THE 2014 ALMA LONG BASELINE CAMPAIGN: FIRST RI OBSERVATIONS TOWARD THE HL TAU REGION

Astrophysical Journal Letters 808, L3 DOI: 10.1088/2041-8205/808/1/I3

Citation Report

#	Article		CITATIONS
2	The Structure and Evolution of Protoplanetary Disks: an Infrared and Submillimeter View. Proceedings of the International Astronomical Union, 2015, 10, 128-134.		0
3	Linking the Origin of Asteroids to Planetesimal Formation in the Solar Nebula. Proceedings of the International Astronomical Union, 2015, 10, 1-8.	0.0	10
4	GRAIN GROWTH IN THE CIRCUMSTELLAR DISKS OF THE YOUNG STARS CY Tau AND DoAr 25. Astrophysical Journal, 2015, 813, 41.	1.6	100
5	DIRECT IMAGING OF THE WATER SNOW LINE AT THE TIME OF PLANET FORMATION USING TWO ALMA CONTINUUM BANDS. Astrophysical Journal Letters, 2015, 815, L15.	3.0	112
6	DOUBLE DCO ⁺ RINGS REVEAL CO ICE DESORPTION IN THE OUTER DISK AROUND IM LUP. Astrophysical Journal, 2015, 810, 112.	1.6	83
7	ORIGIN AND KINEMATICS OF THE ERUPTIVE FLOW FROM XZ TAU REVEALED BY ALMA. Astrophysical Journal Letters, 2015, 811, L4.	3.0	12
8	PLANET FORMATION SIGNPOSTS: OBSERVABILITY OF CIRCUMPLANETARY DISKS VIA GAS KINEMATICS. Astrophysical Journal Letters, 2015, 811, L5.	3.0	112
9	SPIRAL ARMS IN GRAVITATIONALLY UNSTABLE PROTOPLANETARY DISKS AS IMAGED IN SCATTERED LIGHT. Astrophysical Journal Letters, 2015, 812, L32.	3.0	89
10	Infrared study of transitional disks in Ophiuchus with <i>Herschel</i> . Astronomy and Astrophysics, 2015, 581, A30.	2.1	19
11	PEERING INTO THE GIANT-PLANET-FORMING REGION OF THE TW HYDRAE DISK WITH THE GEMINI PLANET IMAGER. Astrophysical Journal Letters, 2015, 815, L26.	3.0	79
12	Toroidal vortices and the conglomeration of dust into rings in protoplanetary discs. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 453, L78-L82.	1.2	38
13	Observations of planet-forming volatiles. Proceedings of the International Astronomical Union, 2015, 11, 390-394.	0.0	0
14	ALMA images of discs: are all gaps carved by planets?. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 454, L36-L40.	1.2	68
15	On planet formation in HL Tau. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 453, L73-L77.	1.2	207
16	<i>>SPITZER</i> IRS SPECTRA OF DEBRIS DISKS IN THE SCORPIUS–CENTAURUS OB ASSOCIATION. Astrophysical Journal, 2015, 808, 167.	1.6	25
17	Observations of Solids in Protoplanetary Disks. Publications of the Astronomical Society of the Pacific, 2015, 127, 961-993.	1.0	80
18	ALMA REVEALS THE ANATOMY OF THE mm-SIZED DUST AND MOLECULAR GAS IN THE HD 97048 DISK. Astrophysical Journal, 2016, 831, 200.	1.6	42
19	INTEGRATION OF PARTICLE-GAS SYSTEMS WITH STIFF MUTUAL DRAG INTERACTION. Astrophysical Journal, Supplement Series, 2016, 224, 39.	3.0	57

#	Article	IF	Citations
20	STABILITY AND OCCURRENCE RATE CONSTRAINTS ON THE PLANETARY SCULPTING HYPOTHESIS FOR "TRANSITIONAL―DISKS. Astrophysical Journal, 2016, 825, 77.		59
21	GAP OPENING IN 3D: SINGLE-PLANET GAPS. Astrophysical Journal, 2016, 832, 105.	1.6	107
22	THE INNER STRUCTURE OF THE TW HYA DISK AS REVEALED IN SCATTERED LIGHT*. Astrophysical Journal Letters, 2016, 819, L1.	3.0	37
23	A DWARF TRANSITIONAL PROTOPLANETARY DISK AROUND XZ TAU B. Astrophysical Journal Letters, 2016, 825, L10.	3.0	18
24	MAPPING CO GAS IN THE GG TAURI A TRIPLE SYSTEM WITH 50 au SPATIAL RESOLUTION. Astrophysical Journal, 2016, 820, 19.	1.6	19
25	Setting the volatile composition of (exo)planet-building material. Astronomy and Astrophysics, 2016, 595, A83.	2.1	123
26	Constraining the physical structure of the inner few 100 AU scales of deeply embedded low-mass protostars. Astronomy and Astrophysics, 2016, 590, A33.	2.1	34
27	Gaps, rings, and non-axisymmetric structures in protoplanetary disks: Emission from large grains. Astronomy and Astrophysics, 2016, 590, A17.	2.1	77
28	Discovery of concentric broken rings at sub-arcsec separations in the HD 141569A gas-rich, debris disk with VLT/SPHERE. Astronomy and Astrophysics, 2016, 590, L7.	2.1	41
29	A tunnel and a traffic jam: How transition disks maintain a detectable warm dust component despite the presence of a large planet-carved gap. Astronomy and Astrophysics, 2016, 585, A35.	2.1	46
30	A wind-driving disc model for the mm-wavelength polarization structure of HLÂTau. Monthly Notices of the Royal Astronomical Society, 2016, 463, 2716-2724.	1.6	29
31	Multi-Color Model for the Protoplanetary Disks HL Tau and HD142527. Journal of Physics: Conference Series, 2016, 719, 012005.	0.3	0
32	Linking long-term planetary <i>N</i> -body simulations with periodic orbits: application to white dwarf pollution. Monthly Notices of the Royal Astronomical Society, 2016, 463, 4108-4120.	1.6	50
33	GRAIN SIZE CONSTRAINTS ON HL TAU WITH POLARIZATION SIGNATURE. Astrophysical Journal, 2016, 820, 54.	1.6	86
34	The role of disk self-gravity on gap formation of the HL Tau proto-planetary disk. Journal of Physics: Conference Series, 2016, 719, 012007.	0.3	2
35	Searching for Baby Planets in a Star's Dusty Rings. Physics Magazine, 2016, 9, .	0.1	0
36	CANDIDATE WATER VAPOR LINES TO LOCATE THE H ₂ 0 SNOWLINE THROUGH HIGH-DISPERSION SPECTROSCOPIC OBSERVATIONS. I. THE CASE OF A T TAURI STAR. Astrophysical Journal, 2016, 827, 113.	1.6	58
37	ALMA OBSERVATIONS OF A GAP AND A RING IN THE PROTOPLANETARY DISK AROUND TW HYA. Astrophysical Journal Letters, 2016, 819, L7.	3.0	105

#	Article	IF	CITATIONS
38	SINTERING-INDUCED DUST RING FORMATION IN PROTOPLANETARY DISKS: APPLICATION TO THE HL TAU DISK. Astrophysical Journal, 2016, 821, 82.		275
39	PROMPT PLANETESIMAL FORMATION BEYOND THE SNOW LINE. Astrophysical Journal Letters, 2016, 828, L2.	3.0	53
40	Chemistry in disks. Astronomy and Astrophysics, 2016, 592, A124.	2.1	48
41	Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE. Astronomy and Astrophysics, 2016, 595, A112.	2.1	96
42	Multiple rings in the transition disk and companion candidates around RX J1615.3-3255. Astronomy and Astrophysics, 2016, 595, A114.	2.1	67
43	THE COUPLED PHYSICAL STRUCTURE OF GAS AND DUST IN THE IM Lup PROTOPLANETARY DISK. Astrophysical Journal, 2016, 832, 110.	1.6	130
44	PROBING PLANET FORMING ZONES WITH RARE CO ISOTOPOLOGUES. Astrophysical Journal, 2016, 822, 53.	1.6	70
45	FORMATION OF THE UNEQUAL-MASS BINARY PROTOSTARS IN L1551NE BY ROTATIONALLY DRIVEN FRAGMENTATION. Astrophysical Journal, 2016, 831, 90.	1.6	11
46	TOWARD A GLOBAL EVOLUTIONARY MODEL OF PROTOPLANETARY DISKS. Astrophysical Journal, 2016, 821, 80.		188
47	Science with MATISSE. , 2016, , .		0
48	Formation, Orbital and Internal Evolutions of Young Planetary Systems. Space Science Reviews, 2016, 205, 77-124.	3.7	74
49	Ringed Structures of the HD 163296 Protoplanetary Disk Revealed by ALMA. Physical Review Letters, 2016, 117, 251101.	2.9	269
50	A â€~Rosetta Stone' for Protoplanetary Disks: The Synergy of Multi-Wavelength Observations. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	43
51	AN ORIGIN OF MULTIPLE RING STRUCTURE AND HIDDEN PLANETS IN HL TAU: A UNIFIED PICTURE BY SECULAR GRAVITATIONAL INSTABILITY. Astronomical Journal, 2016, 152, 184.	1.9	96
52	PROTOPLANETARY DISKS IN THE HOSTILE ENVIRONMENT OF CARINA. Astrophysical Journal Letters, 2016, 825, L16.	3.0	15
53	Grand Challenges in Protoplanetary Disc Modelling. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	61
54	Self-organisation in protoplanetary discs. Astronomy and Astrophysics, 2016, 589, A87.	2.1	75
55	MODELING DUST EMISSION OF HL TAU DISK BASED ON PLANET–DISK INTERACTIONS. Astrophysical Journal, 2016, 818, 76.	1.6	117

#	Article	IF	CITATIONS
56	THE SPIRAL WAVE INSTABILITY INDUCED BY A GIANT PLANET. I. PARTICLE STIRRING IN THE INNER REGIONS OF PROTOPLANETARY DISKS. Astrophysical Journal, 2016, 833, 126.		43
57	Dust properties across the CO snowline in the HD 163296 disk from ALMA and VLA observations. Astronomy and Astrophysics, 2016, 588, A112.	2.1	45
58	Steepening of the 820 <i>μ</i> m continuum surface brightness profile signals dust evolution in TW Hydrae's disk. Astronomy and Astrophysics, 2016, 586, A99.	2.1	25
59	The next generation very large array. Proceedings of SPIE, 2016, , .	0.8	6
60	Close-in planetesimal formation by pile-up of drifting pebbles. Astronomy and Astrophysics, 2016, 594, A105.	2.1	168
61	The ALMA Protostellar Interferometric Line Survey (PILS). Astronomy and Astrophysics, 2016, 595, A117.	2.1	267
62	EXCESS C/O AND C/H IN OUTER PROTOPLANETARY DISK GAS. Astrophysical Journal Letters, 2016, 831, L19.	3.0	78
63	GAS GAPS IN THE PROTOPLANETARY DISK AROUND THE YOUNG PROTOSTAR HL TAU. Astrophysical Journal Letters, 2016, 820, L25.	3.0	44
64	A GAP WITH A DEFICIT OF LARGE GRAINS IN THE PROTOPLANETARY DISK AROUND TW Hya. Astrophysical Journal Letters, 2016, 829, L35.	3.0	90
65	Collision velocity of dust grains in self-gravitating protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2676-2693.	1.6	61
66	Insights into Planet Formation from Debris Disks: I. The Solar System as an Archetype for Planetesimal Evolution. Space Science Reviews, 2016, 205, 213-230.	3.7	31
67	The Origin and Evolution of Transition Discs: Successes, Problems, and Open Questions. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	89
68	Resolved Observations of Transition Disks. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	46
69	THE VLA VIEW OF THE HL TAU DISK: DISK MASS, GRAIN EVOLUTION, AND EARLY PLANET FORMATION. Astrophysical Journal Letters, 2016, 821, L16.	3.0	111
70	The minimum mass of detectable planets in protoplanetary discs and the derivation of planetary masses from high-resolution observations. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2790-2805.	1.6	166
71	CONFRONTING STANDARD MODELS OF PROTO-PLANETARY DISKS WITH NEW MID-INFRARED SIZES FROM THE KECK INTERFEROMETER. Astrophysical Journal, 2016, 826, 120.	1.6	10
72	Dust Evolution and the Formation of Planetesimals. Space Science Reviews, 2016, 205, 41-75.	3.7	215
73	Cometary ices in forming protoplanetary disc midplanes. Monthly Notices of the Royal Astronomical Society, 2016, 462, 977-993.	1.6	73

щ		IF	Citations
#	ARTICLE DUST AND GAS IN THE DISK OF HL TAURI: SURFACE DENSITY, DUST SETTLING, AND DUST-TO-GAS RATIO.		
74	Astrophysical Journal, 2016, 816, 25.	1.6	345
75	VELOCITY-RESOLVED HOT WATER EMISSION DETECTED TOWARD HL TAU WITH THE SUBMILLIMETER ARRAY. Astrophysical Journal Letters, 2016, 822, L20.	3.0	7
76	A CANDIDATE YOUNG MASSIVE PLANET IN ORBIT AROUND THE CLASSICAL T TAURI STAR CI TAU*. Astrophysical Journal, 2016, 826, 206.	1.6	103
77	SIGNATURES OF GRAVITATIONAL INSTABILITY IN RESOLVED IMAGES OF PROTOSTELLAR DISKS. Astrophysical Journal, 2016, 823, 141.	1.6	72
78	Imaging the water snow-line during a protostellar outburst. Nature, 2016, 535, 258-261.	13.7	154
79	ON THE COMMONALITY OF 10–30 AU SIZED AXISYMMETRIC DUST STRUCTURES IN PROTOPLANETARY DISKS. Astrophysical Journal Letters, 2016, 818, L16.	3.0	117
80	ROCKY PLANET FORMATION: QUICK AND NEAT. Astrophysical Journal, 2016, 831, 8.	1.6	27
81	STACKING SPECTRA IN PROTOPLANETARY DISKS: DETECTING INTENSITY PROFILES FROM HIDDEN MOLECULAR LINES IN HD 163296. Astrophysical Journal, 2016, 832, 204.	1.6	47
82	A GMRT survey of regions towards the Taurus molecular cloud at 323 and 608ÂMHz. Monthly Notices of the Royal Astronomical Society, 2016, 462, 2904-2917.	1.6	5
83	ZOMBIE VORTEX INSTABILITY. II. THRESHOLDS TO TRIGGER INSTABILITY AND THE PROPERTIES OF ZOMBIE TURBULENCE IN THE DEAD ZONES OF PROTOPLANETARY DISKS. Astrophysical Journal, 2016, 833, 148.		30
84	A panoptic model for planetesimal formation and pebble delivery. Astronomy and Astrophysics, 2016, 586, A20.		75
85	GAS GIANT PLANET FORMATION IN THE PHOTOEVAPORATING DISK. I. GAP FORMATION. Astrophysical Journal, 2016, 826, 168.	1.6	24
86	Inclination-induced polarization of scattered millimetre radiation from protoplanetary discs: the case of HL Tau. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2794-2805.	1.6	103
87	The winds from HL Tau. Monthly Notices of the Royal Astronomical Society, 2016, 460, 627-633.	1.6	16
88	Two mechanisms for dust gap opening in protoplanetary discs. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 459, L1-L5.	1.2	81
89	Mass constraint for a planet in a protoplanetary disk from the gap width. Publication of the Astronomical Society of Japan, 2016, 68, .	1.0	104
90	FIRST DETECTION OF GAS-PHASE METHANOL IN A PROTOPLANETARY DISK. Astrophysical Journal Letters, 2016, 823, L10.	3.0	166
91	RINGED SUBSTRUCTURE AND A GAP AT 1 au IN THE NEAREST PROTOPLANETARY DISK. Astrophysical Journal Letters, 2016, 820, L40.	3.0	418

	CITATION R	EPORT	
#	Article	IF	CITATIONS
92	Fundamental stellar parameters for selected T-Tauri stars in the Chamaeleon and Rho Ophiuchus star-forming regions. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1363-1392.	1.6	2
93	Giant planet formation in radially structured protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2779-2795.	1.6	78
94	MULTIPLE CARBON MONOXIDE SNOWÂLINES IN DISKS SCULPTED BY RADIAL DRIFT. Astrophysical Journal Letters, 2016, 816, L21.	3.0	59
95	Constraining the properties of transitional discs in Chamaeleon I with Herschel. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1029-1040.	1.6	10
96	PLANETARY SYSTEM FORMATION IN THE PROTOPLANETARY DISK AROUND HL TAURI. Astrophysical Journal, 2016, 818, 158.	1.6	58
97	Accretion disks in luminous young stellar objects. Astronomy and Astrophysics Review, 2016, 24, 1.	9.1	145
98	On the convective overstability in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2608-2618.	1.6	31
99	Cavity and other radial substructures in the disk around HD 97048. Astronomy and Astrophysics, 2017, 597, A32.	2.1	79
100	Shadows and spirals in the protoplanetary disk HD 100453. Astronomy and Astrophysics, 2017, 597, A42.		147
101	A Surface Density Perturbation in the TW Hydrae Disk at 95 au Traced by Molecular Emission. Astrophysical Journal, 2017, 835, 228.	1.6	35
102	Candidate Water Vapor Lines to Locate the H ₂ O Snowline Through High-dispersion Spectroscopic Observations. II. The Case of a Herbig Ae Star. Astrophysical Journal, 2017, 836, 118.	1.6	34
103	ALMA Long Baseline Campaigns: Phase Characteristics of Atmosphere at Long Baselines in the Millimeter and Submillimeter Wavelengths. Publications of the Astronomical Society of the Pacific, 2017, 129, 035004.	1.0	39
104	The Effect of Protoplanetary Disk Cooling Times on the Formation of Gas Giant Planets by Gravitational Instability. Astrophysical Journal, 2017, 836, 53.	1.6	19
105	Turbulent-diffusion Mediated CO Depletion in Weakly Turbulent Protoplanetary Disks. Astrophysical Journal, 2017, 835, 162.	1.6	31
106	Global simulations of protoplanetary disks with net magnetic flux. Astronomy and Astrophysics, 2017, 600, A75.	2.1	167
107	Planetesimals in Debris Disks. , 2017, , 340-362.		1
108	The SEEDS High-Contrast Imaging Survey of Exoplanets Around Young Stellar Objects. Astronomical Journal, 2017, 153, 106.	1.9	68
109	Mass inventory of the giant-planet formation zone in a solar nebula analogue. Nature Astronomy, 2017, 1, .	4.2	100

#	Article	IF	CITATIONS
110	A Multi-ringed, Modestly Inclined Protoplanetary Disk around AA Tau. Astrophysical Journal, 2017, 840, 23.	1.6	112
111	Lupus disks with faint CO isotopologues: low gas/dust or high carbon depletion?. Astronomy and Astrophysics, 2017, 599, A113.	2.1	142
112	WL 17: A Young Embedded Transition Disk. Astrophysical Journal Letters, 2017, 840, L12.	3.0	39
113	A gas density drop in the inner 6 AU of the transition disk around the Herbig Ae star HD 139614. Astronomy and Astrophysics, 2017, 598, A118.	2.1	22
114	Planetesimal formation near the snowline: in or out?. Astronomy and Astrophysics, 2017, 602, A21.	2.1	155
115	The Influence of Forming Companions on the Spectral Energy Distributions of Stars with Circumstellar Discs. Publications of the Astronomical Society of Australia, 2017, 34, .	1.3	2
116	Collisions between Sintered Icy Aggregates. Astrophysical Journal, 2017, 841, 36.	1.6	21
117	The Demographics of Rocky Free-floating Planets and their Detectability by WFIRST. Astrophysical Journal, 2017, 841, 86.	1.6	59
118	Apparent Disk-mass Reduction and Planetisimal Formation in GravitationallyUnstable Disks in Class 0/I Young Stellar Objects. Astrophysical Journal, 2017, 838, 151.	1.6	39
119	Moving-mesh Simulations of Star-forming Cores in Magneto-gravo-turbulence. Astrophysical Journal, 2017, 838, 40.	1.6	69
120	Imaging a Central Ionized Component, a Narrow Ring, and the CO Snowline in the Multigapped Disk of HD 169142. Astrophysical Journal, 2017, 838, 97.	1.6	52
121	SPH simulations of structures in protoplanetary disks. Astronomy Letters, 2017, 43, 106-119.	0.1	4
122	Polarized Disk Emission from Herbig Ae/Be Stars Observed Using Gemini Planet Imager: HD 144432, HD 150193, HD 163296, and HD 169142. Astrophysical Journal, 2017, 838, 20.	1.6	66
123	Liquid-like behavior of UV-irradiated interstellar ice analog at low temperatures. Science Advances, 2017, 3, eaao2538.	4.7	32
124	Far-infrared to Millimeter Data of Protoplanetary Disks: Dust Growth in the Taurus, Ophiuchus, and Chamaeleon I Star-forming Regions [*] . Astrophysical Journal, 2017, 849, 63.	1.6	43
125	The structure of young embedded protostellar discs. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3775-3788.	1.6	6
126	Rings and gaps produced by variable magnetic disc winds and avalanche accretion streams – I. Axisymmetric resistive MHD simulations. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3850-3868.	1.6	40
127	Detection and Characterization of Extrasolar Planets through Mean-motion Resonances. II. The Effect of the Planet's Orbital Eccentricity on Debris Disk Structures. Astrophysical Journal, 2017, 847, 24.	1.6	24

#	Article	IF	CITATIONS
128	An L-stable method for solving stiff hydrodynamics. AIP Conference Proceedings, 2017, , .	0.3	0
129	Effect of Dust Radial Drift on Viscous Evolution of Gaseous Disk. Astrophysical Journal, 2017, 844, 142.	1.6	34
130	The 1600 ÃÂEmission Bump in Protoplanetary Disks: A Spectral Signature of H ₂ O Dissociation ^{â^—} . Astrophysical Journal, 2017, 844, 169.	1.6	18
131	Magnetically Induced Disk Winds and Transport in the HL Tau Disk. Astrophysical Journal, 2017, 845, 31.	1.6	61
132	A millimeter Continuum Size–Luminosity Relationship for Protoplanetary Disks. Astrophysical Journal, 2017, 845, 44.	1.6	150
133	Global Simulations of the Inner Regions of Protoplanetary Disks with Comprehensive Disk Microphysics. Astrophysical Journal, 2017, 845, 75.	1.6	136
134	Dust Density Distribution and Imaging Analysis of Different Ice Lines in Protoplanetary Disks. Astrophysical Journal, 2017, 845, 68.	1.6	98
135	Constraining Accretion Signatures of Exoplanets in the TW Hya Transitional Disk. Astronomical Journal, 2017, 154, 90.	1.9	34
136	Stellar energetic particle ionization in protoplanetary disks around T Tauri stars. Astronomy and Astrophysics, 2017, 603, A96.		38
137	ALMA Reveals Transition of Polarization Pattern with Wavelength in HL Tau's Disk. Astrophysical Journal, 2017, 851, 55.		116
138	Disk Masses for Embedded Class I Protostars in the Taurus Molecular Cloud. Astrophysical Journal, 2017, 851, 45.	1.6	57
139	The dispersal of planet-forming discs: theory confronts observations. Royal Society Open Science, 2017, 4, 170114.	1.1	214
140	What is the Mass of a Gap-opening Planet?. Astrophysical Journal, 2017, 835, 146.	1.6	116
141	An ALMA Survey of DCN/H ¹³ CN and DCO ⁺ /H ¹³ CO ⁺ in Protoplanetary Disks. Astrophysical Journal, 2017, 835, 231.	1.6	87
142	On the Origin of the Spiral Morphology in the Elias 2–27 Circumstellar Disk. Astrophysical Journal Letters, 2017, 839, L24.	3.0	60
143	Millimeter Spectral Indices and Dust Trapping By Planets in Brown Dwarf Disks. Astrophysical Journal, 2017, 846, 70.	1.6	13
144	Multiple Disk Gaps and Rings Generated by a Single Super-Earth. Astrophysical Journal, 2017, 843, 127.	1.6	157
145	Photoevaporating transitional discs and molecular cloud cores. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1205-1212.	1.6	4

#	Article		CITATIONS
146	On the origin of horseshoes in transitional discs. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1449-1455.		79
147	On dust–gas gravitational instabilities in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1923-1935.	1.6	19
148	Radial drift of dust in protoplanetary discs: the evolution of ice lines and dead zones. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3865-3878.	1.6	25
149	The role of gap edge instabilities in setting the depth of planet gaps in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3813-3823.	1.6	13
150	The origin of the occurrence rate profile of gas giants inside 100Âd. Monthly Notices of the Royal Astronomical Society, 2017, 469, 5016-5022.	1.6	28
151	Connecting HL Tau to the observed exoplanet sample. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3337-3346.	1.6	30
152	Scattering-produced (sub)millimetre polarization in inclined discs: optical depth effects, near–far side asymmetry and dust settling. Monthly Notices of the Royal Astronomical Society, 2017, 472, 373-388.	1.6	66
153	A Multi-wavelength Analysis of Dust and Gas in the SR 24S Transition Disk. Astrophysical Journal, 2017, 839, 99.	1.6	32
154	Radiation Hydrodynamical Turbulence in Protoplanetary Disks: Numerical Models and Observational Constraints. Astrophysical Journal, 2017, 850, 131.	1.6	95
155	Zoom-in Simulations of Protoplanetary Disks Starting from GMC Scales. Astrophysical Journal, 2017, 846, 7.	1.6	80
156	ALMA Observations of Elias 2–24: A Protoplanetary Disk with Multiple Gaps in the Ophiuchus Molecular Cloud. Astrophysical Journal Letters, 2017, 851, L23.	3.0	37
157	Periodic eclipses of the young star PDS 110 discovered with WASP and KELT photometry. Monthly Notices of the Royal Astronomical Society, 2017, 471, 740-749.	1.6	40
158	Pebble Accretion in Turbulent Protoplanetary Disks. Astrophysical Journal, 2017, 847, 52.	1.6	51
159	Protoplanetary Disks in ϕOphiuchus as Seen from ALMA. Astrophysical Journal, 2017, 851, 83.	1.6	84
160	Measurement of Circumstellar Disk Sizes in the Upper Scorpius OB Association with ALMA. Astrophysical Journal, 2017, 851, 85.	1.6	71
161	Electron Heating and Saturation of Self-regulating Magnetorotational Instability in Protoplanetary Disks. Astrophysical Journal, 2017, 849, 86.	1.6	8
162	Emission from Magnetized Accretion Disks around Young Stars. Astrophysical Journal, 2017, 849, 136.	1.6	4
163	On the Origin of Banded Structure in Dusty Protoplanetary Disks: HL Tau and TW Hya. Astrophysical Journal, 2017, 850, 103.	1.6	30

#	Article		CITATIONS
164	The Circumstellar Disk HD 169142: Gas, Dust, and Planets Acting in Concert?*. Astrophysical Journal, 2017, 850, 52.		82
165	The Evidence of Radio Polarization Induced by the Radiative Grain Alignment and Self-scattering of Dust Grains in a Protoplanetary Disk. Astrophysical Journal Letters, 2017, 844, L5.	3.0	109
166	The magnetic field inside a protoplanetary disc gap opened by planets of different masses. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3277-3287.	1.6	25
167	Modelling of deep gaps created by giant planets in protoplanetary disks. Publication of the Astronomical Society of Japan, 2017, 69, .	1.0	54
168	On the Formation of Multiple Concentric Rings and Gaps in Protoplanetary Disks. Astrophysical Journal, 2017, 850, 201.	1.6	133
169	Gap formation by inclined massive planets in locally isothermal three-dimensional discs. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4610-4624.	1.6	29
170	An opening criterion for dust gaps in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1932-1948.	1.6	91
171	Water delivery from cores to disks: Deuteration as a probe of the prestellar inheritance of H ₂ O. Astronomy and Astrophysics, 2017, 599, A40.	2.1	38
172	Towards 3D-photonic, multi-telescope beam combiners for mid-infrared astrointerferometry. Optics Express, 2017, 25, 19262.	1.7	29
173	Multi-epoch observations with high spatial resolution of multiple T Tauri systems. Astronomy and Astrophysics, 2017, 603, A74.	2.1	9
174	The properties of the inner disk around HL Tau: Multi-wavelength modeling of the dust emission. Astronomy and Astrophysics, 2017, 607, A74.	2.1	28
175	Different dust and gas radial extents in protoplanetary disks: consistent models of grain growth and CO emission. Astronomy and Astrophysics, 2017, 605, A16.	2.1	107
176	Improving the thin-disk models of circumstellar disk evolution. The 2+1-dimensional model. Astronomy and Astrophysics, 2017, 606, A5.	2.1	15
177	Fundamental parameters and infrared excesses of Tycho–Gaia stars. Monthly Notices of the Royal Astronomical Society, 2017, 471, 770-791.	1.6	84
178	The Flying Saucer: Tomography of the thermal and density gas structure of an edge-on protoplanetary disk. Astronomy and Astrophysics, 2017, 607, A130.	2.1	47
179	Zooming in on the Chemistry of Protoplanetary Disks with ALMA. Proceedings of the International Astronomical Union, 2017, 13, 57-68.	0.0	0
180	Physical properties of dusty protoplanetary disks in Lupus: evidence for viscous evolution?. Astronomy and Astrophysics, 2017, 606, A88.	2.1	109
181	1000 au exterior arcs connected to the protoplanetary disk around HL Tauri. Astronomy and Astrophysics, 2017, 608, A134.	2.1	25

#	Article		CITATIONS
182	Gas vs dust radial extent in disks: the importance of their thermal interplay. Proceedings of the International Astronomical Union, 2017, 13, 129-136.		1
183	An 80 au cavity in the disk around HD 34282. Astronomy and Astrophysics, 2017, 607, A55.	2.1	37
184	Unveiling the mid-plane temperature and mass distribution in the giant-planet formation zone. Proceedings of the International Astronomical Union, 2017, 13, 103-108.	0.0	0
185	Phase correction for ALMA. Investigating water vapour radiometer scaling: The long-baseline science verification data case study. Astronomy and Astrophysics, 2017, 605, A121.		15
186	Implications of the interstellar object 11/'Oumuamua for planetary dynamics and planetesimal formation. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3031-3038.		82
187	Planetary Rings and Other Astrophysical Disks. , 0, , 549-576.		3
188	Dust concentration and chondrule formation. Meteoritics and Planetary Science, 2018, 53, 1507-1515.	0.7	4
189	Changes in the metallicity of gas giant planets due to pebble accretion. Monthly Notices of the Royal Astronomical Society, 2018, 477, 593-615.	1.6	18
190	Unlocking CO Depletion in Protoplanetary Disks. I. The Warm Molecular Layer. Astrophysical Journal, 2018, 856, 85.		82
191	Two-fluid dusty shocks: simple benchmarking problems and applications to protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3185-3194.	1.6	10
192	Multiple Gaps in the Disk of the Class I Protostar GY 91. Astrophysical Journal, 2018, 857, 18.	1.6	88
193	Applying a Particle-only Model to the HL Tau Disk. Astrophysical Journal, 2018, 857, 3.	1.6	2
194	Interferometric Imaging Directly with Closure Phases and Closure Amplitudes. Astrophysical Journal, 2018, 857, 23.	1.6	159
195	The Complex Morphology of the Young Disk MWC 758: Spirals and Dust Clumps around a Large Cavity. Astrophysical Journal, 2018, 853, 162.	1.6	71
196	CO and Dust Properties in the TW Hya Disk from High-resolution ALMA Observations. Astrophysical Journal, 2018, 852, 122.	1.6	127
197	On fragmentation of turbulent self-gravitating discs in the long cooling time regime. Monthly Notices of the Royal Astronomical Society, 2018, 475, 921-931.	1.6	3
198	Rings and gaps in the disc around Elias 24 revealed by ALMA. Monthly Notices of the Royal Astronomical Society, 2018, 475, 5296-5312.	1.6	79
199	The diverse lives of massive protoplanets in self-gravitating discs. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3110-3135.	1.6	16

		CITATION R	LEPORT	
#	Article		IF	CITATIONS
200	Patterns Formation in a Self-Gravitating Isentropic Gas. Earth, Moon and Planets, 2018, 122	l, 1-12.	0.3	2
201	A Brief Overview of Planet Formation. , 2018, , 1-19.			1
202	Dust Evolution in Protoplanetary Disks. , 2018, , 1-16.			0
203	Planetary Migration in Protoplanetary Disks. , 2018, , 1-32.			0
204	Disk Accretion Driven by Spiral Shocks. Astrophysical Journal, 2018, 854, 84.		1.6	17
205	New Insights into the Nature of Transition Disks from a Complete Disk Survey of the Lupus Star-forming Region. Astrophysical Journal, 2018, 854, 177.		1.6	88
206	The Interplay between Radiation Pressure and the Photoelectric Instability in Optically Thin Gas and Dust. Astrophysical Journal, 2018, 856, 41.	Disks of	1.6	18
207	A UV-to-NIR Study of Molecular Gas in the Dust Cavity around RY Lupi. Astrophysical Journa 98.	l, 2018, 855,	1.6	13
208	Investigating the Early Evolution of Planetary Systems with ALMA and the Next Generation Array. Astrophysical Journal, 2018, 853, 110.	Very Large	1.6	29
209	Candidate Water Vapor Lines to Locate the H ₂ O Snowline through High-dispe Spectroscopic Observations. III. Submillimeter H ₂ ¹⁶ O and H <su ¹⁸O Lines. Astrophysical Journal, 2018, 855, 62.</su 		1.6	18
210	Characterizing the Variable Dust Permeability of Planet-induced Gaps. Astrophysical Journal 153.	, 2018, 854,	1.6	69
211	Order out of Randomness: Self-Organization Processes in Astrophysics. Space Science Revi 214, 1.	ews, 2018,	3.7	38
212	Linear growth of streaming instability in pressure bumps. Monthly Notices of the Royal Astr Society, 2018, 473, 796-805.	onomical	1.6	36
213	Multi-GPU maximum entropy image synthesis for radio astronomy. Astronomy and Comput 16-27.	ing, 2018, 22,	0.8	24
214	The Gould's Belt Distances Survey (GOBELINS). IV. Distance, Depth, and Kinematics of the T Star-forming Region. Astrophysical Journal, 2018, 859, 33.	āurus	1.6	80
215	The Disk Substructures at High Angular Resolution Project (DSHARP). X. Multiple Rings, a N Inner Disk, and a Bright Arc in the Disk around the T Tauri star HD 143006. Astrophysical Jo Letters, 2018, 869, L50.	1isaligned urnal	3.0	69
216	Supertransient magnetohydrodynamic turbulence in Keplerian shear flows: The role of the H effect. Europhysics Letters, 2018, 124, 59001.	fall	0.7	1
217	The Disk Substructures at High Angular Resolution Project (DSHARP). IX. A High-definition S the HD 163296 Planet-forming Disk. Astrophysical Journal Letters, 2018, 869, L49.	Study of	3.0	114

#	Article	IF	CITATIONS
218	Modelling mid-infrared molecular emission lines from T Tauri stars. Astronomy and Astrophysics, 2018, 618, A57.	2.1	33
219	The Disk Substructures at High Angular Resolution Project (DSHARP). V. Interpreting ALMA Maps of Protoplanetary Disks in Terms of a Dust Model. Astrophysical Journal Letters, 2018, 869, L45.	3.0	199
220	Spiral Arms in Disks: Planets or Gravitational Instability?. Astrophysical Journal, 2018, 862, 103.	1.6	64
221	Possible Counterrotation between the Disk and Protostellar Envelope around the Class I Protostar IRAS 04169+2702. Astrophysical Journal, 2018, 865, 51.	1.6	13
222	A Spatially Resolved au-scale Inner Disk around DM Tau. Astrophysical Journal Letters, 2018, 868, L5.	3.0	36
223	The Disk Substructures at High Angular Resolution Project (DSHARP). VII. The Planet–Disk Interactions Interpretation. Astrophysical Journal Letters, 2018, 869, L47.	3.0	289
224	Space-based Coronagraphic Imaging Polarimetry of the TW Hydrae Disk: Shedding New Light on Self-shadowing Effects. Astrophysical Journal, 2018, 860, 115.	1.6	11
225	Pebble dynamics and accretion on to rocky planets – I. Adiabatic and convective models. Monthly Notices of the Royal Astronomical Society, 2018, 479, 5136-5156.	1.6	33
226	The FRIED grid of mass-loss rates for externally irradiated protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2018, 481, 452-466.	1.6	75
227	Herschel PACS Observations of 4–10 Myr Old Classical T Tauri Stars in Orion OB1. Astrophysical Journal, 2018, 859, 1.	1.6	14
228	The Disk Substructures at High Angular Resolution Project (DSHARP). IV. Characterizing Substructures and Interactions in Disks around Multiple Star Systems. Astrophysical Journal Letters, 2018, 869, L44.	3.0	86
229	Dust settling and rings in the outer regions of protoplanetary discs subject to ambipolar diffusion. Astronomy and Astrophysics, 2018, 617, A117.	2.1	57
230	ALMA continuum observations of the protoplanetary disk AS 209. Astronomy and Astrophysics, 2018, 610, A24.	2.1	140
231	Probing Signatures of a Distant Planet around the Young T-Tauri Star CI Tau Hosting a Possible Hot Jupiter. Astrophysical Journal Letters, 2018, 859, L28.	3.0	2
232	Streaming instability of multiple particle species in protoplanetary disks. Astronomy and Astrophysics, 2018, 618, A75.	2.1	35
233	V1094 Scorpii: A rare giant multi-ringed disk around a T Tauri star. Astronomy and Astrophysics, 2018, 616, A88.	2.1	45
234	ALMA Reveals a Misaligned Inner Gas Disk inside the Large Cavity of a Transitional Disk. Astrophysical Journal Letters, 2018, 868, L3.	3.0	25
235	The VLA Nascent Disk and Multiplicity Survey of Perseus Protostars (VANDAM). V. 18 Candidate Disks around Class 0 and I Protostars in the Perseus Molecular Cloud. Astrophysical Journal, 2018, 866, 161.	1.6	58

#	Article	IF	CITATIONS
236	A Transitional Disk around an Intermediate-mass Star in the Sparse Population of the Orion OB1 Association. Astrophysical Journal, 2018, 867, 116.	1.6	7
237	Impacts of Dust Feedback on a Dust Ring Induced by a Planet in a Protoplanetary Disk. Astrophysical Journal, 2018, 868, 48.	1.6	36
238	Why do protoplanetary disks appear not massive enough to form the known exoplanet population?. Astronomy and Astrophysics, 2018, 618, L3.	2.1	151
239	Investigating the young solar system analog HD 95086. Astronomy and Astrophysics, 2018, 617, A76.	2.1	36
240	Multiple Disk Gaps and Rings Generated by a Single Super-Earth. II. Spacings, Depths, and Number of Gaps, with Application to Real Systems. Astrophysical Journal, 2018, 866, 110.	1.6	91
241	A Brief Overview of Planet Formation. , 2018, , 2185-2203.		8
242	Dust Evolution in Protoplanetary Disks. , 2018, , 2205-2220.		0
243	Planetary Migration in Protoplanetary Disks. , 2018, , 2287-2317.		10
244	Formation of Terrestrial Planets. , 2018, , 2365-2423.		12
245	Connecting Planetary Composition with Formation. , 2018, , 2475-2521.		4
246	Circumstellar Discs: What Will Be Next?. , 2018, , 3321-3352.		4
247	Characterizing TW Hydra. Astrophysical Journal, 2018, 853, 120.	1.6	38
248	Evolution of protoplanetary disks from their taxonomy in scattered light: spirals, rings, cavities, and shadows. Astronomy and Astrophysics, 2018, 620, A94.	2.1	82
249	The Disk Substructures at High Angular Resolution Program (DSHARP). VIII. The Rich Ringed Substructures in the AS 209 Disk. Astrophysical Journal Letters, 2018, 869, L48.	3.0	58
250	The Disk Substructures at High Angular Resolution Project (DSHARP). II. Characteristics of Annular Substructures. Astrophysical Journal Letters, 2018, 869, L42.	3.0	326
251	The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, Sample, Calibration, and Overview. Astrophysical Journal Letters, 2018, 869, L41.	3.0	732
252	The Disk Substructures at High Angular Resolution Project (DSHARP). VI. Dust Trapping in Thin-ringed Protoplanetary Disks. Astrophysical Journal Letters, 2018, 869, L46.	3.0	250
253	The Disk Substructures at High Angular Resolution Project (DSHARP). III. Spiral Structures in the Millimeter Continuum of the Elias 27, IM Lup, and WaOph 6 Disks. Astrophysical Journal Letters, 2018, 869, L43.	3.0	121

#	Article	IF	CITATIONS
254	Physical and Chemical Conditions of the Protostellar Envelope and the Protoplanetary Disk in HL Tau. Astrophysical Journal, 2018, 869, 59.	1.6	12
255	A Lagrangian model for dust evolution in protoplanetary disks: formation of wet and dry planetesimals at different stellar masses. Astronomy and Astrophysics, 2018, 620, A134.	2.1	39
256	Temperature, Mass, and Turbulence: A Spatially Resolved Multiband Non-LTE Analysis of CS in TW Hya. Astrophysical Journal, 2018, 864, 133.	1.6	75
257	Gaps and Rings in an ALMA Survey of Disks in the Taurus Star-forming Region. Astrophysical Journal, 2018, 869, 17.	1.6	337
258	These dusty young stars are changing the rules of planet-building. Nature, 2018, 564, 20-23.	13.7	0
259	Warping a protoplanetary disc with a planet on an inclined orbit. Monthly Notices of the Royal Astronomical Society, 2018, 481, 20-35.	1.6	39
260	A Subgrid Model for the Growth of Dust Particles in Hydrodynamical Simulations of Protoplanetary Disks. Astrophysical Journal, 2018, 863, 97.	1.6	13
261	The Maximum Mass Solar Nebula and the early formation of planets. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3273-3278.	1.6	22
262	Resolved millimeter-dust continuum cavity around the very low mass young star CIDA 1. Astronomy and Astrophysics, 2018, 615, A95.	2.1	18
263	Is the spiral morphology of the Elias 2-27 circumstellar disc due to gravitational instability?. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1004-1014.	1.6	28
264	Radio jets from young stellar objects. Astronomy and Astrophysics Review, 2018, 26, 1.	9.1	89
265	The formation of rings and gaps in magnetically coupled disc-wind systems: ambipolar diffusion and reconnection. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1239-1257.	1.6	91
266	Multiple Rings in the Transitional Disk of GM Aurigae Revealed by VLA and ALMA. Astrophysical Journal, 2018, 865, 37.	1.6	40
267	Dust-driven viscous ring-instability in protoplanetary disks. Astronomy and Astrophysics, 2018, 609, A50.	2.1	49
268	A balanced budget view on forming giant planets by pebble accretion. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4338-4354.	1.6	32
269	Protoplanetary Disk Properties in the Orion Nebula Cluster: Initial Results from Deep, High-resolution ALMA Observations. Astrophysical Journal, 2018, 860, 77.	1.6	103
270	A Compact Multi-planet System with a Significantly Misaligned Ultra Short Period Planet. Astronomical Journal, 2018, 156, 245.	1.9	35
271	Impact of the Hall effect in star formation and the issue of angular momentum conservation. Astronomy and Astrophysics, 2018, 619, A37.	2.1	26

#	Article	IF	CITATIONS
272	Rings and Gaps in Protoplanetary Disks: Planets or Snowlines?. Astrophysical Journal Letters, 2018, 867, L14.	3.0	48
273	Characterization of low-mass companion HDÂ142527 B. Astronomy and Astrophysics, 2018, 617, A37.	2.1	23
274	Constraining Gas-phase Carbon, Oxygen, and Nitrogen in the IM Lup Protoplanetary Disk. Astrophysical Journal, 2018, 865, 155.	1.6	69
275	High-resolution Millimeter Imaging of the CI Tau Protoplanetary Disk: A Massive Ensemble of Protoplanets from 0.1 to 100 au. Astrophysical Journal Letters, 2018, 866, L6.	3.0	69
276	Dusty disc–planet interaction with dust-free simulations. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2737-2752.	1.6	15
277	Structure Formation in a Young Protoplanetary Disk by a Magnetic Disk Wind. Astrophysical Journal, 2018, 865, 102.	1.6	30
278	First direct detection of a polarized companion outside a resolved circumbinary disk around CS Chamaeleonis. Astronomy and Astrophysics, 2018, 616, A79.	2.1	30
280	Radial velocities. , 0, , 17-80.		0
281	Astrometry. , 0, , 81-102.		0
282	Timing. , 0, , 103-118.		0
283	Microlensing. , 0, , 119-152.		0
285	Host stars. , 0, , 373-428.		0
286	Brown dwarfs and free-floating planets. , 0, , 429-448.		0
287	Formation and evolution. , 0, , 449-558.		Ο
288	Interiors and atmospheres. , 0, , 559-648.		0
289	The solar system. , 0, , 649-700.		Ο
295	Diverse Protoplanetary Disk Morphology Produced by a Jupiter-mass Planet. Astrophysical Journal Letters, 2018, 864, L26.	3.0	50
297	The Eccentric Cavity, Triple Rings, Two-armed Spirals, and Double Clumps of the MWC 758 Disk. Astrophysical Journal, 2018, 860, 124.	1.6	126

#	Article	IF	CITATIONS
299	Direct mapping of the temperature and velocity gradients in discs. Astronomy and Astrophysics, 2018, 609, A47.	2.1	124
300	Subaru/HiCIAO HK _s Imaging of LKHa 330: Multi-band Detection of the Gap and Spiral-like Structures. Astronomical Journal, 2018, 156, 63.	1.9	24
301	Kinematic Evidence for an Embedded Protoplanet in a Circumstellar Disk. Astrophysical Journal Letters, 2018, 860, L13.	3.0	214
302	New Constraints on Turbulence and Embedded Planet Mass in the HD 163296 Disk from Planet–Disk Hydrodynamic Simulations. Astrophysical Journal, 2018, 857, 87.	1.6	56
303	Disks around T Tauri Stars with SPHERE (DARTTS-S). I. SPHERE/IRDIS Polarimetric Imaging of Eight Prominent T Tauri Disks*. Astrophysical Journal, 2018, 863, 44.	1.6	225
304	ALMA Observations of the Very Young Class 0 Protostellar System HH211-mms: A 30 au Dusty Disk with a Disk Wind Traced by SO?. Astrophysical Journal, 2018, 863, 94.	1.6	42
305	The physical and chemical properties of planet forming disks. Proceedings of the International Astronomical Union, 2018, 14, 115-123.	0.0	1
306	Formation and Evolution of Protoplanetary Disks: Observations and Modeling of Jets, Disks, and Disk Substructures. Proceedings of the International Astronomical Union, 2018, 14, 96-101.	0.0	0
307	Mid-infrared polarization of Herbig Ae/Be discs. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1427-1437.	1.6	11
308	The ALMA early science view of FUor/EXor objects – V. Continuum disc masses and sizes. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4347-4357.	1.6	45
309	Non-linear development of secular gravitational instability in protoplanetary disks. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	27
310	Thermophoretic aggregation of particles in a protoplanetary disc. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3135-3151.	1.6	1
311	On the diversity and statistical properties of protostellar discs. Monthly Notices of the Royal Astronomical Society, 2018, 475, 5618-5658.	1.6	213
312	Connecting Planetary Composition with Formation. , 2018, , 1-47.		1
313	Formation of Terrestrial Planets. , 2018, , 1-59.		0
314	Spiral arms in thermally stratified protoplanetary discs. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 474, L32-L36.	1.2	34
315	An Empirical Planetesimal Belt Radius–Stellar Luminosity Relation. Astrophysical Journal, 2018, 859, 72.	1.6	66
316	Episodic accretion: the interplay of infall and disc instabilities. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2642-2658.	1.6	56

#	Article	IF	CITATIONS
317	The JCMT Transient Survey: Stochastic and Secular Variability of Protostars and Disks In the Submillimeter Region Observed over 18 Months. Astrophysical Journal, 2018, 854, 31.	1.6	38
318	ALMA Observations of Polarization from Dust Scattering in the IM Lup Protoplanetary Disk. Astrophysical Journal, 2018, 860, 82.	1.6	71
319	Evidence for the start of planet formation in a young circumstellar disk. Nature Astronomy, 2018, 2, 646-651.	4.2	74
320	The planet formation imager. Experimental Astronomy, 2018, 46, 517-529.	1.6	12
321	Observing the linked depletion of dust and CO gas at 0.1–10 au in disks of intermediate-mass stars. Astronomy and Astrophysics, 2018, 609, L2.	2.1	29
322	Probing midplane CO abundance and gas temperature with DCO ⁺ in the protoplanetary disk around HD 169142. Astronomy and Astrophysics, 2018, 614, A106.	2.1	31
323	X-ray radiative transfer in protoplanetary disks. Astronomy and Astrophysics, 2018, 609, A91.	2.1	27
324	Exoplanets: Past, Present, and Future. Galaxies, 2018, 6, 51.	1.1	10
325	The Millimeter Continuum Size–Frequency Relationship in the UZ Tau E Disk. Astrophysical Journal, 2018, 861, 64.	1.6	27
326	Optical Dimming of RW Aur Associated with an Iron-rich Corona and Exceptionally High Absorbing Column Density. Astronomical Journal, 2018, 156, 56.	1.9	13
327	Transits. , 0, , 153-328.		0
328	ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii. Astrophysical Journal, 2018, 859, 21.	1.6	268
329	Unveiling the physical conditions of the youngest disks. Astronomy and Astrophysics, 2018, 615, A83.	2.1	44
330	Planet-driven Spiral Arms in Protoplanetary Disks. I. Formation Mechanism. Astrophysical Journal, 2018, 859, 118.	1.6	63
331	A Kinematical Detection of Two Embedded Jupiter-mass Planets in HD 163296. Astrophysical Journal Letters, 2018, 860, L12.	3.0	218
332	A Cavity of Large Grains in the Disk around the Group II Herbig Ae/Be Star HD 142666. Astrophysical Journal, 2018, 860, 7.	1.6	13
333	New Constraints From Dust Lines on the Surface Densities of Protoplanetary Disks. Astrophysical Journal, 2019, 878, 116.	1.6	48
334	Kinematic detection of a planet carving a gap in a protoplanetary disk. Nature Astronomy, 2019, 3, 1109-1114.	4.2	124

#	Article	IF	CITATIONS
335	Revised Description of Dust Diffusion and a New Instability Creating Multiple Rings in Protoplanetary Disks. Astrophysical Journal, 2019, 881, 53.	1.6	44
336	Dust Unveils the Formation of a Mini-Neptune Planet in a Protoplanetary Ring. Astronomical Journal, 2019, 158, 15.	1.9	68
337	Organic Complexity in Protostellar Disk Candidates. ACS Earth and Space Chemistry, 2019, 3, 1564-1575.	1.2	21
338	Local semi-analytic models of magnetic flux transport in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5155-5174.	1.6	9
339	Determining mass limits around HD 163296 through SPHERE direct imaging data. Monthly Notices of the Royal Astronomical Society, 2019, 488, 37-46.	1.6	17
340	Spontaneous ring formation in wind-emitting accretion discs. Astronomy and Astrophysics, 2019, 625, A108.	2.1	45
341	HL Tau Disk in HCO ⁺ (3–2) and (1–0) with ALMA: Gas Density, Temperature, Gap, and One-arm Spiral. Astrophysical Journal, 2019, 880, 69.	1.6	45
342	Structure of polytropic stars in General Relativity. Astrophysics and Space Science, 2019, 364, 1.	0.5	1
343	ALMA observations require slower Core Accretion runaway growth. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 488, L12-L17.	1.2	22
344	The First Two Thousand Years of Star Formation. Astrophysical Journal, 2019, 876, 149.	1.6	39
345	Understanding temperature effects on recruitment in the context of trophic mismatch. Scientific Reports, 2019, 9, 15179.	1.6	27
346	Probing the cold magnetised Universe with SPICA-POL (B-BOP). Publications of the Astronomical Society of Australia, 2019, 36, .	1.3	13
347	Effect of nucleation on icy pebble growth in protoplanetary discs. Astronomy and Astrophysics, 2019, 629, A65.	2.1	29
348	Ingredients for solar-like systems: protostar IRAS 16293-2422ÂB versus comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2019, 490, 50-79.	1.6	84
349	The Radial Distribution of Dust Particles in the HL Tau Disk from ALMA and VLA Observations. Astrophysical Journal, 2019, 883, 71.	1.6	97
350	The DSHARP Rings: Evidence of Ongoing Planetesimal Formation?. Astrophysical Journal Letters, 2019, 884, L5.	3.0	57
351	Investigating the gas-to-dust ratio in the protoplanetary disk of HD 142527. Publication of the Astronomical Society of Japan, 2019, 71, .	1.0	7
352	Systematic Variations of CO Gas Abundance with Radius in Gas-rich Protoplanetary Disks. Astrophysical Journal, 2019, 883, 98.	1.6	70

#	Article	IF	CITATIONS
353	Self-gravitating planetary envelopes and the core-nucleated instability. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3144-3157.	1.6	7
354	The Observability of Vortex-driven Spiral Arms in Protoplanetary Disks: Basic Spiral Properties. Astrophysical Journal Letters, 2019, 883, L39.	3.0	17
355	Nonideal MHD Simulation of HL Tau Disk: Formation of Rings. Astrophysical Journal, 2019, 885, 36.	1.6	28
356	Properties of Density and Velocity Gaps Induced by a Planet in a Protoplanetary Disk. Astrophysical Journal, 2019, 884, 142.	1.6	14
357	Jupiter's Composition Suggests its Core Assembled Exterior to the N ₂ Snowline. Astronomical Journal, 2019, 158, 194.	1.9	75
358	Compact Disks in a High-resolution ALMA Survey of Dust Structures in the Taurus Molecular Cloud. Astrophysical Journal, 2019, 882, 49.	1.6	139
359	New Constraints on the Dust and Gas Distribution in the LkCa 15 Disk from ALMA. Astrophysical Journal, 2019, 881, 108.	1.6	17
360	Characterization of Ring Substructures in the Protoplanetary Disk of HD 169142 from Multiwavelength Atacama Large Millimeter/submillimeter Array Observations. Astrophysical Journal, 2019, 881, 159.	1.6	35
361	Dusty clumps in circumbinary discs. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2204-2215.	1.6	20
362	On the origin of wide-orbit ALMA planets: giant protoplanets disrupted by their cores. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5187-5201.	1.6	9
363	An Observational Study for Grain Dynamics in the AS 209 Disk with Submillimeter Polarization*. Astrophysical Journal, 2019, 883, 16.	1.6	17
364	Probing CO and N ₂ Snow Surfaces in Protoplanetary Disks with N ₂ H ⁺ Emission. Astrophysical Journal, 2019, 882, 160.	1.6	47
365	The Mass and Size Distribution of Planetesimals Formed by the Streaming Instability. II. The Effect of the Radial Gas Pressure Gradient. Astrophysical Journal, 2019, 883, 192.	1.6	75
366	Termination of Inward Migration for a Gap-opening Planet through Dust Feedback. Astrophysical Journal Letters, 2019, 879, L19.	3.0	9
367	First grids of low-mass stellar models and isochrones with self-consistent treatment of rotation. Astronomy and Astrophysics, 2019, 631, A77.	2.1	86
368	Are the observed gaps in protoplanetary discs caused by growing planets?. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3625-3633.	1.6	22
369	High-Performance Smooth-Walled Horn Antennas for THz Frequency Range: Design and Evaluation. IEEE Transactions on Terahertz Science and Technology, 2019, 9, 587-597.	2.0	8
370	Aluminum-26 chronology of dust coagulation and early solar system evolution. Science Advances, 2019, 5, eaaw3350.	4.7	18

#	Article	IF	CITATIONS
371	First detections of H ¹³ CO ⁺ and HC ¹⁵ N in the disk around HD 97048. Astronomy and Astrophysics, 2019, 629, A75.	2.1	9
372	Revealing the chemical structure of the Class I disc Oph-IRS 67. Astronomy and Astrophysics, 2019, 627, A37.	2.1	6
373	Clumpy dust rings around non-accreting young stars. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4260-4272.	1.6	2
374	Revealing signatures of planets migrating in protoplanetary discs with ALMA multiwavelength observations. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5914-5923.	1.6	28
375	Effects of Ringed Structures and Dust Size Growth on Millimeter Observations of Protoplanetary Disks. Astrophysical Journal, 2019, 878, 39.	1.6	19
376	Modeling the Protoplanetary Disks of Two Brown Dwarfs in the Taurus Molecular Cloud. Astrophysical Journal, 2019, 878, 103.	1.6	9
377	On the Planetary Interpretation of Multiple Gaps and Rings in Protoplanetary Disks Seen By ALMA. Astrophysical Journal Letters, 2019, 878, L9.	3.0	43
378	Exploring the formation by core accretion and the luminosity evolution of directly imaged planets. Astronomy and Astrophysics, 2019, 624, A20.	2.1	32
379	One Solution to the Mass Budget Problem for Planet Formation: Optically Thick Disks with Dust Scattering. Astrophysical Journal Letters, 2019, 877, L18.	3.0	150
380	The time evolution of dusty protoplanetary disc radii: observed and physical radii differ. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4829-4844.	1.6	58
381	A dust and gas cavity in the disc around CQ Tau revealed by ALMA. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4638-4654.	1.6	33
382	Pebble accretion in self-gravitating protostellar discs. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4465-4473.	1.6	5
383	Excitation of Planetary Obliquities through Planet–Disk Interactions. Astrophysical Journal, 2019, 876, 119.	1.6	32
384	The Temporal Requirements of Directly Observing Self-gravitating Spiral Waves in Protoplanetary Disks with ALMA. Astrophysical Journal, 2019, 871, 228.	1.6	24
385	The Synthetic ALMA Multiband Analysis of the Dust Properties of the TW Hya Protoplanetary Disk. Astrophysical Journal, 2019, 872, 179.	1.6	6
386	Gas Density Perturbations Induced by One or More Forming Planets in the AS 209 Protoplanetary Disk as Seen with ALMA. Astrophysical Journal, 2019, 871, 107.	1.6	38
387	The formation of rings and gaps in wind-launching non-ideal MHD discs: three-dimensional simulations. Monthly Notices of the Royal Astronomical Society, 2019, 484, 107-124.	1.6	38
388	Dust Continuum Emission and the Upper Limit Fluxes of Submillimeter Water Lines of the Protoplanetary Disk around HD 163296 Observed by ALMA. Astrophysical Journal, 2019, 875, 96.	1.6	28

#	Article	IF	CITATIONS
389	An Analytical Model of Radial Dust Trapping in Protoplanetary Disks. Astrophysical Journal, 2019, 876, 7.	1.6	25
390	Does HL Tau disc polarization in ALMA band 3 come from radiatively aligned grains?. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2371-2381.	1.6	29
391	Protoplanetary Disk Masses from Radiative Transfer Modeling: A Case Study in Taurus. Astronomical Journal, 2019, 157, 144.	1.9	39
392	A High-resolution Mid-infrared Survey of Water Emission from Protoplanetary Disks. Astrophysical Journal, 2019, 874, 24.	1.6	22
393	Physics of planet trapping with applications to HL Tau. Monthly Notices of the Royal Astronomical Society, 2019, 484, 345-363.	1.6	11
394	A gap in HD 92945's broad planetesimal disc revealed by ALMA. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1257-1269.	1.6	38
395	Pebble accretion in Class 0/I YSOs as a possible pathway for early planet formation. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1574-1588.	1.6	11
396	Protoplanetary Disk Rings and Gaps across Ages and Luminosities. Astrophysical Journal, 2019, 872, 112.	1.6	107
397	Effect of Different Angular Momentum Transport Mechanisms on the Distribution of Water in Protoplanetary Disks. Astrophysical Journal, 2019, 875, 43.	1.6	6
398	Blobs, spiral arms, and a possible planet around HD 169142. Astronomy and Astrophysics, 2019, 623, A140.	2.1	37
399	Origin of misalignments: protostellar jet, outflow, circumstellar disc, and magnetic field. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4667-4674.	1.6	28
400	The newborn planet population emerging from ring-like structures in discs. Monthly Notices of the Royal Astronomical Society, 2019, 486, 453-461.	1.6	102
401	Ring structure in the MWC 480 disk revealed by ALMA. Astronomy and Astrophysics, 2019, 622, A75.	2.1	55
402	Is the ring inside or outside the planet?: the effect of planet migration on dust rings. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3678-3695.	1.6	36
403	Submillimetre dust polarization and opacity in the HD163296 protoplanetary ring system. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 482, L29-L33.	1.2	65
404	Physical Processes in Protoplanetary Disks. Saas-Fee Advanced Course, 2019, , 1-150.	1.1	24
405	Studies on Terahertz Photon Counting Detectors with Low-Leakage SIS Junctions. Journal of Low Temperature Physics, 2019, 194, 426-432.	0.6	3
406	Planet Formation and Disk-Planet Interactions. Saas-Fee Advanced Course, 2019, , 151-260.	1.1	4

#	Article	IF	CITATIONS
407	The potential of combining MATISSE and ALMA observations: constraining the structure of the innermost region in protoplanetary discs. Astronomy and Astrophysics, 2019, 622, A147.	2.1	3
408	Kuiper Belt object 2014MU ₆₉ , Pluto and Phoebe as windows on the composition of the early solar nebula. Proceedings of the International Astronomical Union, 2019, 15, 91-95.	0.0	1
409	The Origins of Protostellar Core Angular Momenta. Astrophysical Journal, 2019, 876, 33.	1.6	22
410	Protostellar Evolution in Serpens Main: Possible Origin of Disk-size Diversity. Astrophysical Journal, 2019, 887, 209.	1.6	12
411	Exploring the Grain Properties in the Disk of HL Tau with an Evolutionary Model. Astrophysical Journal, 2019, 887, 244.	1.6	3
412	A Particle Module for the PLUTO Code. III. Dust. Astrophysical Journal, Supplement Series, 2019, 244, 38.	3.0	13
413	On the Dust Signatures Induced by Eccentric Super-Earths in Protoplanetary Disks. Astrophysical Journal, 2019, 886, 62.	1.6	10
414	Predicting the Observational Signature of Migrating Neptune-sized Planets in Low-viscosity Disks. Astrophysical Journal, 2019, 884, 178.	1.6	34
415	Signs of outflow feedback from a nearby young stellar object on the protostellar envelope around HL Tauri. Astronomy and Astrophysics, 2019, 623, A96.	2.1	6
416	Linking planetesimal and dust content in protoplanetary disks via a local toy model. Astronomy and Astrophysics, 2019, 629, A116.	2.1	19
417	Radial Variations in Grain Sizes and Dust Scale Heights in the Protoplanetary Disk around HD 163296 Revealed by ALMA Polarization Observations. Astrophysical Journal, 2019, 886, 103.	1.6	37
418	The ALMA Lupus protoplanetary disk survey: evidence for compact gas disks and molecular rings from CN. Astronomy and Astrophysics, 2019, 623, A150.	2.1	31
419	Complex Magnetospheric Accretion Flows in the Low Accretor CVSO 1335. Astrophysical Journal, 2019, 884, 86.	1.6	10
420	High gas-to-dust size ratio indicating efficient radial drift in the mm-faint CX Tauri disk. Astronomy and Astrophysics, 2019, 626, L2.	2.1	43
421	Substructures in the Keplerian disc around the O-type (proto-)star G17.64+0.16. Astronomy and Astrophysics, 2019, 627, L6.	2.1	57
422	Discovery of fossil asteroidal ice in primitive meteorite Acfer 094. Science Advances, 2019, 5, eaax5078.	4.7	33
423	Astrochemistry as a Tool To Follow Protostellar Evolution: The Class I Stage. ACS Earth and Space Chemistry, 2019, 3, 2659-2674.	1.2	18
424	Heavy Ion Acceleration by Super-Alfvénic Waves. Astrophysical Journal Letters, 2019, 887, L2.	3.0	2

	CITA	tion Report	
#	Article	IF	CITATIONS
425	Radio Stars: From kHz to THz. Publications of the Astronomical Society of the Pacific, 2019, 131, 01600	1. 1.0	12
426	The Ophiuchus DIsc Survey Employing ALMA (ODISEA) – I: project description and continuum images a 28 au resolution. Monthly Notices of the Royal Astronomical Society, 2019, 482, 698-714.	at 1.6	138
427	Flybys in protoplanetary discs – II. Observational signatures. Monthly Notices of the Royal Astronomical Society, 2020, 491, 504-514.	1.6	51
428	X-Ray Emission and Disk Irradiation of HL Tau and HD 100546. Astrophysical Journal, 2020, 888, 15.	1.6	7
429	auto-multithresh: A General Purpose Automasking Algorithm. Publications of the Astronomical Society of the Pacific, 2020, 132, 024505.	1.0	52
430	Sulphur-bearing and complex organic molecules in an infrared cold core. Monthly Notices of the Royal Astronomical Society, 2020, 491, 427-439.	1.6	4
431	The great isotopic dichotomy of the early Solar System. Nature Astronomy, 2020, 4, 32-40.	4.2	117
432	Four annular structures in a protostellar disk less than 500,000 years old. Nature, 2020, 586, 228-231.	13.7	109
433	How Efficient Is the Streaming Instability in Viscous Protoplanetary Disks?. Astrophysical Journal, 2020, 891, 132.	1.6	45
434	Ariel – a window to the origin of life on early earth?. Experimental Astronomy, 2020, , 1.	1.6	1
435	Gravitoviscous protoplanetary discs with a dust component – IV. Disc outer edges, spectral indices, and opacity gaps. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5578-5597.	1.6	10
436	Volatile depletion in planet-forming disks. Chinese Journal of Chemical Physics, 2020, 33, 85-90.	0.6	0
437	Organic Components of Small Bodies in the Outer Solar System: Some Results of the New Horizons Mission. Life, 2020, 10, 126.	1.1	7
438	Electric heating and angular momentum transport in laminar models of protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2020, 494, 6103-6119.	1.6	9
439	Peter Pan discs: finding Neverland's parameters. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 496, L111-L115.	1.2	11
440	Planet gap opening across stellar masses. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3535-3547.	1.6	12
441	Promoted mass growth of multiple, distant giant planets through pebble accretion and planet–planet collision. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3314-3325.	1.6	9
442	Dust dynamics and vertical settling in gravitoturbulent protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4631-4642.	1.6	14

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
443	Rapid grain growth in post-AGB disc systems from far-infrared and sub-millimetre photometry. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2925-2936.	1.6	5
444	Validating scattering-induced (sub)millimetre disc polarization through the spectral index, wavelength-dependent polarization pattern, and polarization spectrum: the case of HD 163296. Monthly Notices of the Royal Astronomical Society, 2020, 496, 169-181.	1.6	23
445	Formation of planetary populations – III. Core composition and atmospheric evaporation. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4814-4833.	1.6	8
446	High-resolution survey for planetary companions to young stars in the Taurus molecular cloud. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1382-1396.	1.6	7
447	The solar abundance problem and eMSTOs in clusters. Astronomy and Astrophysics, 2020, 641, A73.	2.1	8
448	On the evolution of a primordial interstellar gas cloud. Journal of Mathematical Physics, 2020, 61, .	0.5	3
449	Planet migration in self-gravitating discs: survival of planets. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1598-1609.	1.6	12
450	Observing protoplanetary discs with the Square Kilometre Array – I. Characterizing pebble substructure caused by forming planets. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5116-5127.	1.6	11
451	The composition of hot Jupiter atmospheres assembled within chemically evolved protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2229-2244.	1.6	27
452	frankenstein: protoplanetary disc brightness profile reconstruction at sub-beam resolution with a rapid Gaussian process. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3209-3232.	1.6	38
453	ALMA reveals a large structured disk and nested rotating outflows in DG Tauri B. Astronomy and Astrophysics, 2020, 634, L12.	2.1	46
454	Weak Magnetic Fields in the Outer Solar Nebula Recorded in CR Chondrites. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006260.	1.5	22
455	The Evolution of the Inner Regions of Protoplanetary Disks. Astrophysical Journal, 2020, 893, 56.	1.6	18
456	A Multifrequency ALMA Characterization of Substructures in the GM Aur Protoplanetary Disk. Astrophysical Journal, 2020, 891, 48.	1.6	54
457	Is the gap in the DS Tau disc hiding a planet?. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1913-1926.	1.6	17
458	Long-lived Dust Rings around HD 169142. Astrophysical Journal Letters, 2020, 888, L4.	3.0	24
459	Model of a Gap Formed by a Planet with Fast Inward Migration. Astrophysical Journal, 2020, 892, 83.	1.6	7
460	Planet–Disk Interaction in Disks with Cooling: Basic Theory. Astrophysical Journal, 2020, 892, 65.	1.6	38

#	Article	IF	CITATIONS
461	Influences of protoplanet-induced three-dimensional gas flow on pebble accretion. Astronomy and Astrophysics, 2020, 633, A81.	2.1	13
462	Planet formation by pebble accretion in ringed disks. Astronomy and Astrophysics, 2020, 638, A1.	2.1	49
463	The Planetary Luminosity Problem: "Missing Planets―and the Observational Consequences of Episodic Accretion. Astrophysical Journal, 2020, 895, 48.	1.6	29
464	Snow lines can be thermally unstable. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3160-3174.	1.6	19
465	Exoplanet Detection and Its Dependence on Stochastic Sampling of the Stellar Initial Mass Function. Astrophysical Journal, 2020, 895, 141.	1.6	1
466	Super-resolution Imaging of the Protoplanetary Disk HD 142527 Using Sparse Modeling. Astrophysical Journal, 2020, 895, 84.	1.6	7
467	The efficiency of dust trapping in ringed protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2020, 495, 173-181.	1.6	49
468	Illuminating a tadpole's metamorphosis II: observing the ongoing transformation with ALMA. Monthly Notices of the Royal Astronomical Society, 2020, 496, 394-414.	1.6	6
469	Physical properties of the star-forming clusters in NGC 6334. Astronomy and Astrophysics, 2020, 635, A2.	2.1	22
470	ALMA High-frequency Long Baseline Campaign in 2017: Band-to-band Phase Referencing in Submillimeter Waves. Astrophysical Journal, Supplement Series, 2020, 247, 23.	3.0	11
471	The Effects of Dust Optical Properties on the Scattering-induced Disk Polarization by Millimeter-sized Grains. Astrophysical Journal, 2020, 889, 15.	1.6	38
472	13C17O suggests gravitational instability in the HL Tau disc. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 493, L108-L113.	1.2	27
473	Nine Localized Deviations from Keplerian Rotation in the DSHARP Circumstellar Disks: Kinematic Evidence for Protoplanets Carving the Gaps. Astrophysical Journal Letters, 2020, 890, L9.	3.0	116
474	Planet formation around M dwarfs via disc instability. Astronomy and Astrophysics, 2020, 633, A116.	2.1	35
475	Long Baseline Observations of the HD 100546 Protoplanetary Disk with ALMA. Astrophysical Journal Letters, 2020, 889, L24.	3.0	42
476	Debris Disk Results from the Gemini Planet Imager Exoplanet Survey's Polarimetric Imaging Campaign. Astronomical Journal, 2020, 160, 24.	1.9	64
477	Architecture of Three-planet Systems Predicted from the Observed Protoplanetary Disk of HL Tau. Astrophysical Journal, 2020, 891, 166.	1.6	5
478	Identifying Exo-Earth Candidates in Direct Imaging Data through Bayesian Classification. Astronomical Journal, 2020, 159, 3.	1.9	4

#	Article	IF	CITATIONS
479	Constraining the masses of planets in protoplanetary discs from the presence or absence of vortices – comparison with ALMA observations. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5759-5770.	1.6	10
480	Oxygen Isotopes and Sampling of the Solar System. Space Science Reviews, 2020, 216, 1.	3.7	22
481	Detectability of embedded protoplanets from hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3440-3458.	1.6	26
482	Are inner disc misalignments common? ALMA reveals an isotropic outer disc inclination distribution for young dipper stars. Monthly Notices of the Royal Astronomical Society, 2020, 492, 572-588.	1.6	41
483	Spiral arms in the protoplanetary disc HD100453 detected with ALMA: evidence for binary–disc interaction and a vertical temperature gradient. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1335-1347.	1.6	60
484	Channels for streaming instability in dusty discs. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4591-4598.	1.6	14
485	The observational anatomy of externally photoevaporating planet-forming discs – I. Atomic carbon. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5030-5040.	1.6	14
486	Demographics of disks around young very low-mass stars and brown dwarfs in Lupus. Astronomy and Astrophysics, 2020, 633, A114.	2.1	29
487	Planet-induced spirals in the circumbinary disk of GG Tauri A. Astronomy and Astrophysics, 2020, 635, L9.	2.1	12
488	KISS: a spectrometric imager for millimetre cosmology. EPJ Web of Conferences, 2020, 228, 00010.	0.1	4
489	Pebble drift and planetesimal formation in protoplanetary discs with embedded planets. Astronomy and Astrophysics, 2020, 635, A110.	2.1	24
490	The paradox of youth for ALMA planet candidates. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2910-2925.	1.6	5
491	Formation of planetary populations â^' II. Effects of initial disc size and radial dust drift. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1013-1033.	1.6	8
492	Morphological signatures induced by dust back reaction in discs with an embedded planet. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4702-4718.	1.6	8
493	Magnetic reconnection in partially ionized plasmas. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190867.	1.0	21
494	Experiments and long-term high-performance computations on amplitude modulations of strato-rotational flows. Geophysical and Astrophysical Fluid Dynamics, 2021, 115, 297-321.	0.4	5
495	Astrochemistry and compositions of planetary systems. Physics Reports, 2021, 893, 1-48.	10.3	128
496	Grain growth for astrophysics with discontinuous Galerkin schemes. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4298-4316.	1.6	15

#	Article	IF	CITATIONS
497	ALMA chemical survey of disk-outflow sources in Taurus (ALMA-DOT). Astronomy and Astrophysics, 2021, 645, A145.	2.1	23
498	MusE GAs FLOw and Wind V. The dust/metallicity-anisotropy of the circum-galactic medium. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3733-3745.	1.6	17
499	Protoplanetary Disk Rings as Sites for Planetesimal Formation. Astronomical Journal, 2021, 161, 96.	1.9	59
500	Gravitational instability and the formation of planetary systems of solar-type stars. Keldysh Institute Preprints, 2021, , 1-32.	0.1	1
501	The black hole masses of extremely luminous radio- <i>WISE</i> selected galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1527-1548.	1.6	2
503	A Two-moment Radiation Hydrodynamics Scheme Applicable to Simulations of Planet Formation in Circumstellar Disks. Astrophysical Journal, 2021, 906, 78.	1.6	9
504	Searching for wide-orbit gravitational instability protoplanets with ALMA in the dust continuum. Monthly Notices of the Royal Astronomical Society, 2021, 502, 953-968.	1.6	4
505	Magnetohydrodynamics of protoplanetary discs. Journal of Plasma Physics, 2021, 87, .	0.7	21
506	Constraining the Nature of the PDS 70 Protoplanets with VLTI/GRAVITY ^{â^—} . Astronomical Journal, 2021, 161, 148.	1.9	59
507	Ring Formation by Coagulation of Dust Aggregates in the Early Phase of Disk Evolution around a Protostar. Astrophysical Journal, 2021, 907, 80.	1.6	19
508	Giant planet migration during the disc dispersal phase. Astronomy and Astrophysics, 2021, 646, A169.	2.1	6
509	Constraining protoplanetary disc accretion and young planets using ALMA kinematic observations. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5325-5339.	1.6	22
510	Resolved molecular line observations reveal an inherited molecular layer in the young disk around TMC1A. Astronomy and Astrophysics, 2021, 646, A72.	2.1	15
511	A Search for Companions via Direct Imaging in the DSHARP Planet-forming Disks. Astronomical Journal, 2021, 161, 146.	1.9	14
512	Modeling of the ALMA HL Tau Polarization by Mixture of Grain Alignment and Self-scattering. Astrophysical Journal, 2021, 908, 153.	1.6	12
513	Increased isolation mass for pebble accreting planetary cores in pressure maxima of protoplanetary discs. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 503, L67-L72.	1.2	3
514	Ring Formation in Protoplanetary Disks Driven by an Eccentric Instability. Astrophysical Journal, 2021, 910, 79.	1.6	3
515	ALMA Observation of the Protoplanetary Disk around WW Cha: Faint Double-peaked Ring and Asymmetric Structure. Astrophysical Journal, 2021, 909, 212.	1.6	7

	CITATION RE	PORT	
#	Article	IF	Citations
516	Radiative Scale Height and Shadows in Protoplanetary Disks. Astrophysical Journal, 2021, 910, 31.	1.6	3
517	Modeling the nonaxisymmetric structure in the HD 163296 disk with planet-disk interaction. Astronomy and Astrophysics, 2021, 647, A174.	2.1	15
518	Tracing the Formation History of Giant Planets in Protoplanetary Disks with Carbon, Oxygen, Nitrogen, and Sulfur. Astrophysical Journal, 2021, 909, 40.	1.6	67
519	Collision rates of planetesimals near mean-motion resonances. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5409-5424.	1.6	1
520	New Growth Mechanism of Dust Grains in Protoplanetary Disks with Magnetically Driven Disk Winds. Astrophysical Journal, 2021, 909, 75.	1.6	14
521	How dust fragmentation may be beneficial to planetary growth by pebble accretion. Astronomy and Astrophysics, 2021, 647, A15.	2.1	32
522	Limits on the presence of planets in systems with debris discs: HD 92945 and HD 107146. Monthly Noti of the Royal Astronomical Society, 2021, 503, 1276-1289.	ces 1.6	3
523	Discovery of a directly imaged planet to the young solar analog YSES 2. Astronomy and Astrophysics, 2021, 648, A73.	2.1	25
524	AB Aurigae: possible evidence of planet formation through the gravitational instability. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2877-2888.	1.6	7
525	The theory of kinks – I. A semi-analytic model of velocity perturbations due to planet–disc interaction. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5444-5454.	1.6	21
526	Solar structure and evolution. Living Reviews in Solar Physics, 2021, 18, 1.	7.8	49
527	The fate of planetesimals formed at planetary gap edges. Astronomy and Astrophysics, 2021, 648, A112.	2.1	15
528	Gravitoviscous Protoplanetary Disks with a Dust Component. V. The Dynamic Model for Freeze-out and Sublimation of Volatiles. Astrophysical Journal, 2021, 910, 153.	1.6	9
529	Characterizing the dust content of disk substructures in TW Hydrae. Astronomy and Astrophysics, 2021, 648, A33.	2.1	53
530	HDÂ143006: circumbinary planet or misaligned disc?. Monthly Notices of the Royal Astronomical Society, 2021, 504, 888-897.	1.6	16
531	An HST Survey of Protostellar Outflow Cavities: Does Feedback Clear Envelopes?. Astrophysical Journal, 2021, 911, 153.	1.6	15
532	Water in star-forming regions: physics and chemistry from clouds to disks as probed by <i>Herschel</i> spectroscopy. Astronomy and Astrophysics, 2021, 648, A24.	2.1	98
533	External Photoevaporation of Protoplanetary Disks: Does Location Matter?. Astrophysical Journal, 2021, 913, 95.	1.6	14

#	Article	IF	CITATIONS
534	Estimate on Dust Scale Height from the ALMA Dust Continuum Image of the HD 163296 Protoplanetary Disk. Astrophysical Journal, 2021, 912, 164.	1.6	37
535	Survival of ALMA rings in the absence of pressure maxima. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1162-1179.	1.6	15
536	Possible single-armed spiral in the protoplanetary disk around HD 34282. Astronomy and Astrophysics, 2021, 649, A25.	2.1	12
537	Observational Signature of Tightly Wound Spirals Driven by Buoyancy Resonances in Protoplanetary Disks. Astrophysical Journal, 2021, 912, 56.	1.6	27
538	CO isotopolog line fluxes of viscously evolving disks. Astronomy and Astrophysics, 2021, 649, A95.	2.1	9
539	An upper limit for the growth of inner planets?. Monthly Notices of the Royal Astronomical Society, 2021, 505, 869-888.	1.6	3
540	A Tale of Two Grains: Impact of Grain Size on Ring Formation via Nonideal Magnetohydrodynamic Processes. Astrophysical Journal, 2021, 913, 133.	1.6	4
541	The Disc Miner. Astronomy and Astrophysics, 2021, 650, A179.	2.1	19
542	Effects of Dust Evolution on the Vertical Shear Instability in the Outer Regions of Protoplanetary Disks. Astrophysical Journal, 2021, 914, 132.	1.6	12
543	Spiral structures in gravito-turbulent gaseous disks. Astronomy and Astrophysics, 2021, 650, A49.	2.1	11
544	Spiral Arms and a Massive Dust Disk with Non-Keplerian Kinematics: Possible Evidence for Gravitational Instability in the Disk of Elias 2–27. Astrophysical Journal, 2021, 914, 88.	1.6	38
545	A Stellar Mass Dependence of Structured Disks: A Possible Link with Exoplanet Demographics. Astronomical Journal, 2021, 162, 28.	1.9	55
546	Gravito-turbulence and dynamo in poorly ionized protostellar discs –Âl.ÂZero-net-flux case. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1407-1426.	1.6	4
547	On the secular evolution of the ratio between gas and dust radii in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2021, 507, 818-833.	1.6	27
548	First 3D grid-based gas-dust simulations of circumstellar discs with an embedded planet. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5969-5988.	1.6	19
549	Which molecule traces what: Chemical diagnostics of protostellar sources. Astronomy and Astrophysics, 2021, 655, A65.	2.1	43
550	The first ALMA survey of protoplanetary discs at 3 mm: demographics of grain growth in the Lupus region. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5117-5128.	1.6	21
551	The Effect of a Strong Pressure Bump in the Sun's Natal Disk: Terrestrial Planet Formation via Planetesimal Accretion Rather than Pebble Accretion. Astrophysical Journal, 2021, 915, 62.	1.6	23

#	Article	IF	CITATIONS
552	Ice lines as the origin for the gap/ring structure in protoplanetary disks: the issue of the assumed temperature profile. Research in Astronomy and Astrophysics, 2021, 21, 164.	0.7	0
553	Streaming instability of multiple particle species. Astronomy and Astrophysics, 2021, 653, A14.	2.1	15
554	H ₂ S observations in young stellar disks in Taurus. Astronomy and Astrophysics, 2021, 652, A46.	2.1	6
555	Axisymmetric simulations of the convective overstability in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5523-5541.	1.6	3
556	The structures of protoplanetary disks. Physics Today, 2021, 74, 36-41.	0.3	2
557	The Fineâ€Scale Magnetic History of the Allende Meteorite: Implications for the Structure of the Solar Nebula. AGU Advances, 2021, 2, e2021AV000486.	2.3	15
558	Long-term stability of planets in and around binary stars. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4507-4520.	1.6	9
559	The GRAVITY young stellar object survey. Astronomy and Astrophysics, 2021, 654, A97.	2.1	11
561	Long Live the Disk: Lifetimes of Protoplanetary Disks in Hierarchical Triple-star Systems and a Possible Explanation for HD 98800 B. Astrophysical Journal, 2021, 916, 113.	1.6	13
562	Global three-dimensional simulations of outer protoplanetary discs with ambipolar diffusion. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1106-1126.	1.6	34
563	A dusty filament and turbulent CO spirals in HD 135344B - SAO 206462. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3789-3809.	1.6	24
564	Migration processes in the Solar System and their role in the evolution of the Earth and planets. Physics-Uspekhi, 2023, 66, 2-31.	0.8	8
565	Large gaps and high accretion rates in photoevaporative transition disks with a dead zone. Astronomy and Astrophysics, 2021, 655, A18.	2.1	19
566	Thresholds for Particle Clumping by the Streaming Instability. Astrophysical Journal, 2021, 919, 107.	1.6	59
567	Misaligned Circumstellar Disks and Orbital Motion of the Young Binary XZ Tau. Astrophysical Journal, 2021, 919, 55.	1.6	6
568	On the non-axisymmetric fragmentation of rings generated by the secular gravitational instability. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4522-4532.	1.6	14
569	Far and extreme ultraviolet radiation fields and consequent disc destruction in star-forming regions. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2665-2681.	1.6	15
570	Rossby Waves in Astrophysics. Space Science Reviews, 2021, 217, 1.	3.7	47

#	Article	IF	CITATIONS
571	UV astronomy and the investigation of the origin of life. , 2021, , 15-73.		2
572	The Nature and Origins of Subâ€Neptune Size Planets. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006639.	1.5	65
573	Dust traffic jams in inclined circumbinary protoplanetary discs – I. Morphology and formation theory. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2743-2757.	1.6	9
574	The Determination of Protoplanetary Disk Masses. Astrophysics and Space Science Library, 2017, , 1-37.	1.0	25
575	Particle Trapping in Protoplanetary Disks: Models vs. Observations. Astrophysics and Space Science Library, 2017, , 91-142.	1.0	11
576	High-Resolution Laboratory Terahertz Spectroscopy and Applications to Astrophysics. , 2018, , 471-525.		4
578	Monte-Carlo radiative transfer simulation of the circumstellar disk of the Herbig Ae star HD 144432. Astronomy and Astrophysics, 2016, 586, A54.	2.1	2
579	How do giant planetary cores shape the dust disk?. Astronomy and Astrophysics, 2015, 584, A110.	2.1	47
580	Multiwavelength analysis for interferometric (sub-)mm observations of protoplanetary disks. Astronomy and Astrophysics, 2016, 588, A53.	2.1	148
581	Particle dynamics in discs with turbulence generated by the vertical shear instability. Astronomy and Astrophysics, 2016, 594, A57.	2.1	67
582	ALMA unveils rings and gaps in the protoplanetary system HD 169142: signatures of two giant protoplanets. Astronomy and Astrophysics, 2017, 600, A72.	2.1	176
583	Origin of warm and hot gas emission from low-mass protostars: <i>Herschel</i> -HIFI observations of CO <i>J </i> = 16–15. Astronomy and Astrophysics, 2017, 605, A93.	2.1	25
584	Shadows and asymmetries in the T Tauri disk HD 143006: evidence for a misaligned inner disk. Astronomy and Astrophysics, 2018, 619, A171.	2.1	71
585	The origin of tail-like structures around protoplanetary disks. Astronomy and Astrophysics, 2020, 635, A196.	2.1	14
586	ALMA chemical survey of disk-outflow sources in Taurus (ALMA-DOT). Astronomy and Astrophysics, 2020, 636, A65.	2.1	19
587	Protoplanetary disk masses in NGC 2024: Evidence for two populations. Astronomy and Astrophysics, 2020, 640, A27.	2.1	33
588	Ring formation and dust dynamics in wind-driven protoplanetary discs: global simulations. Astronomy and Astrophysics, 2020, 639, A95.	2.1	48
589	Dust masses of young disks: constraining the initial solid reservoir for planet formation. Astronomy and Astrophysics, 2020, 640, A19.	2.1	114

#	Article	IF	CITATIONS
590	Effect of luminosity outbursts on protoplanetary disk dynamics. Astronomy and Astrophysics, 2020, 643, A13.	2.1	7
591	Searching for proto-planets with MUSE. Astronomy and Astrophysics, 2020, 644, A149.	2.1	18
592	Modeling protoplanetary disk SEDs with artificial neural networks. Astronomy and Astrophysics, 2020, 642, A171.	2.1	25
593	ALMA chemical survey of disk-outflow sources in Taurus (ALMA-DOT). Astronomy and Astrophysics, 2020, 644, A119.	2.1	11
594	Connecting planet formation and astrochemistry. Astronomy and Astrophysics, 2020, 642, A229.	2.1	32
595	Influences of protoplanet-induced three-dimensional gas flow on pebble accretion. Astronomy and Astrophysics, 2020, 643, A21.	2.1	7
596	ALMA chemical survey of disk-outflow sources in Taurus (ALMA-DOT). Astronomy and Astrophysics, 2020, 644, A120.	2.1	10
597	A tale of planet formation: from dust to planets. Research in Astronomy and Astrophysics, 2020, 20, 164.	0.7	37
598	A smoothed particle hydrodynamics algorithm for multigrain dust with separate sets of particles. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3806-3818.	1.6	3
599	The Ophiuchus DIsc Survey Employing ALMA (ODISEA) – III. The evolution of substructures in massive discs at 3–5 au resolution. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2934-2953.	1.6	57
600	On the settling of small grains in dusty discs: analysis and formulae. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5134-5147.	1.6	9
601	The birth environment of planetary systems. Royal Society Open Science, 2020, 7, 201271.	1.1	28
602	Review: far-infrared instrumentation and technological development for the next decade. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5, 1.	1.0	40
603	Atmospheric phase characteristics of the ALMA long baseline. Proceedings of SPIE, 2016, , .	0.8	3
604	The Atacama large aperture submillimeter telescope (AtLAST) concept. , 2020, , .		25
605	Geometrical and physical optics analysis for mm-wavelength refractor telescopes designed to map the cosmic microwave background. Applied Optics, 2020, 59, 3324.	0.9	4
607	To the question of the formation model of planetary systems of stars. Keldysh Institute Preprints, 2018, , 1-31.	0.1	4
608	To the question of astrophysical studies of protoplanetary disks of stars. Keldysh Institute Preprints, 2019, , 1-19.	0.1	2

#	Article	IF	CITATIONS
609	Dust Evolution in Protoplanetary Disks. , 2014, , .		84
610	DUST COAGULATION IN THE VICINITY OF A GAP-OPENING JUPITER-MASS PLANET. Astrophysical Journal, 2016, 823, 80.	1.6	25
611	A SEARCH FOR SUBMILLIMETER H ₂ 0 MASERS IN ACTIVE GALAXIES:ÂTHE DETECTION OF 321 GHz H ₂ 0 MASER EMISSION IN NGC 4945. Astrophysical Journal, 2016, 827, 69.	1.6	15
612	Near-infrared Imaging of a Spiral in the CQ Tau Disk. Astronomical Journal, 2020, 159, 118.	1.9	15
613	First Detection of Orbital Motion for HD 106906 b: A Wide-separation Exoplanet on a Planet Nine–like Orbit. Astronomical Journal, 2021, 161, 22.	1.9	16
614	Nonsticky Ice at the Origin of the Uniformly Polarized Submillimeter Emission from the HL Tau Disk. Astrophysical Journal, 2019, 878, 132.	1.6	41
615	Dynamical Gaseous Rings in Global Simulations of Protoplanetary Disk Formation. Astrophysical Journal, 2019, 882, 96.	1.6	17
616	Dust-vortex Instability in the Regime of Well-coupled Grains. Astrophysical Journal, 2019, 883, 176.	1.6	10
617	Pileups and Migration Rates for Planets in Low-mass Disks. Astrophysical Journal, 2020, 891, 108.	1.6	23
618	The ALMA Spectroscopic Survey in the HUDF: Deep 1.2 mm Continuum Number Counts. Astrophysical Journal, 2020, 897, 91.	1.6	49
619	Meso-scale Instability Triggered by Dust Feedback in Dusty Rings: Origin and Observational Implications. Astrophysical Journal, 2020, 893, 89.	1.6	16
620	Tidal Interaction between the UX Tauri A/C Disk System Revealed by ALMA. Astrophysical Journal, 2020, 896, 132.	1.6	16
621	Gas and Dust Dynamics in Starlight-heated Protoplanetary Disks. Astrophysical Journal, 2020, 897, 155.	1.6	54
622	Dual-wavelength ALMA Observations of Dust Rings in Protoplanetary Disks. Astrophysical Journal, 2020, 898, 36.	1.6	30
623	Circumbinary Disks of the Protostellar Binary Systems in the L1551 Region. Astrophysical Journal, 2020, 898, 10.	1.6	10
624	An Evolutionary Study of Volatile Chemistry in Protoplanetary Disks. Astrophysical Journal, 2020, 898, 97.	1.6	34
625	A 3 mm Chemical Exploration of Small Organics in Class I YSOs. Astrophysical Journal, 2020, 898, 131.	1.6	10
626	Large-scale CO Spiral Arms and Complex Kinematics Associated with the T Tauri Star RU Lup. Astrophysical Journal, 2020, 898, 140.	1.6	23

#	Article	IF	CITATIONS
627	A Machine Learning Model to Infer Planet Masses from Gaps Observed in Protoplanetary Disks. Astrophysical Journal, 2020, 900, 62.	1.6	8
628	Solving Grain Size Inconsistency between ALMA Polarization and VLA Continuum in the Ophiuchus IRS 48 Protoplanetary Disk. Astrophysical Journal, 2020, 900, 81.	1.6	23
629	Hunting for Wandering Massive Black Holes. Astrophysical Journal, 2020, 901, 39.	1.6	13
630	Secular Gravitational Instability of Drifting Dust in Protoplanetary Disks: Formation of Dusty Rings without Significant Gas Substructures. Astrophysical Journal, 2020, 900, 182.	1.6	29
631	Temperature Structures of Embedded Disks: Young Disks in Taurus Are Warm. Astrophysical Journal, 2020, 901, 166.	1.6	49
632	The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. III. Substructures in Protostellar Disks. Astrophysical Journal, 2020, 902, 141.	1.6	54
633	Global Spiral Density Wave Modes in Protoplanetary Disks: Morphology of Spiral Arms. Astrophysical Journal, 2021, 906, 19.	1.6	5
634	Rapid Evolution of Volatile CO from the Protostellar Disk Stage to the Protoplanetary Disk Stage. Astrophysical Journal Letters, 2020, 891, L17.	3.0	43
635	Hiding Signatures of Gravitational Instability in Protoplanetary Disks with Planets. Astrophysical Journal Letters, 2020, 904, L18.	3.0	9
636	UV Fluorescence Traces Gas and Lyα Evolution in Protoplanetary Disks. Astronomical Journal, 2021, 162, 185.	1.9	4
637	Dust entrainment in photoevaporative winds: Densities and imaging. Astronomy and Astrophysics, 2022, 657, A69.	2.1	8
638	Exploring the link between star and planet formation with Ariel. Experimental Astronomy, 2022, 53, 225-278.	1.6	18
639	DPNNet-2.0. I. Finding Hidden Planets from Simulated Images of Protoplanetary Disk Gaps. Astrophysical Journal, 2021, 920, 3.	1.6	6
640	On the Crystallinity of Silicate Dust in Evolving Protoplanetary Disks due to Magnetically Driven Disk Winds. Astrophysical Journal, 2021, 920, 27.	1.6	7
641	Constraining the properties of the potential embedded planets in the disk around HD 100546. Astronomy and Astrophysics, 2021, 656, A150.	2.1	7
642	The Substructures in Disks Undergoing Vertical Shear Instability. II. Observational Predictions for the Dust Continuum. Astrophysical Journal, 2021, 920, 70.	1.6	8
643	Misaligned disks induced by infall. Astronomy and Astrophysics, 2021, 656, A161.	2.1	22
645	Low-Mass Star Formation: From Molecular Cloud Cores to Protostars and Protoplanetary Disks. EAS Publications Series, 2015, 75-76, 219-226.	0.3	0

#	Article	IF	CITATIONS
646	Formation, Orbital and Internal Evolutions of Young Planetary Systems. Space Sciences Series of ISSI, 2016, , 117-164.	0.0	0
647	Dust Evolution and the Formation of Planetesimals. Space Sciences Series of ISSI, 2016, , 81-115.	0.0	0
648	Insights into Planet Formation from Debris Disks: I. The Solar System as an Archetype for Planetesimal Evolution. Space Sciences Series of ISSI, 2016, , 255-272.	0.0	0
649	The ALMA Revolution: Gas and Dust in Transitional Disks. Astrophysics and Space Science Library, 2017, , 39-61.	1.0	3
650	Expanding Beyond the Solar System: Current Observation and Theory. Advanced Information and Knowledge Processing, 2017, , 29-50.	0.2	0
651	Observational Signatures of Planet Formation in Recent Resolved Observations of Protoplanetary Disks. Astrophysics and Space Science Library, 2017, , 253-294.	1.0	0
652	On signatures of companion formation in stars Sz54 and Sz59 – young systems with protoplanetary disks. Kinematika I Fizika Nebesnykh Tel, 2017, 33, 51-56.	0.1	0
653	Numerical Simulation of Circumsolar Ring Evolution. Advanced Structured Materials, 2018, , 251-261.	0.3	6
654	Gas and Dust Dynamics During Planet Formation in HL Tau. , 2018, , 25-36.		0
655	Planet Formation in the ALMA Era. , 2018, , 155-167.		0
656	1995–2015: Something Completely New: Exoplanets. Historical & Cultural Astronomy, 2018, , 361-379.	0.1	0
657			
	Planet formation imager: project update. , 2018, , .		Ο
658	Planet formation imager: project update. , 2018, , . More telescopes than photons: beam multiplexing in imaging interferometers. , 2018, , .		0
658 659		1.6	
	More telescopes than photons: beam multiplexing in imaging interferometers. , 2018, , . A Spectral Analysis of the Centimeter Regime of Nearby Galaxies: RRLs, Excited OH, and NH ₃ .	1.6 1.6	1
659	More telescopes than photons: beam multiplexing in imaging interferometers. , 2018, , . A Spectral Analysis of the Centimeter Regime of Nearby Galaxies: RRLs, Excited OH, and NH ₃ . Astrophysical Journal, 2019, 882, 95. The IGRINS YSO Survey. I. Stellar Parameters of Pre-main-sequence Stars in Taurus-Auriga.		1 3
659 661	More telescopes than photons: beam multiplexing in imaging interferometers. , 2018, , . A Spectral Analysis of the Centimeter Regime of Nearby Galaxies: RRLs, Excited OH, and NH ₃ . Astrophysical Journal, 2019, 882, 95. The IGRINS YSO Survey. I. Stellar Parameters of Pre-main-sequence Stars in Taurus-Auriga. Astrophysical Journal, 2021, 921, 53. Double trouble: <i>Gaia</i> reveals (proto)planetary systems that may experience more than one dense star-forming environment. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 501,	1.6	1 3 13

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
665	Steady-state accretion in magnetized protoplanetary disks. Astronomy and Astrophysics, 2	2022, 658, A97.	2.1	21
666	Molecules with ALMA at Planet-forming Scales (MAPS). XVIII. Kinematic Substructures in the HD 163296 and MWC 480. Astrophysical Journal, Supplement Series, 2021, 257, 18.	he Disks of	3.0	51
667	ALMA chemical survey of disk-outflow sources in Taurus (ALMA-DOT). Astronomy and Astr 2022, 658, A104.	ophysics,	2.1	37
668	Molecules with ALMA at Planet-forming Scales (MAPS). XIX. Spiral Arms, a Tail, and Diffuse Traced by CO around the GM Aur Disk. Astrophysical Journal, Supplement Series, 2021, 25		3.0	33
669	Molecules with ALMA at Planet-forming Scales (MAPS). I. Program Overview and Highlight Astrophysical Journal, Supplement Series, 2021, 257, 1.	S.	3.0	117
670	Turbulent disc viscosity and the bifurcation of planet formation histories. Monthly Notices Royal Astronomical Society, 2022, 510, 6059-6084.	of the	1.6	5
671	Molecules with ALMA at Planet-forming Scales (MAPS). III. Characteristics of Radial Chemic Substructures. Astrophysical Journal, Supplement Series, 2021, 257, 3.	cal	3.0	57
672	Molecules with ALMA at Planet-forming Scales (MAPS). XV. Tracing Protoplanetary Disk St within 20 au. Astrophysical Journal, Supplement Series, 2021, 257, 15.	ructure	3.0	21
673	Molecules with ALMA at Planet-forming Scales. XX. The Massive Disk around GM Aurigae. Journal, Supplement Series, 2021, 257, 20.	Astrophysical	3.0	26
674	ALMA Band-to-band Phase Referencing: Imaging Capabilities on Long Baselines and High F Astronomical Journal, 2020, 160, 59.	requencies.	1.9	4
675	The GRAVITY young stellar object survey. Astronomy and Astrophysics, 2020, 642, A162.		2.1	5
676	ALMA High-frequency Long-baseline Campaign in 2017: A Comparison of the Band-to-band Phase Calibration Techniques and Phase-calibrator Separation Angles. Astrophysical Journa Supplement Series, 2020, 250, 18.		3.0	5
677	A Tale of Two Transition Disks: ALMA Long-baseline Observations of ISO-Oph 2 Reveal Two Packed Nonaxisymmetric Rings and a â ⁻¹ ⁄42 au Cavity. Astrophysical Journal Letters, 2020,) Closely 902, L33.	3.0	11
678	ALMA survey of Lupus class III stars: Early planetesimal belt formation and rapid disc disper Monthly Notices of the Royal Astronomical Society, 2020, 500, 4878-4900.	rsal.	1.6	16
679	ALMA and VLA Observations of EX Lupi in Its Quiescent State. Astrophysical Journal, 2020	, 904, 37.	1.6	4
680	Long-Term Dynamics of Planetesimals in Planetary Chaotic Zones. Astronomy Letters, 202	0, 46, 774-782.	0.1	6
681	Exoplanets: nature and models. Physics-Uspekhi, 2020, 63, 837-871.		0.8	7
682	The IGRINS YSO Survey II: Veiling Spectra of Pre-main-sequence Stars in Taurus-Auriga. Ast Journal, 2021, 922, 27.	rophysical	1.6	3

#	Article	IF	CITATIONS
683	Dust Rings as a Footprint of Planet Formation in a Protoplanetary Disk. Astrophysical Journal, 2021, 921, 169.	1.6	6
684	Disk Masses and Dust Evolution of Protoplanetary Disks around Brown Dwarfs. Astrophysical Journal, 2021, 921, 182.	1.6	11
685	Forming short period sub-stellar companions in 47 Tuc: I.ÂDynamical model and brown dwarf tidal capture rates. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	2
686	Probing inner and outer disk misalignments in transition disks. Astronomy and Astrophysics, 2022, 658, A183.	2.1	42
687	From Pebbles and Planetesimals to Planets and Dust: The Protoplanetary Disk–Debris Disk Connection. Astrophysical Journal, 2022, 925, 45.	1.6	17
688	No Significant Correlation between Line-emission and Continuum Substructures in the Molecules with ALMA at Planet-forming Scales Program. Astrophysical Journal Letters, 2022, 924, L31.	3.0	10
689	Dust Settling and Clumping in MRI-turbulent Outer Protoplanetary Disks. Astrophysical Journal, 2022, 924, 3.	1.6	21
690	Taxonomy of protoplanetary discs observed with ALMA. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2453-2490.	1.6	1
691	Eccentric Gap Induced by a Super-Jupiter-mass Planet. Astrophysical Journal, 2022, 925, 95.	1.6	6
692	Impact of local pressure enhancements on dust concentration in turbulent protoplanetary discs. Astronomy and Astrophysics, 2022, 658, A156.	2.1	14
693	Constraining giant planet formation with synthetic ALMA images of the Solar System's natal protoplanetary disk. Astronomy and Astrophysics, 2022, 659, A6.	2.1	4
694	Planet Formation: Key Mechanisms and Global Models. Astrophysics and Space Science Library, 2022, , 3-82.	1.0	16
695	Warping Away Gravitational Instabilities in Protoplanetary Discs. Astrophysical Journal, 2022, 925, 163.	1.6	5
696	Self-consistent Ring Model in Protoplanetary Disks: Temperature Dips and Substructure Formation. Astrophysical Journal, 2021, 923, 70.	1.6	6
697	A large population study of protoplanetary disks. Astronomy and Astrophysics, 2022, 661, A66.	2.1	14
698	Large Binocular Telescope Search for Companions and Substructures in the (Pre)transitional Disk of AB Aurigae. Astrophysical Journal, 2022, 926, 71.	1.6	2
699	ALMA High-frequency Long-baseline Campaign in 2017: An Investigation of Phase-referencing Cycle Times and Effective Baseline Lengths Using Band-to-band and In-band Phase Calibration Techniques. Astrophysical Journal, Supplement Series, 2022, 259, 10.	3.0	3
700	Early planet formation in embedded protostellar disks. Astronomy and Astrophysics, 2022, 662, A90.	2.1	7

ARTICLE IF CITATIONS # The protoplanetary disk population in the $\langle i \rangle \ddot{i} \langle i \rangle$ -Ophiuchi region L1688 and the time evolution of 701 2.1 21 Class II YSOs. Astronomy and Astrophysics, 2022, 663, A98. SOLIS. Astronomy and Astrophysics, 2022, 662, A103. 2.1 Stellar multiplicity affects the correlation between protoplanetary disc masses and accretion rates: 703 binaries explain high accretors in Upper Sco. Monthly Notices of the Royal Astronomical Society, 1.6 14 2022, 512, 3538-3550. Survey of Orion Disks with ALMA (SODA). Astronomy and Astrophysics, 2022, 661, A53. 704 Origin and Dynamical Evolution of the Asteroid Belt., 2022, , 227-249. 705 9 Probing the Inner Edge of Dead Zones in Protoplanetary Disks with ALMA and Next Generation Very 1.6 Large Array. Astrophysical Journal, 2022, 928, 110. ALMA High-resolution Multiband Analysis for the Protoplanetary Disk around TW Hya. Astrophysical 707 1.6 5 Journal, 2022, 928, 49. The evolution of protoplanetary discs in star formation and feedback simulations. Monthly Notices 708 1.6 of the Royal Astronomical Society, 2022, 512, 3788-3805. Magnetic Spirals in Accretion Flows Originated from Misaligned Magnetic Fields. Astrophysical 709 3 1.6 Journal, 2022, 928, 85. Resilience of Planetesimal Formation in Weakly Reinforced Pressure Bumps. Astrophysical Journal, 1.6 2022, 927, 52. ALMA constraints on assembly of core accretion planets. Monthly Notices of the Royal Astronomical 711 7 1.6 Society, 2022, 512, 6038-6053. 2021 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary 3.0 Molecules. Astrophysical Journal, Supplement Series, 2022, 259, 30. Thermal emission and scattering by aligned grains: Plane-parallel model and application to multiwavelength polarization of the HL Tau disc. Monthly Notices of the Royal Astronomical Society, 713 1.6 6 2022, 512, 3922-3947. The Characterization of the Dust Content in the Ring Around Sz 91: Indications of Planetesimal 714 1.6 Formation?. Astrophysical Journal, 2021, 923, 128. Capture of interstellar objects – II. By the Solar system. Monthly Notices of the Royal Astronomical 715 2 1.6 Society, 2022, 512, 4078-4085. Detecting low-mass haloes with strong gravitational lensing I: the effect of data quality and lensing configuration. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2480-2494. 717 The Irradiation Instability of Protoplanetary Disks. Astrophysical Journal, 2021, 923, 123. 1.6 10 Planets form from rings. Nature Astronomy, 2022, 6, 297-298. 4.2

		CITATION REPORT	
#	Article	IF	CITATIONS
719	Magnetic Fields and Accreting Giant Planets around PDS 70. Astrophysical Journal, 2021, 923, 27.	1.6	4
720	Architecture of Planetary Systems Predicted from Protoplanetary Disks Observed with ALMA. I. Mas of the Possible Planets Embedded in the Dust Gap. Astrophysical Journal, 2021, 923, 165.	s 1.6	4
721	Testing planet formation from the ultraviolet to the millimetre. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1657-1670.	1.6	4
722	Hot Corino Chemistry in the Class I Binary Source Ser-emb 11. Astrophysical Journal, 2021, 923, 15	5. 1.6	8
723	Anisotropic Infall and Substructure Formation in Embedded Disks. Astrophysical Journal, 2022, 928,	, 92. 1.6	29
724	The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. VI. Insights fror Radiative Transfer Modeling. Astrophysical Journal, 2022, 929, 76.	n 1.6	20
728	A Highly Settled Disk around Oph163131. Astrophysical Journal, 2022, 930, 11.	1.6	52
729	Emerging population of gap-opening planets around type-A stars. Astronomy and Astrophysics, 202 663, A163.	22, 2.1	3
730	Massive Compact Dust Disk with a Gap around CW Tau Revealed by ALMA Multiband Observations. Astrophysical Journal, 2022, 930, 56.	. 1.6	9
731	Modeling the arc and ring structures in the HD 143006 disk. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	2
732	A massive gas giant caught in formation. Nature Astronomy, 0, , .	4.2	0
733	Simulation of Thermal Surface Waves in a Protoplanetary Disk in 1+1D Approximation. Astronomy Reports, 2022, 66, 321-329.	0.2	2
734	The Great Planetary Heist: theft and capture in star-forming regions. Monthly Notices of the Royal Astronomical Society, 2022, 514, 920-934.	1.6	10
735	The growth and migration of massive planets under the influence of external photoevaporation. Monthly Notices of the Royal Astronomical Society, 2022, 515, 4287-4301.	1.6	12
736	A Gap at 1 au in the Disk of DI Cha A Revealed by Infrared Interferometry*. Astrophysical Journal, 20 932, 79.	22, 1.6	0
737	Substructures in Protoplanetary Disks Imprinted by Compact Planetary Systems. Astrophysical Journ 2022, 932, 41.	nal, 1.6	3
738	Earliest evidence of nebular shock waves recorded in a calcium-aluminum-rich Inclusion. Geochimica Et Cosmochimica Acta, 2022, 332, 369-388.	1.6	3
739	Architecture of Planetary Systems Predicted from Protoplanetary Disks Observed with ALMA. II. Evolution Outcomes and Dynamical Stability. Astrophysical Journal, 2022, 932, 31.	1.6	1

#	Article	IF	CITATIONS
740	Gap opening by planets in discs with magnetized winds. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3113-3125.	1.6	5
741	Combined effects of disc windsÂand turbulence-driven accretion on planet populations. Monthly Notices of the Royal Astronomical Society, 2022, 515, 2548-2577.	1.6	3
742	No Evidence of the Significant Grain Growth but Tentative Discovery of Disk Substructure in a Disk around the Class I Protostar L1489 IRS. Astrophysical Journal, 2022, 933, 23.	1.6	6
743	Superresolution trends in the ALMA Taurus survey: structured inner discs and compact discs. Monthly Notices of the Royal Astronomical Society, 2022, 514, 6053-6073.	1.6	7
744	The Streaming Instability Cannot Form Planetesimals from Millimeter-size Grains in Pressure Bumps. Astrophysical Journal Letters, 2022, 933, L10.	3.0	17
745	Extreme pebble accretion in ringed protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1276-1295.	1.6	5
746	The Young Embedded Disk L1527 IRS: Constraints on the Water Snowline and Cosmic-Ray Ionization Rate from HCO+ Observations. Astrophysical Journal, 2022, 932, 6.	1.6	0
747	Distribution of solids in the rings of the HD 163296 disk: a multiwavelength study. Astronomy and Astrophysics, 2022, 664, A137.	2.1	18
748	Interstellar Probe: Humanity's exploration of the Galaxy Begins. Acta Astronautica, 2022, 199, 364-373.	1.7	19
749	Dust ring and gap formation by gas flow induced by low-mass planets embedded in protoplanetary disks. Astronomy and Astrophysics, 2022, 665, A122.	2.1	4
750	Formation of dust rings and gaps in non-ideal MHD discs through meridional gas flows. Monthly Notices of the Royal Astronomical Society, 2022, 516, 2006-2022.	1.6	11
751	A VLA View of the Flared, Asymmetric Disk around the Class 0 Protostar L1527 IRS. Astrophysical Journal, 2022, 934, 95.	1.6	14
752	Radio Astronomy. , 2022, , 1-9.		0
753	Atom probe tomography and correlative microscopy: Key techniques for future planetary science studies. MRS Bulletin, 2022, 47, 696-705.	1.7	3
754	Single fluid versus multifluid: comparison between single-fluid and multifluid dust models for disc–planet interactions. Monthly Notices of the Royal Astronomical Society, 2022, 516, 5563-5578.	1.6	1
755	Chemical Diversity in Protoplanetary Disks and Its Impact on the Formation History of Giant Planets. Astrophysical Journal, 2022, 937, 36.	1.6	23
756	Using Bayesian Deep Learning to Infer Planet Mass from Gaps in Protoplanetary Disks. Astrophysical Journal, 2022, 936, 93.	1.6	2
757	Evaporation before disruption: comparing timescales for Jovian planets in star-forming regions. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	2

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
758	A Millimeter-multiwavelength Continuum Study of VLA 1623 West. Astrophysical Journal, 2022, 937, 104.	1.6	7
759	Establishing Dust Rings and Forming Planets within Them. Astrophysical Journal, 2022, 937, 95.	1.6	3
760	Underestimation of the dust mass in protoplanetary disks: Effects of disk structure and dust properties. Astronomy and Astrophysics, 2022, 668, A175.	2.1	9
761	The external photoevaporation of planet-forming discs. European Physical Journal Plus, 2022, 137, .	1.2	28
762	The interplay between forming planets and photoevaporating discs I: forbidden line diagnostics. Monthly Notices of the Royal Astronomical Society, 2022, 517, 3598-3612.	1.6	4
763	A kinematic excess in the annular gap and gas-depleted cavity in the disc around HD 169142. Monthly Notices of the Royal Astronomical Society, 2022, 517, 5942-5958.	1.6	5
764	From Nobeyama Radio Observatory to the international project ALMA —Evolution of millimeter and submillimeter wave astronomy in Japan—. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2022, 98, 439-469.	1.6	0
765	Razor-thin dust layers in protoplanetary disks: Limits on the vertical shear instability. Astronomy and Astrophysics, 2022, 668, A105.	2.1	16
766	Continuing to hide signatures of gravitational instability in protoplanetary discs with planets. Monthly Notices of the Royal Astronomical Society, 2022, 518, 763-773.	1.6	2
767	First steps of planet formation around very low mass stars and brown dwarfs. European Physical Journal Plus, 2022, 137, .	1.2	4
768	3D detection and characterization of ALMA sources through deep learning. Monthly Notices of the Royal Astronomical Society, 2022, 518, 3407-3427.	1.6	3
769	Dynamics of Magnetized Accretion Disks of Young Stars. Astronomy Reports, 2022, 66, 872-885.	0.2	0
770	[O <scp>i</scp>] 6300 à emission as a probe of external photoevaporation of protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5563-5575.	1.6	8
771	Nonlinear Outcome of Coagulation Instability in Protoplanetary Disks. II. Dust-ring Formation Mediated by Backreaction and Fragmentation. Astrophysical Journal, 2022, 940, 152.	1.6	4
772	Sulphur monoxide emission tracing an embedded planet in the HD 100546 protoplanetary disk. Astronomy and Astrophysics, 2023, 669, A53.	2.1	16
773	ISPY: NACO Imaging Survey for Planets around Young stars. Astronomy and Astrophysics, 2023, 669, A145.	2.1	6
774	Observing circumplanetary disks with METIS. Astronomy and Astrophysics, 2023, 670, A74.	2.1	1
775	Dust motion and possibility of dust growth in a growing circumstellar disk. Monthly Notices of the Royal Astronomical Society, 2023, 519, 3595-3610.	1.6	3

#	ARTICLE	IF	CITATIONS
776	Dust Rings and Cavities in the Protoplanetary Disks around HD 163296 and DoAr 44. Astrophysical Journal, 2022, 941, 172.	1.6	0
777	Kinematics and brightness temperatures of transition discs. Astronomy and Astrophysics, 2023, 670, A154.	2.1	13
778	Simultaneous gas accretion onto a pair of giant planets: Impact on their final mass and on the protoplanetary disk structure. Astronomy and Astrophysics, 0, , .	2.1	3
779	Gap-opening Planets Make Dust Rings Wider. Astrophysical Journal, 2023, 942, 80.	1.6	4
780	Two saturated states of the vertical shear instability in protoplanetary disks with vertically varying cooling times. Publication of the Astronomical Society of Japan, 2023, 75, 233-249.	1.0	5
781	Measuring the Dust Masses of Protoplanetary Disks in Lupus with ALMA: Evidence That Disks Can Be Optically Thick at 3 mm. Astrophysical Journal, 2023, 942, 4.	1.6	10
783	Herbig Stars. Space Science Reviews, 2023, 219, .	3.7	8
784	Molecular Mapping of DR Tau's Protoplanetary Disk, Envelope, Outflow, and Large-scale Spiral Arm. Astrophysical Journal, 2023, 943, 107.	1.6	5
785	Streamers feeding the SVS13-A protobinary system: astrochemistry reveals accretion shocks?. Faraday Discussions, 0, 245, 164-180.	1.6	1
786	Empirical constraints on turbulence in proto-planetary discs. New Astronomy Reviews, 2023, 96, 101674.	5.2	18
787	Bayesian and Machine Learning Methods in the Big Data Era for Astronomical Imaging. , 2023, 5, .		0
788	ALMAÂBandÂ6 high-resolution observations of the transitional disk around SYÂChamaeleontis. Publication of the Astronomical Society of Japan, 2023, 75, 424-445.	1.0	1
789	The Effelsberg survey of FU Orionis and EX Lupi objects. Astronomy and Astrophysics, 2023, 672, A158.	2.1	1
790	Multifrequency Black Hole Imaging for the Next-generation Event Horizon Telescope. Astrophysical Journal, 2023, 945, 40.	1.6	9
791	Deuterium-enriched water ties planet-forming disks to comets and protostars. Nature, 2023, 615, 227-230.	13.7	16
792	Transition disks: the observational revolution from SEDs to imaging. European Physical Journal Plus, 2023, 138, .	1.2	9
793	Planetesimal Formation by the Gravitational Instability of Dust Ring Structures. Astrophysical Journal, 2023, 945, 120.	1.6	2
794	A Gap-sharing Planet Pair Shaping the Crescent in HD 163296: A Disk Sculpted by a Resonant Chain. Astrophysical Journal Letters, 2023, 945, L37.	3.0	4

#	Article	IF	CITATIONS
795	On the Origin of Dust Structures in Protoplanetary Disks: Constraints from the Rossby Wave Instability. Astrophysical Journal Letters, 2023, 946, L1.	3.0	3
796	Observations of circumstellar disks in scattered light with SPHERE at the VLT. Comptes Rendus Physique, 2023, 24, 1-19.	0.3	3
797	Short-lived radioisotope enrichment in star-forming regions from stellar winds and supernovae. Monthly Notices of the Royal Astronomical Society, 2023, 521, 4838-4851.	1.6	3
798	The <i>Ĵ²</i> Pictoris system: Setting constraints on the planet and the disk structures at mid-IR wavelengths with NEAR. Astronomy and Astrophysics, 2023, 675, A35.	2.1	1
799	Rejuvenating infall: a crucial yet overlooked source of mass and angular momentum. European Physical Journal Plus, 2023, 138, .	1.2	8
800	ALMA. , 2022, , 1-3.		0
801	Understanding the trans-Neptunian Solar System. Reconciling the results of serendipitous stellar occultations and the inferences from the cratering record. Astronomy and Astrophysics, 0, , .	2.1	0
802	Accretion of aerodynamically large pebbles. Monthly Notices of the Royal Astronomical Society, 2023, 522, 2241-2258.	1.6	2
803	Kinematic Evidence of an Embedded Protoplanet in HD 142666 Identified by Machine Learning. Astrophysical Journal, 2023, 947, 60.	1.6	0
819	The JWST disk revolution is not being televised. Nature Astronomy, 2023, 7, 751-752.	4.2	0
822	Star Formation, Observations. , 2023, , 2849-2855.		0
824	Protoplanetary Disk. , 2023, , 2493-2505.		0
825	Radio Astronomy. , 2023, , 2596-2603.		0
826	ALMA. , 2023, , 87-89.		0

860 The Solar Systemâ \in $\ensuremath{^{\text{TM}}\text{s}}$ ices and their origin. , 2024, , xix-xxv.