<scp>M</scp>otion<scp>M</scp>eerkat: integrating me ecological monitoring

Methods in Ecology and Evolution 6, 357-362

DOI: 10.1111/2041-210x.12320

Citation Report

#	Article	IF	CITATIONS
1	Detecting wildlife in uncontrolled outdoor video using convolutional neural networks., 2016,,.		8
2	Camera technology for monitoring marine biodiversity and human impact. Frontiers in Ecology and the Environment, 2016, 14, 424-432.	1.9	119
3	Wildlife speed cameras: measuring animal travel speed and day range using camera traps. Remote Sensing in Ecology and Conservation, 2016, 2, 84-94.	2.2	79
4	AnimalFinder: A semi-automated system for animal detection in time-lapse camera trap images. Ecological Informatics, 2016, 36, 145-151.	2.3	38
5	<scp>trapper</scp> : an open source webâ€based application to manage camera trapping projects. Methods in Ecology and Evolution, 2016, 7, 1209-1216.	2.2	44
6	Evaluating broad scale patterns among related species using resource experiments in tropical hummingbirds. Ecology, 2016, 97, 2085-2093.	1.5	7
7	Persistent bill and corolla matching despite shifting temporal resources in tropical hummingbirdâ€plant interactions. Ecology Letters, 2017, 20, 326-335.	3.0	78
8	Bird monitoring using the smartphone (iOS) application <i>Videography</i> for motion detection. Bird Study, 2017, 64, 62-69.	0.4	2
9	On comparing traits and abundance for predicting species interactions with imperfect detection. Food Webs, 2017, 11, 17-25.	0.5	21
10	Bring your own camera to the trap: An inexpensive, versatile, and portable triggering system tested on wild hummingbirds. Ecology and Evolution, 2017, 7, 4592-4598.	0.8	11
11	A new Automated Behavioural Response system to integrate playback experiments into camera trap studies. Methods in Ecology and Evolution, 2017, 8, 957-964.	2.2	29
12	Semi-automated camera trap image processing for the detection of ungulate fence crossing events. Environmental Monitoring and Assessment, 2017, 189, 527.	1.3	8
13	Plant and habitat use by Black-breasted Pufflegs (<i>Eriocnemis nigrivestis</i>), a critically endangered hummingbird. Journal of Field Ornithology, 2017, 88, 229-235.	0.3	3
14	Diel activity, frequency and visit duration of pollinators in focal plants: <i>inÂsitu</i> automatic camera monitoring and data processing. Methods in Ecology and Evolution, 2017, 8, 203-213.	2.2	49
15	Dynamic species classification of microorganisms across time, abiotic and biotic environmentsâ€"A sliding window approach. PLoS ONE, 2017, 12, e0176682.	1.1	21
16	Ecological Networks in the Tropics. , 2018, , .		63
17	Plant-Pollinator Networks in the Tropics: A Review. , 2018, , 73-91.		77
18	Experimental brood enlargement differentially influences the magnitude of the corticosterone stress response in closely related, coâ€occurring songbirds. Functional Ecology, 2018, 32, 2008-2018.	1.7	5

#	ARTICLE	IF	Citations
19	Conspecifics Take Over Black-Backed Woodpecker Nest Following Removal of Resident Pair. Northwestern Naturalist, 2018, 99, 66-72.	0.5	O
20	Comparing species interaction networks along environmental gradients. Biological Reviews, 2018, 93, 785-800.	4.7	203
21	A computer vision for animal ecology. Journal of Animal Ecology, 2018, 87, 533-545.	1.3	261
22	A striking, critically endangered, new species of hillstar (Trochilidae: <i>Oreotrochilus </i>) from the southwestern Andes of Ecuador. Auk, 2018, 135, 1146-1171.	0.7	19
23	A Deep learning method for accurate and fast identification of coral reef fishes in underwater images. Ecological Informatics, 2018, 48, 238-244.	2.3	147
24	Software to facilitate and streamline camera trap data management: A review. Ecology and Evolution, 2018, 8, 9947-9957.	0.8	38
25	Towards a predictive model of species interaction beta diversity. Ecology Letters, 2018, 21, 1299-1310.	3.0	30
26	Sceneâ€specific convolutional neural networks for videoâ€based biodiversity detection. Methods in Ecology and Evolution, 2018, 9, 1435-1441.	2.2	37
27	Using machine vision to estimate fish length from images using regional convolutional neural networks. Methods in Ecology and Evolution, 2019, 10, 2045-2056.	2.2	57
28	Efficacy of automated detection of motion in wildlife monitoring videos. Wildlife Society Bulletin, 2019, 43, 726-736.	1.6	6
29	Differences in Flowering Phenology Are Likely Not the Product of Competition for Pollination in <i>Clarkia</i> Communities. International Journal of Plant Sciences, 2019, 180, 974-986.	0.6	6
30	An automated program to find animals and crop photographs for individual recognition. Ecological Informatics, 2019, 50, 191-196.	2.3	18
31	EventFinder: a program for screening remotely captured images. Environmental Monitoring and Assessment, 2019, 191, 406.	1.3	3
32	A gradient of pollination specialization in three species of Bolivian <i>Centropogon</i> . American Journal of Botany, 2019, 106, 633-642.	0.8	14
33	The distributions of morphologically specialized hummingbirds coincide with floral trait matching across an Andean elevational gradient. Biotropica, 2019, 51, 205-218.	0.8	35
34	A test of camera surveys to study fungus-animal interactions. Mycoscience, 2019, 60, 287-292.	0.3	3
35	Maternal diet affects juvenile Carpetan rock lizard performance and personality. Ecology and Evolution, 2019, 9, 14476-14488.	0.8	11
36	Macroecology in the age of Big Data – Where to go from here?. Journal of Biogeography, 2020, 47, 1-12.	1.4	81

#	Article	IF	CITATIONS
37	ClassifyMe: A Field-Scouting Software for the Identification of Wildlife in Camera Trap Images. Animals, 2020, 10, 58.	1.0	36
38	PelagiCam: a novel underwater imaging system with computer vision for semi-automated monitoring of mobile marine fauna at offshore structures. Environmental Monitoring and Assessment, 2020, 192, 11.	1.3	32
39	AIDE: Accelerating imageâ€based ecological surveys with interactive machine learning. Methods in Ecology and Evolution, 2020, 11, 1716-1727.	2.2	21
40	Automated facial recognition for wildlife that lack unique markings: A deep learning approach for brown bears. Ecology and Evolution, 2020, 10, 12883-12892.	0.8	44
41	Technological advances in field studies of pollinator ecology and the future of e-ecology. Current Opinion in Insect Science, 2020, 38, 15-25.	2.2	37
43	Frameâ€byâ€frame annotation of video recordings using deep neural networks. Ecosphere, 2021, 12, e03384.	1.0	10
44	Inter-individual variation in provisioning rate, prey size and number, and links to total prey biomass delivered to nestlings in the Collared Flycatcher (Ficedula albicollis). Avian Research, 2021, 12, .	0.5	3
45	Computer Vision, Machine Learning, and the Promise of Phenomics in Ecology and Evolutionary Biology. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	55
46	Elevational and seasonal patterns of butterflies and hawkmoths in plant-pollinator networks in tropical rainforests of Mount Cameroon. Scientific Reports, 2021, 11, 9710.	1.6	19
47	Video Recording and Analysis of Avian Movements and Behavior: Insights from Courtship Case Studies. Integrative and Comparative Biology, 2021, 61, 1378-1393.	0.9	5
48	PICT: A lowâ€cost, modular, openâ€source camera trap system to study plant–insect interactions. Methods in Ecology and Evolution, 2021, 12, 1389-1396.	2.2	27
49	Nectar provision attracts hummingbirds and connects interaction networks across habitats. Ibis, 2022, 164, 88-101.	1.0	8
50	Bird pollination syndrome is the plant's adaptation to ornithophily, but nectarivorous birds are not so selective. Oikos, 2021, 130, 1411-1424.	1.2	9
51	Locomotion and Energetics of Divergent Foraging Strategies in Hummingbirds: A Review. Integrative and Comparative Biology, 2021, 61, 736-748.	0.9	13
52	Effects of habitat on prey delivery rate and prey species composition of breeding barn owls in winegrape vineyards. Agriculture, Ecosystems and Environment, 2021, 312, 107322.	2.5	7
53	Differences in Nectar Traits between Ornithophilous and Entomophilous Plants on Mount Cameroon. Plants, 2021, 10, 1161.	1.6	8
54	Sunbirds' tendency to hover: the roles of energetic rewards, inflorescence architecture and rain. Journal of Avian Biology, 2021, 52, .	0.6	4
55	Automated video monitoring of insect pollinators in the field. Emerging Topics in Life Sciences, 2020, 4, 87-97.	1.1	33

#	ARTICLE	IF	Citations
57	Environment-dependence of behavioural consistency in adult male European green lizards (Lacerta) Tj ETQq0 0 (O rgBT /Ov	erlogk 10 Tf 5
61	Classifying False Alarms in Camera Trap Images using Convolutional Neural Networks. , 2020, , .		O
63	The use of photos to investigate ecological change. Journal of Ecology, 2022, 110, 1220-1236.	1.9	8
64	Estimating the movements of terrestrial animal populations using broad-scale occurrence data. Movement Ecology, 2021, 9, 60.	1.3	8
66	Spatiotemporal pattern of specialization of sunbird-plant networks on Mt. Cameroon. Oecologia, 2022, 199, 885-896.	0.9	3
67	Utility of machine learning for segmenting camera trap timeâ€lapse recordings. Wildlife Society Bulletin, 0, , .	0.4	O
69	Ages of giant panda can be accurately predicted using facial images and machine learning. Ecological Informatics, 2022, 72, 101892.	2.3	3
70	Seeing wildlife behavior in a new way: Novel utilization of computer vision for focal reptile videography behavior study. Wildlife Society Bulletin, 2023, 47, .	0.4	O
71	Diel niche partitioning of a plant-hummingbird network in the Atlantic forest of Brazil. Oecologia, 2023, 201, 1025-1037.	0.9	1
72	Explainable automated anuran sound classification using improved one-dimensional local binary pattern and Tunable Q Wavelet Transform techniques. Expert Systems With Applications, 2023, 225, 120089.	4.4	4
75	Ecological Networks. , 2024, , 151-165.		0