrete modular multi-purpose floating structures. Ocean Engineering, 2021, 229, 108971.	4.3	6
73	Scattering of flexural gravity waves by a pair of submerged vertical porous barriers located above a porous sea-bed. Journal of Offshore Mechanics and Arctic Engineering, 0, , 1-21.	1.2	15

#	Article	IF	CITATIONS
74	Measuring Hydroelastic Deformation of Very Flexible Floating Structures. Lecture Notes in Civil Engineering, 2022, , 347-371.	0.4	0
75	Floating Cities and Equitable Grafting onto Marine Ecosystems. Lecture Notes in Civil Engineering, 2022, , 423-432.	0.4	0
76	A Design Method to Assess the Primary Strength of the Delta-Type VLFS. Journal of Marine Science and Engineering, 2021, 9, 1026.	2.6	1
77	Hydrodynamic Sensitivity of Moored and Articulated Multibody Offshore Structures in Waves. Journal of Marine Science and Engineering, 2021, 9, 1028.	2.6	12
78	A Pitching WEC-Type Attachment for Extracting Wave Energy and Reducing Hydroelastic Response of VLFS. Lecture Notes in Civil Engineering, 2020, , 199-207.	0.4	2
79	Simplified algorithm for evaluating the hydrodynamic performance of very large modular semi-submersible structures. Ocean Engineering, 2017, 140, 105-124.	4.3	10
80	Analysis of the coupled dynamic response of an offshore floating multi-purpose platform for the Blue Economy. Ocean Engineering, 2020, 217, 107943.	4.3	28
81	Oscillating Wave Surge Converter-Type Attachment for Extracting Wave Energy While Reducing Hydroelastic Responses of Very Large Floating Structures. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142, .	1.2	7
82	Methodology for the Assessment and Optimization of Connection Parameter Combinations for Modular Floating Structures. Journal of Offshore Mechanics and Arctic Engineering, 2021, 143, .	1.2	4
83	Analysis of the Coupled Dynamics of an Offshore Floating Multi-Purpose Platform: Part B — Hydro-Elastic Analysis With Flexible Support Platform. , 2019, , .		4
84	Solution of inverse non-stationary boundary value problems of diffraction of plane pressure wave on convex surfaces based on analytical solution. Journal of Applied Engineering Science, 2020, 18, 676-680.	0.9	21
86	Hydrodynamic Model Tests With a Large Floating Hydrocarbon Storage Facility. , 2019, , .		2
87	A new type connection with optimum stiffness configuration for very large floating platforms. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 0, , 147509022110562.	0.5	0
88	Bragg scattering of long flexural gravity waves by an array of submerged trenches and the analysis of blocking dynamics. AIP Advances, $2021, 11, \ldots$	1.3	11
89	Linear and quadratic damping coefficients of a single module of a very large floating structure over variable bathymetry: physical and numerical free-decay experiments. Journal of Ocean Engineering and Science, 2021, , .	4.3	4
91	Investigation of Oblique Flexural Gravity Wave Scattering by Two Submerged Thin Vertical Porous Barriers with Different Porosities. Journal of Engineering Mechanics - ASCE, 2022, 148, .	2.9	6
92	A method to Estimate Dynamic Responses of VLFS Based on Multi-Floating-Module Model Connected by Elastic Hinges. China Ocean Engineering, 2021, 35, 687-699.	1.6	8
93	Fully nonlinear hydroelastic modeling and analytic solution of large-scale floating photovoltaics in waves. Journal of Fluids and Structures, 2022, 109, 103446.	3.4	14

#	Article	IF	Citations
94	A face-contact connector for modularized floating structures. Marine Structures, 2022, 82, 103149.	3.8	2
95	Hydroelastic analysis of very large rectangular plate floating on shallow water. Zeitschrift Fur Angewandte Mathematik Und Physik, 2022, 73, 1.	1.4	2
96	Vibration Control of Multi-Modular VLFS in Random Sea Based on Stiffness-Adjustable Connectors. Applied Sciences (Switzerland), 2022, 12, 1117.	2.5	2
98	Mitigation of Hydroelastic Responses in a Very Large Floating Structure by a Connected Vertical Porous Flexible Barrier. Water (Switzerland), 2022, 14, 294.	2.7	3
99	Finite element - Multi-domain boundary element method for hydroelastic analysis of large floating pontoons with perforated plates. Ocean Engineering, 2022, 246, 110659.	4.3	8
100	A method to predict hydroelastic responses of VLFS under waves and moving loads. Ocean Engineering, 2022, 247, 110399.	4.3	7
101	Experimental Study of Mooring Type Effect on the Hydrodynamic Characteristics of VLFS. China Ocean Engineering, 2022, 36, 155-166.	1.6	1
102	Nonlinear Hydrodynamic Analysis of Ships Moored in a VLFS Service Basin in the East Mediterranean Sea. Journal of Marine Science and Engineering, 2022, 10, 382.	2.6	0
103	Scattering of Water Waves by Very Large Floating Structure in the Presence of a Porous Box. Journal of Offshore Mechanics and Arctic Engineering, 2022, 144, .	1.2	6
104	Alternatives for the Marshall Islands to Cope with the Anticipated Sea Level Rise by Climate Change. Journal of Disaster Research, 2022, 17, 315-326.	0.7	3
105	Concrete seawalls: A review of load considerations, ecological performance, durability, and recent innovations. Ecological Engineering, 2022, 178, 106573.	3.6	12
106	Hydrodynamic analysis of a hybrid modular floating structure system and its expansibility. Ships and Offshore Structures, 2022, 17, 2367-2377.	1.9	6
107	Numerical analysis of a moored very large floating structure composed by a set of hinged plates. Ocean Engineering, 2022, 253, 110785.	4.3	11
108	Hydroelastic analysis of interaction between water waves and a floating laminated disk. Physics of Fluids, 2022, 34, .	4.0	6
109	Two-Phase Smoothed Particle Hydrodynamics Modelling of Hydrodynamic-Aerodynamic and Wave-Structure Interaction. Energies, 2022, 15, 3251.	3.1	0
110	A numerical framework for hydroelastic analysis of a flexible floating structure under unsteady external excitations: Motion and internal force/moment. Ocean Engineering, 2022, 253, 111288.	4.3	7
111	A coupled frequency and time domain approach for hydroelastic analysis of very large floating structures under focused wave groups. Ocean Engineering, 2022, 255, 111393.	4.3	7
112	Scattering of long flexural gravity wave due to structural heterogeneity in the framework of wave blocking. Wave Motion, 2022, 112, 102949.	2.0	6

#	ARTICLE	IF	CITATIONS
113	Scattering of oblique waves by a semi-infinite floating elastic plate within the framework of wave blocking. Journal of Engineering Mathematics, $2022,135,.$	1.2	6
114	Attenuation of wave force on a floating dock by multiple porous breakwaters. Engineering Analysis With Boundary Elements, 2022, 143, 170-189.	3.7	7
115	Very Large Floating Structures (VLFS): Overview., 2022,, 2095-2103.		0
116	Station-Keeping System for VLFS. , 2022, , 1801-1807.		0
117	Review on Fixed and Floating Offshore Structures. Part II: Sustainable Design Approaches and Project Management. Journal of Marine Science and Engineering, 2022, 10, 973.	2.6	10
118	Is non-zoning of land impossible? Eight fundamental propositions of zoning. Journal of Environmental Policy and Planning, 2023, 25, 242-257.	2.8	3
119	Hydroelastic analysis of double-segment floating sandwich structures under wave action. Ocean Engineering, 2022, 260, 111993.	4.3	4
120	Hydrodynamic analysis of a hybrid modular floating structure system under different wave directions. Applied Ocean Research, 2022, 126, 103264.	4.1	4
121	Connector configuration effect on the dynamic characteristics of multi-modular floating structure. Journal of Ocean Engineering and Science, 2022, , .	4.3	0
122	Predicting 3-DoF motions of a moored barge by machine learning. Journal of Ocean Engineering and Science, 2022, , .	4.3	1
123	Interaction of surface water waves with an elastic plate over an arbitrary bottom topography. Archive of Applied Mechanics, 0, , .	2.2	2
124	Review of wave interaction with continuous flexible floating structures. Ocean Engineering, 2022, 264, 112404.	4.3	7
125	State of the Art in Floating Tidal Current Power Plant Using Multi-Vertical-Axis-Turbines. , 2022, , .		6
126	Hydrodynamic Analysis of a Modular Integrated Floating Structure System Based on Dolphin-Fender Mooring. Journal of Marine Science and Engineering, 2022, 10, 1470.	2.6	1
127	On the subcritical period doubling of a non-smooth network system by incremental harmonic balance method. International Journal of Non-Linear Mechanics, 2023, 148, 104256.	2.6	1
128	Triad resonance of flexural gravity waves in a two-layer fluid within the framework of blocking dynamics. Physics of Fluids, 2022, 34, .	4.0	6
129	Hydrodynamic responses of a novel modular floating structure system with multi-direction expansion. Journal of Offshore Mechanics and Arctic Engineering, 0, , 1-25.	1.2	0
130	Analytical solutions for the dynamic analysis of a modular floating structure for urban expansion. Ocean Engineering, 2022, 266, 112878.	4.3	1

#	ARTICLE	IF	CITATIONS
131	Analysis of a Moored and Articulated Multibody Offshore System in Steep Waves. Journal of Offshore Mechanics and Arctic Engineering, 0, , 1-22.	1.2	2
132	A three-dimensional model to analyse dynamic response of VLFS based on the Kane method. Ships and Offshore Structures, 2024, 19, 173-185.	1.9	12
133	Study on dynamic characteristics of drill string in deep-water riserless drilling. Advances in Mechanical Engineering, 2023, 15, 168781322211421.	1.6	4
134	Fluid-structure-material coupling analysis for a floating laminated structure consisting of high-stiffness panels and a soft core. Marine Structures, 2023, 89, 103375.	3.8	1
135	Floating hydroelastic circular plate in regular and irregular waves. European Journal of Mechanics, B/Fluids, 2023, 99, 148-162.	2.5	13
136	A review on the progress and research directions of ocean engineering. Ocean Engineering, 2023, 272, 113617.	4.3	35
137	Characteristics of Floating Arrays from Aligned to Staggered Patterns. Journal of Environmental Engineering, ASCE, 2023, 149 , .	1.4	0
138	A novel analytical model coupling hydrodynamic-structural-material scales for very large floating photovoltaic support structures. Ocean Engineering, 2023, 275, 114113.	4.3	3
139	Dynamic responses of serially connected truss pontoon-MOB $\hat{a} \in \text{``A numerical investigation.}$ Ocean Engineering, 2023, 277, 114209.	4.3	1
140	Hydroelastic analysis and structural design of a modular floating structure applying ultra-high performance fiber-reinforced concrete. Ocean Engineering, 2023, 277, 114266.	4.3	5
141	Numerical Analysis for Motion Response of Modular Floating Island in Waves. Journal of Ocean Engineering and Technology, 2023, 37, 8-19.	1.2	0
142	Hydrodynamic constraint loads estimation on connectors of column-pontoon type very large floating structure (CP-VLFS) under wave stimulation. Frontiers in Marine Science, 0, 10, .	2.5	0
143	Hydroelastic Response to the Effect of Current Loads on Floating Flexible Offshore Platform. Journal of Marine Science and Engineering, 2023, 11, 437.	2.6	3
144	Seakeeping criteria of a moored and articulated multibody floating platform in head seas. Frontiers in Marine Science, $0,10,10$	2.5	2
145	Offshore, Unmanned Auto-Leveling Sea-Surface Drifting Platform with Compact Size. Journal of Marine Science and Engineering, 2023, 11, 506.	2.6	0
146	Simplified analytical solutions to the yaw dynamics of modular floating structures. Ocean Engineering, 2023, 276, 114206.	4.3	1
147	A hybrid boundary element method based model for wave interaction with submerged viscoelastic plates with an arbitrary bottom profile in frequency and time domain. Physics of Fluids, 2023, 35, .	4.0	7
148	Wave interactions with multi-float structures: SPH model, experimental validation, and parametric study. Coastal Engineering, 2023, 184, 104333.	4.0	13

#	Article	IF	CITATIONS
149	A mathematical study of a two-layer fluid flow system in the presence of a floating breakwater in front of VLFS. Applied Mathematical Modelling, 2023, 122, 706-730.	4.2	7
150	Effects of a thin vertical porous barrier on the water wave scattering by a porous breakwater. Physics of Fluids, 2023, 35, .	4.0	10
151	A review of advances in modeling hydrodynamics and hydroelasticity for very large floating structures. Ocean Engineering, 2023, 285, 115319.	4.3	4
152	Flexural gravity wave interaction with an articulated heterogeneous plate within the paradigm of blocking dynamics. Physics of Fluids, 2023, 35, .	4.0	3
153	Wave dynamics around a floating circular flexible plate over a permeable bed. Journal of Offshore Mechanics and Arctic Engineering, 0, , 1-24.	1.2	0
154	Coupled analysis between catenary mooring and VLFS with structural hydroelasticity in waves. Marine Structures, 2024, 93, 103516.	3.8	2
156	Time-dependent flexural gravity wave scattering due to uneven bottom in the paradigm of blocking dynamics. Physics of Fluids, 2023, 35, .	4.0	2
157	Long-term extreme responses of torsional moments at two-directional hinges for moored very large floating structures. Ocean Engineering, 2023, 290, 116330.	4.3	0
158	A material–structure-wave integrated hydro-viscoelastic model for floating composite structure with generalized boundary. Physics of Fluids, 2023, 35, .	4.0	0
159	Effect of a rotational damper on a moored and articulated multibody offshore system in waves. IOP Conference Series: Materials Science and Engineering, 2023, 1294, 012020.	0.6	0
160	Hydroelastic theory for offshore floating plates of variable flexural rigidity. Journal of Fluids and Structures, 2024, 125, 104060.	3.4	1
161	Flexural-gravity wave scattering by an array of bottom-standing partial porous barriers in the framework of Bragg resonance and blocking dynamics. Physics of Fluids, 2024, 36, .	4.0	0
162	Land reclamation and its consequences: A 40-year analysis of water residence time in Doha Bay, Qatar. PLoS ONE, 2024, 19, e0296715.	2.5	0
163	Cutaneous respiration inspired porous seawater electrodes. Cell Reports Physical Science, 2024, 5, 101814.	5.6	0
164	A Multiscale Model of Mass-Functionally Graded Beam-Fluid System Under Bending and Vibration Responses. Acta Mechanica Solida Sinica, 2024, 37, 327-340.	1.9	0
165	The potential of end-of-life ships as a floating seawall and the methodical use of gap resonance for wave attenuation. Ocean Engineering, 2024, 298, 117246.	4.3	0