Interaction and signalling between a cosmopolitan physical

Nature 522, 98-101

DOI: 10.1038/nature14488

Citation Report

#	Article	IF	CITATIONS
1	Strongly Deterministic Population Dynamics in Closed Microbial Communities. Physical Review X, 2015, 5, .	2.8	18
2	Why we need more algal metagenomes 1. Journal of Phycology, 2015, 51, 1029-1036.	1.0	13
3	Genome reconstructions indicate the partitioning of ecological functions inside a phytoplankton bloom in the Amundsen Sea, Antarctica. Frontiers in Microbiology, 2015, 6, 1090.	1.5	57
4	Identification of Genetic Modules Mediating the Jekyll and Hyde Interaction of Dinoroseobacter shibae with the Dinoflagellate Prorocentrum minimum. Frontiers in Microbiology, 2015, 6, 1262.	1.5	49
5	Morphological Heterogeneity and Attachment of Phaeobacter inhibens. PLoS ONE, 2015, 10, e0141300.	1.1	24
6	Exclusive networks in the sea. Nature, 2015, 522, 36-37.	13.7	9
7	Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5972-9.	3.3	118
8	The global ocean microbiome. Science, 2015, 350, aac8455.	6.0	167
9	An interkingdom partnership. Nature Reviews Microbiology, 2015, 13, 400-400.	13.6	1
10	Deep Thoughts. Cell, 2015, 162, 5-7.	13.5	4
10	Deep Thoughts. Cell, 2015, 162, 5-7. An efficient screening method for the isolation of heterotrophic bacteria influencing growth of diatoms under photoautotrophic conditions. Journal of Microbiological Methods, 2015, 119, 154-162.	13.5	25
	An efficient screening method for the isolation of heterotrophic bacteria influencing growth of		
11	An efficient screening method for the isolation of heterotrophic bacteria influencing growth of diatoms under photoautotrophic conditions. Journal of Microbiological Methods, 2015, 119, 154-162. Spatiotemporal dynamics and determinants of planktonic bacterial and microeukaryotic communities	0.7	25
11	An efficient screening method for the isolation of heterotrophic bacteria influencing growth of diatoms under photoautotrophic conditions. Journal of Microbiological Methods, 2015, 119, 154-162. Spatiotemporal dynamics and determinants of planktonic bacterial and microeukaryotic communities in a Chinese subtropical river. Applied Microbiology and Biotechnology, 2015, 99, 9255-9266. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Current Opinion	0.7	25 76
11 12 13	An efficient screening method for the isolation of heterotrophic bacteria influencing growth of diatoms under photoautotrophic conditions. Journal of Microbiological Methods, 2015, 119, 154-162. Spatiotemporal dynamics and determinants of planktonic bacterial and microeukaryotic communities in a Chinese subtropical river. Applied Microbiology and Biotechnology, 2015, 99, 9255-9266. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Current Opinion in Plant Biology, 2015, 26, 147-153. Draft genome sequence of Citrobacter freundii strain ST2, a γ-proteobacterium that produces	0.7 1.7 3.5	25 76 179
11 12 13	An efficient screening method for the isolation of heterotrophic bacteria influencing growth of diatoms under photoautotrophic conditions. Journal of Microbiological Methods, 2015, 119, 154-162. Spatiotemporal dynamics and determinants of planktonic bacterial and microeukaryotic communities in a Chinese subtropical river. Applied Microbiology and Biotechnology, 2015, 99, 9255-9266. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Current Opinion in Plant Biology, 2015, 26, 147-153. Draft genome sequence of Citrobacter freundii strain ST2, a γ-proteobacterium that produces N-acylhomoserine lactones. Genomics Data, 2015, 6, 234-236. Draft Genome Sequence of <i>Providencia sneebia</i>	0.7 1.7 3.5	25 76 179
11 12 13 14	An efficient screening method for the isolation of heterotrophic bacteria influencing growth of diatoms under photoautotrophic conditions. Journal of Microbiological Methods, 2015, 119, 154-162. Spatiotemporal dynamics and determinants of planktonic bacterial and microeukaryotic communities in a Chinese subtropical river. Applied Microbiology and Biotechnology, 2015, 99, 9255-9266. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Current Opinion in Plant Biology, 2015, 26, 147-153. Draft genome sequence of Citrobacter freundii strain ST2, a ĵ³-proteobacterium that produces N-acylhomoserine lactones. Genomics Data, 2015, 6, 234-236. Draft Genome Sequence of <i>Providencia sneebia</i> Strain ST1, a Quorum Sensing Bacterium Associated with Marine Microalgae. Journal of Genomics, 2016, 4, 10-12. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes:	0.7 1.7 3.5 1.3	25 76 179 6

#	ARTICLE	IF	CITATIONS
19	Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds. Marine Drugs, 2016, 14, 100.	2.2	293
20	Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. ELife, 2016, 5, e11888.	2.8	414
21	Effects of Nitrogen Limitation on Dunaliella sp. $\hat{a}\in$ Alteromonas sp. Interactions: From Mutualistic to Competitive Relationships. Frontiers in Marine Science, 2016, 3, .	1.2	19
22	Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp Frontiers in Microbiology, 2016, 7, 197.	1.5	96
23	Identification of Associations between Bacterioplankton and Photosynthetic Picoeukaryotes in Coastal Waters. Frontiers in Microbiology, 2016, 7, 339.	1.5	26
24	Spatio-Temporal Interdependence of Bacteria and Phytoplankton during a Baltic Sea Spring Bloom. Frontiers in Microbiology, 2016, 7, 517.	1.5	90
25	Co-occurrence Analysis of Microbial Taxa in the Atlantic Ocean Reveals High Connectivity in the Free-Living Bacterioplankton. Frontiers in Microbiology, 2016, 7, 649.	1.5	152
26	Indole-3-Acetic Acid Is Produced by Emiliania huxleyi Coccolith-Bearing Cells and Triggers a Physiological Response in Bald Cells. Frontiers in Microbiology, 2016, 7, 828.	1.5	63
27	Genetic Manipulation of Competition for Nitrate between Heterotrophic Bacteria and Diatoms. Frontiers in Microbiology, 2016, 7, 880.	1.5	55
28	Microbial Dysbiosis: Rethinking Disease in Marine Ecosystems. Frontiers in Microbiology, 2016, 7, 991.	1.5	212
29	Changes in the Structure of the Microbial Community Associated with Nannochloropsis salina following Treatments with Antibiotics and Bioactive Compounds. Frontiers in Microbiology, 2016, 7, 1155.	1.5	37
30	Phytoplankton-Associated Bacterial Community Composition and Succession during Toxic Diatom Bloom and Non-Bloom Events. Frontiers in Microbiology, 2016, 7, 1433.	1.5	60
31	Seasonal Succession of Free-Living Bacterial Communities in Coastal Waters of the Western Antarctic Peninsula. Frontiers in Microbiology, 2016, 7, 1731.	1.5	53
32	Mussel biofiltration effects on attached bacteria and unicellular eukaryotes in fish-rearing seawater. PeerJ, 2016, 4, e1829.	0.9	6
33	How mutualisms arise in phytoplankton communities: building ecoâ€evolutionary principles for aquatic microbes. Ecology Letters, 2016, 19, 810-822.	3.0	75
34	Complete genome sequence of bacteriophage P2559Y, a marine phage that infects Croceibacter atlanticus HTCC2559. Marine Genomics, 2016, 29, 35-38.	0.4	20
35	Unicellular cyanobacteria (i) Synechocystis (i) accommodate heterotrophic bacteria with varied enzymatic and metal resistance properties. Journal of Basic Microbiology, 2016, 56, 845-856.	1.8	17
36	Selective growth promotion of bloom-forming raphidophyte Heterosigma akashiwo by a marine bacterial strain. Harmful Algae, 2016, 60, 150-156.	2.2	8

3

#	Article	IF	Citations
37	Predicting microbial interactions through computational approaches. Methods, 2016, 102, 12-19.	1.9	49
38	Evidence for quorum sensing and differential metabolite production by a marine bacterium in response to DMSP. ISME Journal, 2016, 10, 2304-2316.	4.4	112
39	Deciphering ocean carbon in a changing world. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3143-3151.	3.3	253
40	Trait changes induced by species interactions in two phenotypically distinct strains of a marine dinoflagellate. ISME Journal, 2016, 10, 2658-2668.	4.4	15
41	Quorum Sensing Is a Language of Chemical Signals and Plays an Ecological Role in Algal-Bacterial Interactions. Critical Reviews in Plant Sciences, 2016, 35, 81-105.	2.7	141
42	Transcriptional response of <i>Prochlorococcus</i> to co-culture with a marine <i>Alteromonas</i> : differences between strains and the involvement of putative infochemicals. ISME Journal, 2016, 10, 2892-2906.	4.4	71
43	Tryptophan, thiamine and indole-3-acetic acid exchange between <i>Chlorella sorokiniana</i> and the plant growth-promoting bacterium <i>Azospirillum brasilense</i> . FEMS Microbiology Ecology, 2016, 92, fiw077.	1.3	60
44	Dynamics of <i>Heterocapsa < /i> sp. and the associated attached and free-living bacteria under the influence of dispersed and undispersed crude oil. Letters in Applied Microbiology, 2016, 63, 419-425.</i>	1.0	23
45	Response of a coastal tropical pelagic microbial community to changing salinity and temperature. Aquatic Microbial Ecology, 2016, 77, 37-50.	0.9	13
46	Crop management as a driving force of plant growth promoting rhizobacteria physiology. SpringerPlus, 2016, 5, 1574.	1.2	22
47	Interkingdom Cross-Feeding of Ammonium from Marine Methylamine-Degrading Bacteria to the Diatom Phaeodactylum tricornutum. Applied and Environmental Microbiology, 2016, 82, 7113-7122.	1.4	39
48	Bacterial influence on alkenones in live microalgae. Journal of Phycology, 2016, 52, 125-130.	1.0	15
49	Insights into the Coral Microbiome: Underpinning the Health and Resilience of Reef Ecosystems. Annual Review of Microbiology, 2016, 70, 317-340.	2.9	600
50	Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective. , 2016, , .		5
51	Draft Genome Sequences of Seven Bacterial Strains Isolated from a Polymicrobial Culture of Coccolith-Bearing (C-Type) Emiliania huxleyi M217. Genome Announcements, 2016, 4, .	0.8	11
52	Draft Genome Sequences of Four Bacterial Strains Isolated from a Polymicrobial Culture of Naked (N-Type) Emiliania huxleyi CCMP1516. Genome Announcements, 2016, 4, .	0.8	5
53	Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nature Microbiology, 2016, 1, 16005.	5.9	384
54	Biogeography and environmental genomics of the Roseobacter-affiliated pelagic CHAB-I-5 lineage. Nature Microbiology, $2016, 1, 16063$.	5.9	36

#	Article	IF	CITATIONS
55	Photosymbiosis in Marine Pelagic Environments. , 2016, , 305-332.		13
56	Phototrophic Microorganisms: The Basis of the Marine Food Web. , 2016, , 57-97.		4
57	Advancing microbial sciences by individual-based modelling. Nature Reviews Microbiology, 2016, 14, 461-471.	13.6	193
58	Analysis of light quality and assemblage composition on diatom motility and accumulation rate. Diatom Research, 2016, 31, 173-184.	0.5	21
59	Spatial variation of bacterial community composition at the expiry of spring phytoplankton bloom in Sendai Bay, Japan. Gene, 2016, 576, 610-617.	1.0	13
60	Genome sequence of Enterobacter sp. ST3, a quorum sensing bacterium associated with marine dinoflagellate. Genomics Data, 2016, 7, 195-199.	1.3	4
61	Algae–bacteria interactions: Evolution, ecology and emerging applications. Biotechnology Advances, 2016, 34, 14-29.	6.0	937
62	Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiology and Molecular Biology Reviews, 2016, 80, 91-138.	2.9	864
63	Phylogenomics of <i>Rhodobacteraceae</i> reveals evolutionary adaptation to marine and non-marine habitats. ISME Journal, 2017, 11, 1483-1499.	4.4	283
64	Microbe social skill: the cell-to-cell communication between microorganisms. Science Bulletin, 2017, 62, 516-524.	4.3	26
65	Indole signalling and (micro)algal auxins decrease the virulence of <i><scp>V</scp>ibrio campbellii</i> , a major pathogen of aquatic organisms. Environmental Microbiology, 2017, 19, 1987-2004.	1.8	39
67	Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME Journal, 2017, 11, 1614-1629.	4.4	158
68	Ecological interactions and coexistence are predicted by gene expression similarity in freshwater green algae. Journal of Ecology, 2017, 105, 580-591.	1.9	25
69	A systems-wide understanding of photosynthetic acclimation in algae and higher plants. Journal of Experimental Botany, 2017, 68, 2667-2681.	2.4	26
70	A multiomics approach to study the microbiome response to phytoplankton blooms. Applied Microbiology and Biotechnology, 2017, 101, 4863-4870.	1.7	8
71	Constraint-based metabolic modelling of marine microbes and communities. Marine Genomics, 2017, 34, 1-10.	0.4	6
72	Enhanced crude oil biodegradative potential of natural phytoplanktonâ€essociated hydrocarbonoclastic bacteria. Environmental Microbiology, 2017, 19, 2843-2861.	1.8	47
73	A Diverse Community To Study Communities: Integration of Experiments and Mathematical Models To Study Microbial Consortia. Journal of Bacteriology, 2017, 199, .	1.0	33

#	Article	IF	CITATIONS
74	Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nature Microbiology, 2017, 2, 17065.	5.9	727
75	Seaweed reproductive biology: environmental and genetic controls. Botanica Marina, 2017, 60, .	0.6	46
76	Phytohormones in red seaweeds: a technical review of methods for analysis and a consideration of genomic data. Botanica Marina, 2017, 60, .	0.6	24
77	Distribution of picoplankton in the northeastern South China Sea with special reference to the effects of the Kuroshio intrusion and the associated mesoscale eddies. Science of the Total Environment, 2017, 589, 1-10.	3.9	48
78	Cross-study analysis of factors affecting algae cultivation in recycled medium for biofuel production. Algal Research, 2017, 24, 154-166.	2.4	49
79	Toxicity of diatom polyunsaturated aldehydes to marine bacterial isolates reveals their mode of action. Chemosphere, 2017, 177, 258-265.	4.2	20
80	Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment. ISME Journal, 2017, 11, 641-650.	4.4	60
81	Indole: An evolutionarily conserved influencer of behavior across kingdoms. BioEssays, 2017, 39, 1600203.	1.2	56
82	Two distinct pools of B $<$ sub $>$ 12 $<$ /sub $>$ analogs reveal community interdependencies in the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 364-369.	3.3	174
83	Molecular insights into a dinoflagellate bloom. ISME Journal, 2017, 11, 439-452.	4.4	69
84	Gaia and her microbiome. FEMS Microbiology Ecology, 2017, 93, fiw247.	1.3	29
85	Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A. Nature Microbiology, 2017, 2, 16214.	5.9	83
86	Effects of environmentally-relevant antibiotic mixtures on marine microalgal growth. Science of the Total Environment, 2017, 580, 43-49.	3.9	39
87	Iron uptake and storage in the HAB dinoflagellate Lingulodinium polyedrum. BioMetals, 2017, 30, 945-953.	1.8	4
88	Fungal community dynamics during a marine dinoflagellate (Noctiluca scintillans) bloom. Marine Environmental Research, 2017, 131, 183-194.	1.1	46
89	Bioactive Small Molecules Mediate Microalgal-Bacterial Interactions. , 2017, , 279-300.		3
90	Marine microbiology: Roommates in space and time. Nature Microbiology, 2017, 2, 17122.	5.9	1
91	Strategies and ecological roles of algicidal bacteria. FEMS Microbiology Reviews, 2017, 41, 880-899.	3.9	153

#	Article	IF	CITATIONS
92	Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. ISME Journal, 2017, 11, 2754-2766.	4.4	124
93	Biotic interactions as drivers of algal origin and evolution. New Phytologist, 2017, 216, 670-681.	3.5	25
94	Periphyton effects on bacterial assemblages and harmful cyanobacterial blooms in a eutrophic freshwater lake: a mesocosm study. Scientific Reports, 2017, 7, 7827.	1.6	20
95	Uncultivated Lineages and Host–Microbe Interaction in Saline Environment. , 2017, , 13-28.		1
96	Eukaryotic Sexual Reproduction Evoked "with a Little Help from My Friends― Cell, 2017, 170, 1059-1061.	13.5	2
97	Enhanced Extracellular Polysaccharide Production and Self-Sustainable Electricity Generation for PAMFCs by <i>Scenedesmus</i> sp. SB1. ACS Omega, 2017, 2, 3754-3765.	1.6	46
98	Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME Journal, 2017, 11, 2677-2690.	4.4	96
99	Repression of Salmonella Host Cell Invasion by Aromatic Small Molecules from the Human Fecal Metabolome. Applied and Environmental Microbiology, 2017, 83, .	1.4	31
100	Crustacean zooplankton release copious amounts of dissolved organic matter as taurine in the ocean. Limnology and Oceanography, 2017, 62, 2745-2758.	1.6	44
101	How microbes survive in the open ocean. Science, 2017, 357, 646-647.	6.0	33
102	Photoinduced transformations of indole and 3-formylindole monomers isolated in low-temperature matrices. Journal of Chemical Physics, 2017, 147, 194304.	1.2	11
103	Towards an understanding of spiral patterning in the Sargassum muticum shoot apex. Scientific Reports, 2017, 7, 13887.	1.6	12
104	Navigating in a sea of genes. Science, 2017, 358, 1129-1130.	6.0	0
105	Recognition cascade and metabolite transfer in a marine bacteriaâ€phytoplankton model system. Environmental Microbiology, 2017, 19, 3500-3513.	1.8	111
106	Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions. Nature Microbiology, 2017, 2, 17100.	5.9	181
107	Effect of bacteria on growth and biochemical composition of two benthic diatoms Halamphora coffeaeformis and Entomoneis paludosa. Journal of Experimental Marine Biology and Ecology, 2017, 495, 65-74.	0.7	22
108	Profile of Citrobacter freundii ST2, a Multi-acyl-homoserine Lactone Producer Associated with Marine Dinoflagellates. Current Microbiology, 2017, 74, 68-76.	1.0	6
109	The bacterial community associated with Tetraselmis suecica outdoor mass cultures. Journal of Applied Phycology, 2017, 29, 67-78.	1.5	27

#	Article	IF	CITATIONS
110	Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nature Reviews Microbiology, 2017, 15, 6-20.	13.6	176
111	Ubiquitous marine bacterium inhibits diatom cell division. ISME Journal, 2017, 11, 31-42.	4.4	98
112	Direct Heme Uptake by Phytoplankton-Associated <i>Roseobacter</i> Bacteria. MSystems, 2017, 2, .	1.7	29
113	Dynamics of the Bacterial Community Associated with Phaeodactylum tricornutum Cultures. Processes, 2017, 5, 77.	1.3	25
114	Time Course Exo-Metabolomic Profiling in the Green Marine Macroalga Ulva (Chlorophyta) for Identification of Growth Phase-Dependent Biomarkers. Marine Drugs, 2017, 15, 14.	2.2	42
115	A New Glider-Compatible Optical Sensor for Dissolved Organic Matter Measurements: Test Case from the NW Mediterranean Sea. Frontiers in Marine Science, 2017, 4, .	1.2	16
116	High-Resolution Liquid Chromatography Tandem Mass Spectrometry Enables Large Scale Molecular Characterization of Dissolved Organic Matter. Frontiers in Marine Science, 2017, 4, .	1.2	94
117	Bacterial Associates Modify Growth Dynamics of the Dinoflagellate Gymnodinium catenatum. Frontiers in Microbiology, 2017, 8, 670.	1.5	49
118	Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems. Frontiers in Microbiology, 2017, 8, 922.	1.5	457
119	Large Diversity and Original Structures of Acyl-Homoserine Lactones in Strain MOLA 401, a Marine Rhodobacteraceae Bacterium. Frontiers in Microbiology, 2017, 8, 1152.	1.5	32
120	The Exometabolome of Two Model Strains of the Roseobacter Group: A Marketplace of Microbial Metabolites. Frontiers in Microbiology, 2017, 8, 1985.	1.5	96
121	DimethylsulfoniopropionateÂ(DMSP) and dimethyl sulfideÂ(DMS) cycling across contrasting biological hotspots of the New Zealand subtropical front. Ocean Science, 2017, 13, 961-982.	1.3	17
122	Microbial dynamics during harmful dinoflagellate <i>Ostreopsis</i> cf. <i>ovata</i> growth: Bacterial succession and viral abundance pattern. MicrobiologyOpen, 2018, 7, e00584.	1.2	27
123	First insight on interactions between bacteria and the marine diatom Haslea ostrearia: Algal growth and metabolomic fingerprinting. Algal Research, 2018, 31, 395-405.	2.4	22
124	DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. Nature Microbiology, 2018, 3, 430-439.	5.9	116
125	Chemoattraction to dimethyl sulfide links the sulfur, iron, and carbon cycles in high-latitude oceans. Biogeochemistry, 2018, 138, 1-21.	1.7	15
126	The influence of natural dissolved organic matter on herbicide toxicity to marine microalgae is species-dependent. Aquatic Toxicology, 2018, 198, 103-117.	1.9	18
127	Light availability impacts structure and function of phototrophic stream biofilms across domains and trophic levels. Molecular Ecology, 2018, 27, 2913-2925.	2.0	35

#	Article	IF	CITATIONS
128	Metagenomic binning reveals versatile nutrient cycling and distinct adaptive features in alphaproteobacterial symbionts of marine sponges. FEMS Microbiology Ecology, 2018, 94, .	1.3	61
129	Pilot-scale production of antibacterial substances by the marine diatom Phaeodactylum tricornutum Bohlin. Algal Research, 2018, 32, 113-120.	2.4	17
130	Phylogenetic distribution of roseobacticides in the <i>Roseobacter</i> group and their effect on microalgae. Environmental Microbiology Reports, 2018, 10, 383-393.	1.0	22
131	Bioflocculation in natural and engineered systems: current perspectives. Critical Reviews in Biotechnology, 2018, 38, 1176-1194.	5.1	15
132	Elucidation of the bacterial communities associated with the harmful microalgae Alexandrium tamarense and Cochlodinium polykrikoides using nanopore sequencing. Scientific Reports, 2018, 8, 5323.	1.6	43
133	The multi-faceted potential of plant-derived metabolites as antimicrobial agents against multidrug-resistant pathogens. Microbial Pathogenesis, 2018, 116, 209-214.	1.3	68
134	Bioavailability of Mineral-Bound Iron to a Snow Algal-Bacterial Coculture and Implications for Albedo-Altering Snow Algal Blooms. Applied and Environmental Microbiology, 2018, 84, .	1.4	13
135	Pyrazines from bacteria and ants: convergent chemistry within an ecological niche. Scientific Reports, 2018, 8, 2595.	1.6	51
136	Axenic cultures for microalgal biotechnology: Establishment, assessment, maintenance, and applications. Biotechnology Advances, 2018, 36, 380-396.	6.0	64
137	Macroalgal–bacterial interactions: Role of dimethylsulfoniopropionate in microbial gardening by <i>Ulva</i> (Chlorophyta). Molecular Ecology, 2018, 27, 1808-1819.	2.0	101
138	Global Ecology and Oceanography of Harmful Algal Blooms. Ecological Studies, 2018, , .	0.4	31
139	Introduction: The hostâ€associated microbiome: Pattern, process and function. Molecular Ecology, 2018, 27, 1749-1765.	2.0	46
140	The attachment potential and N-acyl-homoserine lactone-based quorum sensing in aerobic granular sludge and algal-bacterial granular sludge. Applied Microbiology and Biotechnology, 2018, 102, 5343-5353.	1.7	41
141	The Role of Life Cycle Characteristics in Harmful Algal Bloom Dynamics. Ecological Studies, 2018, , 133-161.	0.4	11
142	The plant hormone abscisic acid regulates the growth and metabolism of endophytic fungus Aspergillus nidulans. Scientific Reports, 2018, 8, 6504.	1.6	34
143	Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nature Communications, 2018, 9, 1719.	5.8	98
145	Transcriptional Activities of the Microbial Consortium Living with the Marine Nitrogen-Fixing Cyanobacterium Trichodesmium Reveal Potential Roles in Community-Level Nitrogen Cycling. Applied and Environmental Microbiology, 2018, 84, .	1.4	18
146	Production of indoleacetic acid by strains of the epiphytic bacteria Neptunomonas spp. isolated from the red alga Pyropia yezoensis and the seagrass Zostera marina. Archives of Microbiology, 2018, 200, 255-265.	1.0	30

#	Article	IF	CITATIONS
147	Quantitative proteomics of a B ₁₂ â€dependent alga grown in coculture with bacteria reveals metabolic tradeoffs required for mutualism. New Phytologist, 2018, 217, 599-612.	3.5	29
148	Cryopreservation studies of an artificial co-culture between the cobalamin-requiring green alga Lobomonas rostrata and the bacterium Mesorhizobium loti. Journal of Applied Phycology, 2018, 30, 995-1003.	1.5	6
149	<i>Tetraselmis suecica</i> F&Mâ€M33 growth is influenced by its associated bacteria. Microbial Biotechnology, 2018, 11, 211-223.	2.0	17
150	Defining the core microbiome of the symbiotic dinoflagellate, <i>Symbiodinium</i> . Environmental Microbiology Reports, 2018, 10, 7-11.	1.0	94
151	Evolution of nuclear auxin signaling: lessons from genetic studies with basal land plants. Journal of Experimental Botany, 2018, 69, 291-301.	2.4	53
152	Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Shortand Long-Term Associations. Frontiers in Microbiology, 2018, 9, 2879.	1.5	33
154	Biomass Production and Nutrient Removal through Cultivation of <i>Euglena gracilis</i> in Domestic Wastewater. Japanese Journal of Water Treatment Biology, 2018, 54, 105-113.	0.2	4
155	Impact of Dinophysis acuminata Feeding Mesodinium rubrum on Nutrient Dynamics and Bacterial Composition in a Microcosm. Toxins, 2018, 10, 443.	1.5	24
156	An auxin controls bacterial antibiotics production. Nucleic Acids Research, 2018, 46, 11229-11238.	6.5	27
157	The Microbiome of the Cosmopolitan Diatom Leptocylindrus Reveals Significant Spatial and Temporal Variability. Frontiers in Microbiology, 2018, 9, 2758.	1.5	35
158	Variation of bacterial community associated with Phaeodactylum tricornutum in response to different inorganic nitrogen concentrations. Acta Oceanologica Sinica, 2018, 37, 118-128.	0.4	4
159	Modelling dimethylsulfide diffusion in the algal external boundary layer: implications for mutualistic and signalling roles. Environmental Microbiology, 2018, 20, 4157-4169.	1.8	8
160	Pseudo-nitzschia, Nitzschia, and domoic acid: New research since 2011. Harmful Algae, 2018, 79, 3-43.	2.2	233
161	Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP. Science Advances, 2018, 4, eaau5716.	4.7	78
162	Prevalent reliance of bacterioplankton on exogenous vitamin B1 and precursor availability. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10447-E10456.	3.3	64
163	Uncertainty quantification of the effects of biotic interactions on community dynamics from nonlinear time-series data. Journal of the Royal Society Interface, 2018, 15, 20180695.	1.5	15
164	Spatial Variability and Co-acclimation of Phytoplankton and Bacterioplankton Communities in the Pearl River Estuary, China. Frontiers in Microbiology, 2018, 9, 2503.	1.5	28
165	Insights into the Evolution of Multicellularity from the Sea Lettuce Genome. Current Biology, 2018, 28, 2921-2933.e5.	1.8	134

#	Article	IF	CITATIONS
166	Genomic Analysis of Picochlorum Species Reveals How Microalgae May Adapt to Variable Environments. Molecular Biology and Evolution, 2018, 35, 2702-2711.	3.5	30
167	Profiles of quorum sensing (QS)-related sequences in phycospheric microorganisms during a marine dinoflagellate bloom, as determined by a metagenomic approach. Microbiological Research, 2018, 217, 1-13.	2.5	23
168	Growth Dynamics of Algal-bacterial Cocultures: A Control Engineering Perspective. , 2018, , .		0
169	Importance of free-living and particle-associated bacteria for the growth of the harmful dinoflagellate Prorocentrum minimum: evidence in culture stages. Marine and Freshwater Research, 2018, 69, 290.	0.7	19
170	Heterotroph Interactions Alter <i>Prochlorococcus</i> Transcriptome Dynamics during Extended Periods of Darkness. MSystems, 2018, 3, .	1.7	38
171	Interactions of microalgae and other microorganisms for enhanced production of high-value compounds. Frontiers in Bioscience - Landmark, 2018, 23, 1487-1504.	3.0	34
172	Origin and evolution of the nuclear auxin response system. ELife, 2018, 7, .	2.8	195
173	Exploring the microbiome of the "star―freshwater diatom <i>Asterionella formosa</i> in a laboratory context. Environmental Microbiology, 2018, 20, 3601-3615.	1.8	6
174	Towards a Dynamic Interaction Network of Life to unify and expand the evolutionary theory. BMC Biology, 2018, 16, 56.	1.7	27
175	Contribution of heterotrophic bacterioplankton to cyanobacterial bloom formation in a tributary backwater area of the Three Gorges Reservoir, China. Environmental Science and Pollution Research, 2018, 25, 27402-27412.	2.7	6
176	Iron and Harmful Algae Blooms: Potential Algal-Bacterial Mutualism Between Lingulodinium polyedrum and Marinobacter algicola. Frontiers in Marine Science, 2018, 5, .	1.2	18
177	The Bacterial Symbiont Phaeobacter inhibens Shapes the Life History of Its Algal Host Emiliania huxleyi. Frontiers in Marine Science, 2018, 5, .	1.2	17
178	Identification of Bacterial Genes Expressed During Diatom-Bacteria Interactions Using an in Vivo Expression Technology Approach. Frontiers in Marine Science, 2018, 5, .	1.2	11
179	Metatranscriptomics and Amplicon Sequencing Reveal Mutualisms in Seagrass Microbiomes. Frontiers in Microbiology, 2018, 9, 388.	1.5	113
180	Bacterial Communities of Diatoms Display Strong Conservation Across Strains and Time. Frontiers in Microbiology, 2018, 9, 659.	1.5	116
181	Editorial: Metabolic Interactions Between Bacteria and Phytoplankton. Frontiers in Microbiology, 2018, 9, 727.	1.5	46
182	Comparative Genomics and Mutational Analysis Reveals a Novel XoxF-Utilizing Methylotroph in the Roseobacter Group Isolated From the Marine Environment. Frontiers in Microbiology, 2018, 9, 766.	1.5	13
183	Microbial Community Structure and Associations During a Marine Dinoflagellate Bloom. Frontiers in Microbiology, 2018, 9, 1201.	1.5	103

#	Article	IF	CITATIONS
184	The effect of the algal microbiome on industrial production of microalgae. Microbial Biotechnology, 2018, 11, 806-818.	2.0	110
185	Microbial Community Dynamics and Assembly Follow Trajectories of an Early-Spring Diatom Bloom in a Semienclosed Bay. Applied and Environmental Microbiology, 2018, 84, .	1.4	41
186	Consortia of cyanobacteria/microalgae and bacteria in desert soils: an underexplored microbiota. Applied Microbiology and Biotechnology, 2018, 102, 7351-7363.	1.7	60
187	A common garden experiment with <i>Porphyra umbilicalis</i> (Rhodophyta) evaluates methods to study spatial differences in the macroalgal microbiome. Journal of Phycology, 2018, 54, 653-664.	1.0	25
188	Growth promotion of three microalgae, Chlamydomonas reinhardtii, Chlorella vulgaris and Euglena gracilis, by in situ indigenous bacteria in wastewater effluent. Biotechnology for Biofuels, 2018, 11, 176.	6.2	60
189	Attachment between heterotrophic bacteria and microalgae influences symbiotic microscale interactions. Environmental Microbiology, 2018, 20, 4385-4400.	1.8	55
190	Miniâ€review: Phytoplanktonâ€derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environmental Microbiology, 2018, 20, 2671-2685.	1.8	197
191	Pelagibaca bermudensis promotes biofuel competence of Tetraselmis striata in a broad range of abiotic stressors: dynamics of quorum-sensing precursors and strategic improvement in lipid productivity. Biotechnology for Biofuels, 2018, 11, 102.	6.2	45
192	Altered Microbiome Leads to Significant Phenotypic and Transcriptomic Differences in a Lipid Accumulating Chlorophyte. Environmental Science & Environ	4.6	18
193	Grazer-induced transcriptomic and metabolomic response of the chain-forming diatom <i>Skeletonema marinoi</i>). ISME Journal, 2018, 12, 1594-1604.	4.4	50
194	Biofilm interactionsâ€"bacteria modulate sexual reproduction success of the diatom Seminavis robusta. FEMS Microbiology Ecology, 2018, 94, .	1.3	41
195	Role of Chemical Mediators in Aquatic Interactions across the Prokaryote–Eukaryote Boundary. Journal of Chemical Ecology, 2018, 44, 1008-1021.	0.9	61
196	Visualisation of the obligate hydrocarbonoclastic bacteria Polycyclovorans algicola and Algiphilus aromaticivorans in co-cultures with micro-algae by CARD-FISH. Journal of Microbiological Methods, 2018, 152, 73-79.	0.7	14
197	Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. ISME Journal, 2018, 12, 2417-2432.	4.4	66
198	Quorum sensing molecules in activated sludge could trigger microalgae lipid synthesis. Bioresource Technology, 2018, 263, 576-582.	4.8	49
199	Enhanced microalgae growth through stimulated secretion of indole acetic acid by symbiotic bacteria. Algal Research, 2018, 33, 345-351.	2.4	65
200	Interactions Between Microalgae and Microorganisms for Wastewater Remediation and Biofuel Production. Waste and Biomass Valorization, 2019, 10, 3907-3919.	1.8	19
201	Co-cultivation of siderophore-producing bacteria Idiomarina loihiensis RS14 with Chlorella variabilis ATCC 12198, evaluation of micro-algal growth, lipid, and protein content under iron starvation. Journal of Applied Phycology, 2019, 31, 29-39.	1.5	36

#	Article	IF	CITATIONS
202	Structural and functional microbial diversity along a eutrophication gradient of interconnected lakes undergoing anthropopressure. Scientific Reports, 2019, 9, 11144.	1.6	72
203	Improvement of Euglena gracilis Paramylon Production through a Cocultivation Strategy with the Indole-3-Acetic Acid-Producing Bacterium Vibrio natriegens. Applied and Environmental Microbiology, 2019, 85, .	1.4	24
204	Pyrene metabolites by bacterium enhancing cell division of green alga Selenastrum capricornutum. Science of the Total Environment, 2019, 689, 287-294.	3.9	19
205	Response of phytoplankton to banana cultivation: A case study of Lancang-Mekong River, southwestern China. Scientific Reports, 2019, 9, 9145.	1.6	4
206	Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nature Microbiology, 2019, 4, 1706-1715.	5.9	120
207	Marine Metagenomics., 2019,,.		1
208	The Phytoplankton Taxon-Dependent Oil Response and Its Microbiome: Correlation but Not Causation. Frontiers in Microbiology, 2019, 10, 385.	1.5	12
209	Synechococcus bloom in the Pearl River Estuary and adjacent coastal area–With special focus on flooding during wet seasons. Science of the Total Environment, 2019, 692, 769-783.	3.9	29
210	Exometabolomic study of extracellular metabolites in tobacco plant induced by ethyl acetate extracts of Streptomyces diastatochromogenes KX852460. Journal of Radiation Research and Applied Sciences, 2019, 12, 157-165.	0.7	3
211	Shotgun Metagenome Analyses: Seasonality Monitoring in Sendai Bay and Search for Red Tide Marker Sequences., 2019,, 149-159.		0
212	Analysis of microbiota in cultures of the green microalga <i>Tetraselmis suecica</i> European Journal of Phycology, 2019, 54, 497-508.	0.9	15
213	Effect of wastewater from a pikeperch (Sander lucioperca L.) recirculated aquaculture system on hydroponic tomato production and quality. Agricultural Water Management, 2019, 226, 105814.	2.4	26
214	Proteomics Analysis Identifies IRSp53 and Fascin as Critical for PRV Egress and Direct Cell–Cell Transmission. Proteomics, 2019, 19, 1900009.	1.3	4
215	The microbiome of Codium tomentosum: original state and in the presence of copper. World Journal of Microbiology and Biotechnology, 2019, 35, 167.	1.7	5
216	Nitrogen supplemented by symbiotic Rhizobium stimulates fatty-acid oxidation in Chlorella variabilis. Algal Research, 2019, 44, 101692.	2.4	12
217	Design Principles of Branching Morphogenesis in Filamentous Organisms. Current Biology, 2019, 29, R1149-R1162.	1.8	22
218	Host-associated microbiomes drive structure and function of marine ecosystems. PLoS Biology, 2019, 17, e3000533.	2.6	103
220	Effects of light and nitrogen availability on photosynthetic efficiency and fatty acid content of three original benthic diatom strains. PLoS ONE, 2019, 14, e0224701.	1.1	44

#	Article	IF	CITATIONS
221	Biological contamination and its chemical control in microalgal mass cultures. Applied Microbiology and Biotechnology, 2019, 103, 9345-9358.	1.7	33
222	Role of <i>Calanus sinicus</i> (Copepoda, Calanoida) on Dimethylsulfide and Dimethylsulfoniopropionate Production in Jiaozhou Bay. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2481-2498.	1.3	5
223	Host specificity in diatom–bacteria interactions alleviates antagonistic effects. FEMS Microbiology Ecology, 2019, 95, .	1.3	33
225	Friends With Benefits: Exploring the Phycosphere of the Marine Diatom Skeletonema marinoi. Frontiers in Microbiology, 2019, 10, 1828.	1.5	39
226	Associated Bacteria Affect Sexual Reproduction by Altering Gene Expression and Metabolic Processes in a Biofilm Inhabiting Diatom. Frontiers in Microbiology, 2019, 10, 1790.	1.5	21
227	Sulfur metabolites in the pelagic ocean. Nature Reviews Microbiology, 2019, 17, 665-678.	13.6	104
228	Diversity, Genomics, and Distribution of Phytoplankton-Cyanobacterium Single-Cell Symbiotic Associations. Annual Review of Microbiology, 2019, 73, 435-456.	2.9	49
229	Quorum-sensing mediated signals: A promising multi-functional modulators for separately enhancing algal yield and power generation in microbial fuel cell. Bioresource Technology, 2019, 294, 122138.	4.8	81
230	Single cell ecogenomics reveals mating types of individual cells and ssDNA viral infections in the smallest photosynthetic eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190089.	1.8	11
231	Community characteristics and ecological roles of bacterial biofilms associated with various algal settlements on coastal reefs. Journal of Environmental Management, 2019, 250, 109459.	3.8	16
232	A day in the life of marine sulfonates. Nature Microbiology, 2019, 4, 1610-1611.	5.9	7
233	Deciphering electron-shuttling characteristics of microalgal metabolites upon bioelectricity-generating community in microbial fuel cells. Biochemical Engineering Journal, 2019, 144, 148-156.	1.8	13
234	Chemical ecology of the marine plankton. Natural Product Reports, 2019, 36, 1093-1116.	5.2	39
235	Modeling the oxygen-depleting potential and spatially differentiated effect of sewage organics in life cycle assessment for wastewater management. Science of the Total Environment, 2019, 655, 1071-1080.	3.9	12
236	Genome-wide exploration of Escherichia coli genes to promote Chlorella vulgaris growth. Algal Research, 2019, 38, 101390.	2.4	15
237	Taurine Is a Major Carbon and Energy Source for Marine Prokaryotes in the North Atlantic Ocean off the Iberian Peninsula. Microbial Ecology, 2019, 78, 299-312.	1.4	59
238	Complete Genome Sequence of Novel <i>Sulfitobacter pseudonitzschiae</i> Strain SMR1, Isolated from a Culture of the Marine Diatom <i>Skeletonema marinoi</i> Journal of Genomics, 2019, 7, 7-10.	0.6	13
239	Consistency in microbiomes in cultures of <i>Alexandrium</i> species isolated from brackish and marine waters. Environmental Microbiology Reports, 2019, 11, 425-433.	1.0	19

#	Article	IF	CITATIONS
240	Remediation of Domestic Wastewater Using Algal-Bacterial Biotechnology., 2019, , 269-289.		2
241	Phycosphere Microbial Succession Patterns and Assembly Mechanisms in a Marine Dinoflagellate Bloom. Applied and Environmental Microbiology, 2019, 85, .	1.4	23
242	The time delays influence on the dynamical complexity of algal blooms in the presence of bacteria. Ecological Complexity, 2019, 39, 100769.	1.4	8
243	Linking chromophoric organic matter transformation with biomarker indices in a marine phytoplankton growth and degradation experiment. Marine Chemistry, 2019, 214, 103665.	0.9	11
244	Bacterial Community Diversity and Screening of Growth-Affecting Bacteria From Isochrysis galbana Following Antibiotic Treatment. Frontiers in Microbiology, 2019, 10, 994.	1.5	9
245	Application of Microalgae in Wastewater Treatment. , 2019, , .		10
246	Pseudomonas sp. strain WJ04 enhances current generation of Synechocystis sp. PCC6803 in photomicrobial fuel cells. Algal Research, 2019, 40, 101490.	2.4	6
247	Enhancement of growth and paramylon production of Euglena gracilis by co-cultivation with Pseudoalteromonas sp. MEBiC 03485. Bioresource Technology, 2019, 288, 121513.	4.8	19
248	Company matters: The presence of other genotypes alters traits and intraspecific selection in an Arctic diatom under climate change. Global Change Biology, 2019, 25, 2869-2884.	4.2	34
249	Relationship Between Lifestyle and Structure of Bacterial Communities and Their Functionality in Aquatic Systems. Advances in Environmental Microbiology, 2019, , 13-52.	0.1	12
250	Phaeobacter inhibens controls bacterial community assembly on a marine diatom. FEMS Microbiology Ecology, 2019, 95, .	1.3	24
251	Epibiotic bacterial community composition in red-tide dinoflagellate Akashiwo sanguinea culture under various growth conditions. FEMS Microbiology Ecology, 2019, 95, .	1.3	16
252	Bioconversion of Agricultural Wastes From the Livestock Industry for Biofuel and Feed Production. , 2019, , 225-247.		2
253	Adaptations of Microorganisms to Low Nutrient Environments: Managing Life in the Oligotrophic Ocean., 2019,, 9-9.		0
254	Diatoms shape the biogeography of heterotrophic prokaryotes in early spring in the Southern Ocean. Environmental Microbiology, 2019, 21, 1452-1465.	1.8	33
255	Transcriptomic responses to grazing reveal the metabolic pathway leading to the biosynthesis of domoic acid and highlight different defense strategies in diatoms. BMC Molecular Biology, 2019, 20, 7.	3.0	23
256	Algaeâ^'bacteria interactions that balance the planktonic microbiome. New Phytologist, 2019, 223, 100-106.	3.5	181
257	Symbiotic association among marine microalgae and bacterial flora: a study with special reference to commercially important Isochrysis galbana culture. Journal of Applied Phycology, 2019, 31, 2259-2266.	1.5	21

#	ARTICLE	IF	CITATIONS
258	Differential Gene Expression Supports a Resourceâ€Intensive, Defensive Role for Colony Production in the Bloomâ€Forming Haptophyte, <i>Phaeocystis globosa</i> . Journal of Eukaryotic Microbiology, 2019, 66, 788-801.	0.8	25
259	Limits of our knowledge, part 2: Selected frontiers in marine organic biogeochemistry. Marine Chemistry, 2019, 212, 16-46.	0.9	23
260	Phaeobacter inhibens induces apoptosis-like programmed cell death in calcifying Emiliania huxleyi. Scientific Reports, 2019, 9, 5215.	1.6	24
261	The Algicidal Bacterium <i>Kordia algicida</i> Shapes a Natural Plankton Community. Applied and Environmental Microbiology, 2019, 85, .	1.4	20
262	Marine Metabolomics: a Method for Nontargeted Measurement of Metabolites in Seawater by Gas Chromatography–Mass Spectrometry. MSystems, 2019, 4, .	1.7	45
263	Prokaryotic Population Dynamics and Viral Predation in a Marine Succession Experiment Using Metagenomics. Frontiers in Microbiology, 2019, 10, 2926.	1.5	17
264	Characterisation of bacteria from the cultures of a Chlorella strain isolated from textile wastewater and their growth enhancing effects on the axenic cultures of Chlorella vulgaris in low nutrient media. Algal Research, 2019, 44, 101666.	2.4	21
265	Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Reviews in Aquaculture, 2020, 12, 1663-1688.	4.6	101
266	Enhanced production of biomass and lipids by Euglena gracilis via co-culturing with a microalga growth-promoting bacterium, Emticicia sp. EG3. Biotechnology for Biofuels, 2019, 12, 205.	6.2	27
267	Cross-exchange of B-vitamins underpins a mutualistic interaction between <i>Ostreococcus tauri</i> and <i>Dinoroseobacter shibae</i> . ISME Journal, 2019, 13, 334-345.	4.4	83
268	Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecology and Evolution, 2019, 9, 723-740.	0.8	43
269	Polyamines in Microalgae: Something Borrowed, Something New. Marine Drugs, 2019, 17, 1.	2.2	166
270	The role of differential DMSP production and community composition in predicting variability of global surface DMSP concentrations. Limnology and Oceanography, 2019, 64, 757-773.	1.6	51
271	Auxin Function in the Brown Alga <i>Dictyota dichotoma</i> . Plant Physiology, 2019, 179, 280-299.	2.3	24
272	Ammonium recycling supports toxic Planktothrix blooms in Sandusky Bay, Lake Erie: Evidence from stable isotope and metatranscriptome data. Harmful Algae, 2019, 81, 42-52.	2,2	58
273	Dynamics of Bacteria and Phytoplankton in the Surface Ocean. , 2019, , 546-552.		1
274	Phototroph-Heterotroph Oil-Degrading Partnerships., 2019,, 1-14.		1
275	Formation of planktonic chromophoric dissolved organic matter in the ocean. Marine Chemistry, 2019, 209, 1-13.	0.9	25

#	Article	IF	CITATIONS
276	HIT.WATER scheme: An integrated LCA-based decision-support platform for evaluation of wastewater discharge limits. Science of the Total Environment, 2019, 655, 1427-1438.	3.9	14
277	Effects of nutrient enrichment on surface microbial community gene expression in the oligotrophic North Pacific Subtropical Gyre. ISME Journal, 2019, 13, 374-387.	4.4	17
278	Impact of <i>Phaeobacter inhibens</i> on marine eukaryoteâ€associated microbial communities. Environmental Microbiology Reports, 2019, 11, 401-413.	1.0	28
279	Efficiency of <i>Nannochloropsis oculata</i> and <i>Bacillus polymyxa</i> symbiotic composite at ammonium and phosphate removal from synthetic wastewater. Environmental Technology (United) Tj ETQq1 1 (0.7 84 314	rg BT /Overlo
280	Progress and promise of omics for predicting the impacts of climate change on harmful algal blooms. Harmful Algae, 2020, 91, 101587.	2.2	45
281	Paper-based electroanalytical devices for in situ determination of free 3-indoleacetic acid and salicylic acid in living Pyropia haitanensis thallus under various environmental stresses. Journal of Applied Phycology, 2020, 32, 485-497.	1.5	13
282	The diversity and biogeography of microeukaryotes in the euphotic zone of the northwestern Pacific Ocean. Science of the Total Environment, 2020, 698, 134289.	3.9	34
283	Application of aerobic granules-continuous flow reactor for saline wastewater treatment: Granular stability, lipid production and symbiotic relationship between bacteria and algae. Bioresource Technology, 2020, 295, 122291.	4.8	78
284	Evolution of LuxR solos in bacterial communication: receptors and signals. Biotechnology Letters, 2020, 42, 181-186.	1.1	17
285	Evidence for contrasting roles of dimethylsulfoniopropionate production in <i>Emiliania huxleyi</i> and <i>Thalassiosira oceanica</i> . New Phytologist, 2020, 226, 396-409.	3.5	16
286	Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications. Renewable and Sustainable Energy Reviews, 2020, 118, 109563.	8.2	210
287	<i>Pelagibacter</i> metabolism of diatomâ€derived volatile organic compounds imposes an energetic tax on photosynthetic carbon fixation. Environmental Microbiology, 2020, 22, 1720-1733.	1.8	31
288	Metabolic relationships of uncultured bacteria associated with the microalgae <i>Gambierdiscus</i> Environmental Microbiology, 2020, 22, 1764-1783.	1.8	28
289	Genomic repertoire of Mameliella alba Ep20 associated with Symbiodinium from the endemic coral Mussismilia braziliensis. Symbiosis, 2020, 80, 53-60.	1.2	10
290	The planktonic protist interactome: where do we stand after a century of research?. ISME Journal, 2020, 14, 544-559.	4.4	111
291	Diatom modulation of select bacteria through use of two unique secondary metabolites. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27445-27455.	3.3	118
292	Growth promoting studies on co-culturing Nannochloropsis oceanica with Halomonas aquamarina actively enhance the algal biomass and lipid production. Biocatalysis and Agricultural Biotechnology, 2020, 29, 101790.	1.5	8
293	Large Diversity in Nitrogen- and Sulfur-Containing Compatible Solute Profiles in Polar and Temperate Diatoms. Integrative and Comparative Biology, 2020, 60, 1401-1413.	0.9	10

#	Article	IF	CITATIONS
294	Bacteria-mediated aggregation of the marine phytoplankton Thalassiosira weissflogii and Nannochloropsis oceanica. Journal of Applied Phycology, 2020, 32, 3735-3748.	1.5	12
295	The effect of protocatechuic acid on the phycosphere in harmful algal bloom species Scrippsiella trochoidea. Aquatic Toxicology, 2020, 227, 105591.	1.9	6
296	Coâ€culture with <i>Synechococcus</i> facilitates growth of <i>Prochlorococcus</i> under ocean acidification conditions. Environmental Microbiology, 2020, 22, 4876-4889.	1.8	8
297	Bacterial catabolism of indole-3-acetic acid. Applied Microbiology and Biotechnology, 2020, 104, 9535-9550.	1.7	31
298	The rhizosphere signature on the cell motility, biofilm formation and secondary metabolite production of a plant-associated Lysobacter strain. Microbiological Research, 2020, 234, 126424.	2.5	33
299	Diatoms as cell factories for high-value products: chrysolaminarin, eicosapentaenoic acid, and fucoxanthin. Critical Reviews in Biotechnology, 2020, 40, 993-1009.	5.1	70
300	Evaluation of self-purifying power of cyanobacteria Pseudanabaena galeata: case of dairy factory effluents. Applied Water Science, 2020, 10 , 1 .	2.8	7
301	Genome Sequences and Metagenome-Assembled Genome Sequences of Microbial Communities Enriched on Phytoplankton Exometabolites. Microbiology Resource Announcements, 2020, 9, .	0.3	5
302	Analysis of bacterial community diversity within seven bait-microalgae. Algal Research, 2020, 51, 102033.	2.4	14
303	Microalgal–Bacterial Synergistic Interactions and Their Potential Influence in Wastewater Treatment: a Review. Bioenergy Research, 2021, 14, 723-738.	2.2	37
304	Evidence of Interdomain Ammonium Cross-Feeding From Methylamine- and Glycine Betaine-Degrading Rhodobacteraceae to Diatoms as a Widespread Interaction in the Marine Phycosphere. Frontiers in Microbiology, 2020, 11, 533894.	1.5	21
306	Mesozooplankton taurine production and prokaryotic uptake in the northern Adriatic Sea. Limnology and Oceanography, 2020, 65, 2730-2747.	1.6	4
307	Environmental Factors and Pollution Stresses Select Bacterial Populations in Association With Protists. Frontiers in Marine Science, 2020, 7, .	1.2	7
308	Marine Bacteria Affect Saccharide Enrichment in Sea Spray Aerosol during a Phytoplankton Bloom. ACS Earth and Space Chemistry, 2020, 4, 1638-1649.	1.2	25
309	Quorum sensing regulates â€~swimâ€orâ€stick' lifestyle in the phycosphere. Environmental Microbiology, 2020, 22, 4761-4778.	1.8	43
310	Comparison of bacterial communities associated with Prorocentrum donghaiense and Karenia mikimotoi strains from Chinese coastal waters. Marine and Freshwater Research, 2020, 71, 1662.	0.7	7
311	Cryptic speciation of a pelagic $\langle i \rangle$ Roseobacter $\langle i \rangle$ population varying at a few thousand nucleotide sites. ISME Journal, 2020, 14, 3106-3119.	4.4	11
312	Metabolomics-derived marker metabolites to characterize Phaeocystis pouchetii physiology in natural plankton communities. Scientific Reports, 2020, 10, 20444.	1.6	12

#	Article	IF	CITATIONS
313	Physiological and Molecular Responses to Main Environmental Stressors of Microalgae and Bacteria in Polar Marine Environments. Microorganisms, 2020, 8, 1957.	1.6	18
314	Thiamine-Mediated Cooperation Between Auxotrophic Rhodococcus ruber ZM07 and Escherichia coli K12 Drives Efficient Tetrahydrofuran Degradation. Frontiers in Microbiology, 2020, 11, 594052.	1.5	4
315	Hydrocarbon-Degrading Bacteria Found Tightly Associated with the 50–70 Î⅓m Cell-Size Population of Eukaryotic Phytoplankton in Surface Waters of a Northeast Atlantic Region. Microorganisms, 2020, 8, 1955.	1.6	10
316	Strategy for the Removal of Satellite Bacteria from the Cultivated Diatom. Diversity, 2020, 12, 382.	0.7	1
317	Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile. International Journal of Environmental Research and Public Health, 2020, 17, 7642.	1.2	17
318	Bacterial Communities Show Algal Host (Fucus spp.)/Zone Differentiation Across the Stress Gradient of the Intertidal Zone. Frontiers in Microbiology, 2020, 11, 563118.	1.5	16
319	Beta-glucan's varying structure characteristics modulate survival and immune-related genes expression from Vibrio harveyi-infected Artemia franciscana in gnotobiotic conditions. Fish and Shellfish Immunology, 2020, 102, 307-315.	1.6	10
320	The microbiome of alpine snow algae shows a specific inter-kingdom connectivity and algae-bacteria interactions with supportive capacities. ISME Journal, 2020, 14, 2197-2210.	4.4	46
321	Biological Symbiosis and Mutualism: Notable Advances, and More to Come. Theology and Science, 2020, 18, 211-225.	0.2	1
322	Genome-enabled phylogenetic and functional reconstruction of an araphid pennate diatom Plagiostriata sp. CCMP470, previously assigned as a radial centric diatom, and its bacterial commensal. Scientific Reports, 2020, 10, 9449.	1.6	25
323	New Methods, New Concepts: What Can Be Applied to Freshwater Periphyton?. Frontiers in Microbiology, 2020, 11, 1275.	1.5	20
324	Prokaryotic Response to Phytodetritus-Derived Organic Material in Epi- and Mesopelagic Antarctic Waters. Frontiers in Microbiology, 2020, 11, 1242.	1.5	7
325	Differences in metabolic potential between particle-associated and free-living bacteria along Pearl River Estuary. Science of the Total Environment, 2020, 728, 138856.	3.9	36
326	Water reuse for sustainable microalgae cultivation: current knowledge and future directions. Resources, Conservation and Recycling, 2020, 161, 104975.	5. 3	58
327	Enhanced Scenedesmus sp. growth in response to gibberellin secretion by symbiotic bacteria. Science of the Total Environment, 2020, 740, 140099.	3.9	21
328	Algal–bacterial symbiosis and its application in wastewater treatment. , 2020, , 341-372.		8
329	Coupling Between Carbon and Nitrogen Metabolic Processes Mediated by Coastal Microbes in Synechococcus-Derived Organic Matter Addition Incubations. Frontiers in Microbiology, 2020, 11, 1041.	1.5	19
330	Metabolic Complementarity Between a Brown Alga and Associated Cultivable Bacteria Provide Indications of Beneficial Interactions. Frontiers in Marine Science, 2020, 7, .	1,2	25

#	ARTICLE	IF	CITATIONS
331	Plant Growth-Promoting Methylobacteria Selectively Increase the Biomass of Biotechnologically Relevant Microalgae. Frontiers in Microbiology, 2020, 11, 427.	1.5	26
332	Metabolic Functional Community Diversity of Associated Bacteria during the Degradation of Phytoplankton from a Drinking Water Reservoir. International Journal of Environmental Research and Public Health, 2020, 17, 1687.	1.2	7
333	Unique microbial module regulates the harmful algal bloom (Cochlodinium polykrikoides) and shifts the microbial community along the Southern Coast of Korea. Science of the Total Environment, 2020, 721, 137725.	3.9	25
334	Cultivating the Macroalgal Holobiont: Effects of Integrated Multi-Trophic Aquaculture on the Microbiome of Ulva rigida (Chlorophyta). Frontiers in Marine Science, 2020, 7, .	1.2	61
335	Niche-based assembly of bacterial consortia on the diatom $\langle i \rangle$ Thalassiosira rotula $\langle i \rangle$ is stable and reproducible. ISME Journal, 2020, 14, 1614-1625.	4.4	59
336	Travelling Expenses: The Energy Cost of Diel Vertical Migrations of Epipelic Microphytobenthos. Frontiers in Marine Science, 2020, 7, .	1.2	6
337	Temporal heterogeneity of microbial communities and metabolic activities during a natural algal bloom. Water Research, 2020, 183, 116020.	5.3	36
338	Resting Stages of <i>Skeletonema marinoi</i> Assimilate Nitrogen From the Ambient Environment Under Dark, Anoxic Conditions. Journal of Phycology, 2020, 56, 699-708.	1.0	8
339	Core microbiomes: Characterization and identification. , 2020, , 43-84.		0
340	Evolutionary temperature compensation of carbon fixation in marine phytoplankton. Ecology Letters, 2020, 23, 722-733.	3.0	86
341	Macroalgalâ€"bacterial interactions: identification and role of thallusin in morphogenesis of the seaweed Ulva (Chlorophyta). Journal of Experimental Botany, 2020, 71, 3340-3349.	2.4	56
342	Pulse of dissolved organic matter alters reciprocal carbon subsidies between autotrophs and bacteria in stream food webs. Ecological Monographs, 2020, 90, e01399.	2.4	25
343	Symbiodiniaceaeâ€bacteria interactions: rethinking metabolite exchange in reefâ€building corals as multiâ€partner metabolic networks. Environmental Microbiology, 2020, 22, 1675-1687.	1.8	89
344	Microbial Competition in the Subpolar Southern Ocean: An Fe–C Co-limitation Experiment. Frontiers in Marine Science, 2020, 6, .	1.2	24
345	Effect of Pseudoalteromonas sp. MEBiC 03485 on biomass production and sulfated polysaccharide biosynthesis in Porphyridium cruentum UTEX 161. Bioresource Technology, 2020, 302, 122791.	4.8	15
346	Functional profiles of phycospheric microorganisms during a marine dinoflagellate bloom. Water Research, 2020, 173, 115554.	5.3	26
347	Complete genome of Sulfitobacter sp. BSw21498 isolated from seawater of Arctic Kongsfjorden. Marine Genomics, 2020, 53, 100769.	0.4	4
348	Variation in prostaglandin metabolism during growth of the diatom Thalassiosira rotula. Scientific Reports, 2020, 10, 5374.	1.6	13

#	Article	IF	CITATIONS
349	Ecological drivers of bacterial community assembly in synthetic phycospheres. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3656-3662.	3.3	82
350	Microbiomes Reduce Their Host's Sensitivity to Interspecific Interactions. MBio, 2020, 11, .	1.8	17
351	Community composition and correlations between bacteria and algae within epiphytic biofilms on submerged macrophytes in a plateau lake, southwest China. Science of the Total Environment, 2020, 727, 138398.	3.9	48
352	Diatom Molecular Research Comes of Age: Model Species for Studying Phytoplankton Biology and Diversity. Plant Cell, 2020, 32, 547-572.	3.1	94
353	Effect and mechanism of the algicidal bacterium Sulfitobacter porphyrae ZFX1 on the mitigation of harmful algal blooms caused by Prorocentrum donghaiense. Environmental Pollution, 2020, 263, 114475.	3.7	35
354	A Zeaxanthin-Producing Bacterium Isolated from the Algal Phycosphere Protects Coral Endosymbionts from Environmental Stress. MBio, 2020, 11, .	1.8	49
355	Alteration of dominant cyanobacteria in different bloom periods caused by abiotic factors and species interactions. Journal of Environmental Sciences, 2021, 99, 1-9.	3.2	49
356	Eco-chemical mechanisms govern phytoplankton emissions of dimethylsulfide in global surface waters. National Science Review, 2021, 8, nwaa140.	4.6	25
357	Conserved Pigment Profiles in Phylogenetically Diverse Symbiotic Bacteria Associated with the Corals Montastraea cavernosa and Mussismilia braziliensis. Microbial Ecology, 2021, 81, 267-277.	1.4	4
358	Efficiency of benthic diatom-associated bacteria in the removal of benzo(a)pyrene and fluoranthene. Science of the Total Environment, 2021, 751, 141399.	3.9	40
359	Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME Journal, 2021, 15, 762-773.	4.4	77
360	Bacteriome Structure, Function, and Probiotics in Fish Larviculture: The Good, the Bad, and the Gaps. Annual Review of Animal Biosciences, 2021, 9, 423-452.	3.6	31
361	Environment dependent microbial coâ€occurrences across a cyanobacterial bloom in a freshwater lake. Environmental Microbiology, 2021, 23, 327-339.	1.8	6
362	Microfluidic and mathematical modeling of aquatic microbial communities. Analytical and Bioanalytical Chemistry, 2021, 413, 2331-2344.	1.9	4
363	Cell sorting reveals few novel prokaryote and photosynthetic picoeukaryote associations in the oligotrophic ocean. Environmental Microbiology, 2021, 23, 1469-1480.	1.8	7
364	Cobalamin and microbial plankton dynamics along a coastal to offshore transect in the Eastern North Atlantic Ocean. Environmental Microbiology, 2021, 23, 1559-1583.	1.8	19
365	Insights into â€~Symbiodiniaceae phycosphere' in a coral holobiont. Symbiosis, 2021, 83, 25-39.	1.2	15
366	Utilization of Indole-3-acetic acid–Secreting Bacteria in Algal Environment to Increase Biomass Accumulation of Ochromonas and Chlorella. Bioenergy Research, 2022, 15, 242-252.	2.2	10

#	Article	IF	CITATIONS
367	Niche dimensions of a marine bacterium are identified using invasion studies in coastal seawater. Nature Microbiology, 2021, 6, 524-532.	5.9	18
368	Nitrogen and phosphorus enrichments alter the dynamics of the plankton community in Daya Bay, northern South China Sea: results of mesocosm studies. Marine and Freshwater Research, 2021, , .	0.7	3
369	Acclimation and adaptation to elevated <i>p</i> CO2 increase arsenic resilience in marine diatoms. ISME Journal, 2021, 15, 1599-1613.	4.4	13
370	Human impact on symbioses between aquatic organisms and microbes. Aquatic Microbial Ecology, 2021, 87, 113-138.	0.9	14
371	Phytoplankton consortia as a blueprint for mutually beneficial eukaryote-bacteria ecosystems based on the biocoenosis of Botryococcus consortia. Scientific Reports, 2021, 11, 1726.	1.6	12
372	Biodegradation of Hydrocarbons in Marine Environment. Environmental Chemistry for A Sustainable World, 2021, , 195-228.	0.3	1
373	Study on the isoprene-producing co-culture system of Synechococcus elongates–Escherichia coli through omics analysis. Microbial Cell Factories, 2021, 20, 6.	1.9	13
374	Intracellular bacteria are common and taxonomically diverse in cultured and <i>in hospite</i> endosymbionts of coral reefs. ISME Journal, 2021, 15, 2028-2042.	4.4	61
375	Temperature Stress Induces Shift From Co-Existence to Competition for Organic Carbon in Microalgae-Bacterial Photobioreactor Community – Enabling Continuous Production of Microalgal Biomass. Frontiers in Microbiology, 2021, 12, 607601.	1.5	10
377	Bacterial Dimethylsulfoniopropionate Biosynthesis in the East China Sea. Microorganisms, 2021, 9, 657.	1.6	12
379	Multiâ€omics reveal the pathways involved in induced defensive colony formation of <i>Tetradesmus obliquus</i> in response to <i>Daphnia</i> grazing cues. Limnology and Oceanography, 2021, 66, 1819-1831.	1.6	11
380	Prospects and development of algal-bacterial biotechnology in environmental management and protection. Biotechnology Advances, 2021, 47, 107684.	6.0	83
381	Modeling silicate–nitrate–ammonium co-limitation of algal growth and the importance of bacterial remineralization based on an experimental Arctic coastal spring bloom culture study. Biogeosciences, 2021, 18, 1719-1747.	1.3	2
382	Bacterial Community Composition and Chromophoric Dissolved Organic Matter Differs with Culture Time of Skeletonema dohrnii. Diversity, 2021, 13, 150.	0.7	4
383	Methylobacterium ajmalii sp. nov., Isolated From the International Space Station. Frontiers in Microbiology, 2021, 12, 639396.	1.5	46
385	The Influence of Bacteria on the Growth, Lipid Production, and Extracellular Metabolite Accumulation by <i>Phaeodactylum tricornutum</i> (Bacillariophyceae). Journal of Phycology, 2021, 57, 931-940.	1.0	20
386	Opportunistic bacteria with reduced genomes are effective competitors for organic nitrogen compounds in coastal dinoflagellate blooms. Microbiome, 2021, 9, 71.	4.9	27
387	Dynamic bacterial community response to Akashiwo sanguinea (Dinophyceae) bloom in indoor marine microcosms. Scientific Reports, 2021, 11, 6983.	1.6	14

#	Article	IF	Citations
389	Different coâ€occurring bacteria enhance or decrease the growth of the microalga <i>Nannochloropsis</i> sp. CCAP211/78. Microbial Biotechnology, 2021, 14, 1159-1170.	2.0	14
390	Green technology for bioremediation of the eutrophication phenomenon in aquatic ecosystems: a review. African Journal of Aquatic Science, 2021, 46, 274-292.	0.5	26
391	Phytoplankton responses to meteorological and hydrological forcing at decadal to seasonal time scales. Hydrobiologia, 2021, 848, 2745-2759.	1.0	5
392	Toward the Enhancement of Microalgal Metabolite Production through Microalgae–Bacteria Consortia. Biology, 2021, 10, 282.	1.3	39
393	Algae Biofilm Reduces Microbe-Derived Dissolved Organic Nitrogen Discharges: Performance and Mechanisms. Environmental Science & Environmental Science	4.6	42
394	Integrative omics identification, evolutionary and structural analysis of low affinity nitrate transporters in diatoms, diNPFs. Open Biology, 2021, 11, 200395.	1.5	8
395	Individual <i>Microcystis</i> colonies harbour distinct bacterial communities that differ by <i>Microcystis</i> oligotype and with time. Environmental Microbiology, 2021, 23, 3020-3036.	1.8	36
396	Robustness analysis of metabolic predictions in algal microbial communities based on different annotation pipelines. PeerJ, 2021, 9, e11344.	0.9	6
397	Temperature Responses of Heterotrophic Bacteria in Co-culture With a Red Sea Synechococcus Strain. Frontiers in Microbiology, 2021, 12, 612732.	1.5	3
398	Microbiome characterization of defensive tissues in the model anemone Exaiptasia diaphana. BMC Microbiology, 2021, 21, 152.	1.3	14
399	Pollutants affect algae-bacteria interactions: A critical review. Environmental Pollution, 2021, 276, 116723.	3.7	57
400	How Do the Players Play? A Post-Genomic Analysis Paradigm to Understand Aquatic Ecosystem Processes. Frontiers in Molecular Biosciences, 2021, 8, 662888.	1.6	2
401	Particulate Metabolites and Transcripts Reflect Diel Oscillations of Microbial Activity in the Surface Ocean. MSystems, 2021, 6, .	1.7	29
403	Aerobic bacterial methane synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
404	Marine Community Metabolomes Carry Fingerprints of Phytoplankton Community Composition. MSystems, 2021, 6, .	1.7	26
405	A Rhizobium bacterium and its population dynamics under different culture conditions of its associated toxic dinoflagellate Gambierdiscus balechii. Marine Life Science and Technology, 2021, 3, 542-551.	1.8	3
407	Transcriptome analysis revealed transporter proteins role in the growth of Labrenzia sp. PO1 and SY1. Journal of King Saud University - Science, 2021, 33, 101433.	1.6	6
409	The genetic and ecophysiological diversity of <i>Microcystis</i> . Environmental Microbiology, 2021, 23, 7278-7313.	1.8	56

#	Article	IF	Citations
410	Removal of harmful algae by <i>Shigella</i> sp. H3 and <i>Alcaligenes</i> sp. H5: algicidal pathways and characteristics. Environmental Technology (United Kingdom), 2022, 43, 4341-4353.	1.2	8
411	Preferential alignment and heterogeneous distribution of active non-spherical swimmers near Lagrangian coherent structures. Physics of Fluids, 2021, 33, .	1.6	10
413	Isolation and Characterization of Euglena gracilis-Associated Bacteria, Enterobacter sp. CA3 and Emticicia sp. CN5, Capable of Promoting the Growth and Paramylon Production of E. gracilis under Mixotrophic Cultivation. Microorganisms, 2021, 9, 1496.	1.6	4
414	Cryptic Constituents: The Paradox of High Flux–Low Concentration Components of Aquatic Ecosystems. Water (Switzerland), 2021, 13, 2301.	1.2	3
415	Long-Term Survival of <i>Synechococcus</i> and Heterotrophic Bacteria without External Nutrient Supply after Changes in Their Relationship from Antagonism to Mutualism. MBio, 2021, 12, e0161421.	1.8	25
416	Temporal and Spatial Signaling Mediating the Balance of the Plankton Microbiome. Annual Review of Marine Science, 2022, 14, 239-260.	5.1	7
417	Deciphering Metabolic Currencies That Support Marine Microbial Networks. MSystems, 2021, 6, e0076321.	1.7	9
418	Coordinated Diel Gene Expression of Cyanobacteria and Their Microbiome. Microorganisms, 2021, 9, 1670.	1.6	7
419	Tight Adherence (Tad) Pilus Genes Indicate Putative Niche Differentiation in Phytoplankton Bloom Associated Rhodobacterales. Frontiers in Microbiology, 2021, 12, 718297.	1.5	16
420	Corals and Sponges Under the Light of the Holobiont Concept: How Microbiomes Underpin Our Understanding of Marine Ecosystems. Frontiers in Marine Science, 2021, 8, .	1.2	16
421	Dissolved organic matter modulates the impact of herbicides on a freshwater alga: A laboratory study of a three-way interaction. Science of the Total Environment, 2021, 782, 146881.	3.9	2
422	The Interplay of Phototrophic and Heterotrophic Microbes Under Oil Exposure: A Microcosm Study. Frontiers in Microbiology, 2021, 12, 675328.	1.5	6
423	Complete Genome of Marine Microalgae Associated Algicidal Bacterium Sulfitobacter pseudonitzschiae H46 with Quorum Sensing System. Current Microbiology, 2021, 78, 3741-3750.	1.0	8
424	Toward traitâ€based food webs: Universal traits and trait matching in planktonic predator–prey and host–parasite relationships. Limnology and Oceanography, 2021, 66, 3857-3872.	1.6	7
425	Draft Genome Sequence of <i>Salegentibacter</i> sp. Strain BDJ18, a Plankton-Associated Bacterium in the Northeast Atlantic Ocean. Microbiology Resource Announcements, 2021, 10, e0062821.	0.3	0
427	Elucidation of the Algicidal Mechanism of the Marine Bacterium Pseudoruegeria sp. M32A2M Against the Harmful Alga Alexandrium catenella Based on Time-Course Transcriptome Analysis. Frontiers in Marine Science, 2021, 8, .	1.2	4
428	Dynamic carbon flux network of a diverse marine microbial community. ISME Communications, 2021, 1 ,	1.7	7
429	Genomic signatures of Lake Erie bacteria suggest interaction in the Microcystis phycosphere. PLoS ONE, 2021, 16, e0257017.	1.1	28

#	Article	IF	CITATIONS
430	RNA-seq Insights Into the Impact of Alteromonas macleodii on Isochrysis galbana. Frontiers in Microbiology, 2021, 12, 711998.	1.5	6
431	Scaling down the microbial loop: dataâ€driven modelling of growth interactions in a diatom–bacterium coâ€culture. Environmental Microbiology Reports, 2021, 13, 945-954.	1.0	5
432	Single-colony sequencing reveals microbe-by-microbiome phylosymbiosis between the cyanobacterium Microcystis and its associated bacteria. Microbiome, 2021, 9, 194.	4.9	27
433	Contribution of single-cell omics to microbial ecology. Trends in Ecology and Evolution, 2022, 37, 67-78.	4.2	8
434	Dissolved organic compounds with synchronous dynamics share chemical properties and origin. Limnology and Oceanography, 2021, 66, 4001-4016.	1.6	5
435	Structure and Long-Term Stability of the Microbiome in Diverse Diatom Cultures. Microbiology Spectrum, 2021, 9, e0026921.	1.2	8
436	Janthinobacter additions reduce rotifer grazing of microalga Microchloropsis salina in biotically complex communities. Algal Research, 2021, 58, 102400.	2.4	4
437	Algal–bacterial consortia for bioproduct generation and wastewater treatment. Renewable and Sustainable Energy Reviews, 2021, 149, 111395.	8.2	63
438	Co-occurring microorganisms regulate the succession of cyanobacterial harmful algal blooms. Environmental Pollution, 2021, 288, 117682.	3.7	39
439	Distinct metabolic strategies of the dominant heterotrophic bacterial groups associated with marine Synechococcus. Science of the Total Environment, 2021, 798, 149208.	3.9	10
440	Nanoarchitectonics for Hybrid and Related Materials for Bioâ€Oriented Applications. Advanced Functional Materials, 2018, 28, 1702905.	7.8	149
441	Heavy Metal Mitigation with Special Reference to Bioremediation byÂMixotrophic Algae-Bacterial Protocooperation. Nanotechnology in the Life Sciences, 2020, , 305-334.	0.4	6
442	Climate-driven shifts in algal-bacterial interaction of high-mountain lakes in two years spanning a decade. Scientific Reports, 2018, 8, 10278.	1.6	33
443	Phaeobacter piscinae sp. nov., a species of the Roseobacter group and potential aquaculture probiont. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 4559-4564.	0.8	20
444	Colony analysis and deep learning uncover 5-hydroxyindole as an inhibitor of gliding motility and iridescence in Cellulophaga lytica. Microbiology (United Kingdom), 2018, 164, 308-321.	0.7	8
458	Evolution of Plant Hormone Response Pathways. Annual Review of Plant Biology, 2020, 71, 327-353.	8.6	169
459	The relationship between sea ice bacterial community structure and biogeochemistry: A synthesis of current knowledge and known unknowns. Elementa, 2015, 3, .	1.1	26
460	Standing on the Shoulders of Giant Viruses: Five Lessons Learned about Large Viruses Infecting Small Eukaryotes and the Opportunities They Create. PLoS Pathogens, 2016, 12, e1005752.	2.1	30

#	Article	IF	Citations
461	Potential of temperature- and salinity-driven shifts in diatom compatible solute concentrations to impact biogeochemical cycling within sea ice. Elementa, 2020, 8, .	1.1	17
462	Diversity and community structure of bacterioplankton in surface waters off the northern tip of the Antarctic Peninsula. Polar Research, 2019, 38, .	1.6	8
463	Proteomics analysis of the response of the marine bacterium Marinobacter adhaerens HP15 to the diatom Thalassiosira weissflogii. Aquatic Microbial Ecology, 2016, 78, 65-79.	0.9	15
464	Isolates as models to study bacterial ecophysiology and biogeochemistry. Aquatic Microbial Ecology, 2017, 80, 15-27.	0.9	16
465	Phytoplankton traits from long-term oceanographic time-series. Marine Ecology - Progress Series, 2017, 576, 11-25.	0.9	18
466	Hydrocarbon-Degrading Bacteria Alcanivorax and Marinobacter Associated With Microalgae Pavlova lutheri and Nannochloropsis oculata. Frontiers in Microbiology, 2020, 11, 572931.	1.5	35
467	Sponge exhalent seawater contains a unique chemical profile of dissolved organic matter. PeerJ, 2017, 5, e2870.	0.9	35
468	Bacterial inoculations can perturb the growth trajectory of diatoms with an existing microbiome. PeerJ, 2020, 8, e8352.	0.9	3
469	Effects of auxin derivatives on phenotypic plasticity and stress tolerance in five species of the green alga <i>Desmodesmus</i> (Chlorophyceae, Chlorophyta). PeerJ, 2020, 8, e8623.	0.9	9
470	Microbial and chemical dynamics of a toxic dinoflagellate bloom. PeerJ, 2020, 8, e9493.	0.9	9
472	Auxin's origin: do PILS hold the key?. Trends in Plant Science, 2022, 27, 227-236.	4.3	11
473	A novel random forest approach to revealing interactions and controls on chlorophyll concentration and bacterial communities during coastal phytoplankton blooms. Scientific Reports, 2021, 11, 19944.	1.6	8
474	Intracellular Bacterial Symbionts in Corals: Challenges and Future Directions. Microorganisms, 2021, 9, 2209.	1.6	20
476	Dimethyl sulfide mediates microbial predator–prey interactions between zooplankton and algae in the ocean. Nature Microbiology, 2021, 6, 1357-1366.	5.9	33
477	Nitrate Reductase: A Nexus of Disciplines, Organisms, and Metabolism. , 2016, , 105-116.		2
482	Actual trends in water ecosystem biology development. Marine Biological Journal, 2017, 2, 3-14.	0.3	0
485	Phototroph-Heterotroph Oil-Degrading Partnerships. , 2019, , 37-50.		0
486	Whole Genome Sequence of <i>Marinobacter salarius </i> Strain SMR5, Shown to Promote Growth in its Diatom Host. Journal of Genomics, 2019, 7, 60-63.	0.6	6

#	Article	IF	CITATIONS
487	Screening of IAA Production on the Interaction of Microalgae and Bacteria in the Glagah Consortium. Biosciences, Biotechnology Research Asia, 2020, 17, 45-52.	0.2	3
491	Microalgal and bacterial auxin biosynthesis: implications for algal biotechnology. Current Opinion in Biotechnology, 2022, 73, 300-307.	3.3	25
497	Harnessing intercellular signals to engineer the soil microbiome. Natural Product Reports, 2021, , .	5.2	2
498	Microalgal–bacterial consortia for biomass production and wastewater treatment. , 2022, , 477-501.		4
499	Bacterial response to spatial gradients of algal-derived nutrients in a porous microplate. ISME Journal, 2022, 16, 1036-1045.	4.4	21
500	Quorum Sensing Regulation of Virulence Gene Expression in Vibrio harveyi during its Interaction with Marine Diatom Skeletonema marinoi. Journal of Pure and Applied Microbiology, 0, , .	0.3	1
501	Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. ISME Journal, 2022, 16, 1074-1085.	4.4	25
504	Host genotype structures the microbiome of a globally dispersed marine phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
505	How Microbial Food Web Interactions Shape the Arctic Ocean Bacterial Community Revealed by Size Fractionation Experiments. Microorganisms, 2021, 9, 2378.	1.6	3
506	Structural Elucidation of Cryptic Algaecides in Marine Algalâ€Bacterial Symbioses by NMR Spectroscopy and MicroED. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
507	Structural Elucidation of Cryptic Algaecides in Marine Algalâ€Bacterial Symbioses by NMR Spectroscopy and MicroED. Angewandte Chemie, 2022, 134, .	1.6	2
508	Global metabolome analysis of Dunaliella tertiolecta, Phaeobacter italicus R11 Co-cultures using thermal desorption - Comprehensive two-dimensional gas chromatography - Time-of-flight mass spectrometry (TD-GC×GC-TOFMS). Phytochemistry, 2022, 195, 113052.	1.4	8
509	A novel phage indirectly regulates diatom growth by infecting diatom-associated biofilm-forming bacterium. Applied and Environmental Microbiology, 2022, , AEM0213821.	1.4	2
510	Role is in the eye of the beholder—the multiple functions of the antibacterial compound tropodithietic acid produced by marine <i>Rhodobacteraceae</i> . FEMS Microbiology Reviews, 2022, 46, .	3.9	25
513	Shared features and reciprocal complementation of the Chlamydomonas and Arabidopsis microbiota. Nature Communications, 2022, 13, 406.	5.8	28
514	The Influence of Genes on the "Killer Plasmid―of Dinoroseobacter shibae on Its Symbiosis With the Dinoflagellate Prorocentrum minimum. Frontiers in Microbiology, 2021, 12, 804767.	1.5	8
515	Transcriptomic and metatranscriptomic approaches in phytoplankton: insights and advances. , 2022, , 435-485.		1
516	Bacterioplankton Diversity and Distribution in Relation to Phytoplankton Community Structure in the Ross Sea Surface Waters. Frontiers in Microbiology, 2022, 13, 722900.	1.5	8

#	Article	IF	CITATIONS
517	Coccolith Sr/Ca is a robust temperature and growth rate indicator that withstands dynamic microbial interactions. Geobiology, 2022, 20, 435-443.	1.1	2
520	From genes to ecosystems: using molecular information from diatoms to understand ecological processes., 2022,, 487-529.		1
521	Prospects of microbes in mitigations of environmental degradation inÂtheÂriver ecosystem. , 2022, , 429-454.		2
522	Microalgae binary culture for higher biomass production, nutrients recycling, and efficient harvesting: a review. Environmental Chemistry Letters, 2022, 20, 1153-1168.	8.3	18
523	Microbiomes associated with cultures of Gambierdiscus australes and Ostreopsis cf. ovata , two epibenthic dinoflagellates from the NE Atlantic Ocean (Las Palmas, Gran Canaria). Marine Ecology, 0, , .	0.4	1
525	A bacterial chemoreceptor that mediates chemotaxis to two different plant hormones. Environmental Microbiology, 2022, 24, 3580-3597.	1.8	21
526	Effect of Bacteria in Algal Environment Regulated by Glucose Content on Ochromonas. Bioenergy Research, $0, , .$	2.2	1
527	Selection constrains lottery assembly in the microbiomes of closely related diatom species. ISME Communications, 2022, 2, .	1.7	11
528	Diatom Biogeography, Temporal Dynamics, and Links to Bacterioplankton across Seven Oceanographic Time-Series Sites Spanning the Australian Continent. Microorganisms, 2022, 10, 338.	1.6	5
529	A hidden cost of mucus production by phytoplankton: Viscosity hinders nutrient uptake. Limnology and Oceanography Letters, 2022, 7, 261-268.	1.6	1
530	Utilization of N-Acyl Homoserine Lactone-Secreting Bacteria in Algal Environment to Increase Biomass Accumulation of Chlorella. Bioenergy Research, 0, , 1.	2.2	4
531	Ecological Interactions of Cyanobacteria and Heterotrophs Enhances the Robustness of Cyanobacterial Consortium for Carbon Sequestration. Frontiers in Microbiology, 2022, 13, 780346.	1.5	14
532	Phytoplankton exudates provide full nutrition to a subset of accompanying heterotrophic bacteria via carbon, nitrogen and phosphorus allocation. Environmental Microbiology, 2022, 24, 2467-2483.	1.8	10
533	Microbiome Associated With Gambierdiscus balechii Cultures Under Different Toxicity Conditions. Frontiers in Marine Science, 2022, 9, .	1.2	4
535	Marine Protists: A Hitchhiker's Guide to their Role in the Marine Microbiome. The Microbiomes of Humans, Animals, Plants, and the Environment, 2022, , 159-241.	0.2	3
537	Bacteria Associated With Phaeocystis globosa and Their Influence on Colony Formation. Frontiers in Microbiology, 2022, 13, 826602.	1.5	2
538	Bacterial diversity in different outdoor pilot plant photobioreactor types during production of the microalga Nannochloropsis sp. CCAP211/78. Applied Microbiology and Biotechnology, 2022, 106, 2235-2248.	1.7	5
539	Annual dynamics of eukaryotic and bacterial communities revealed by 18S and 16S rRNA metabarcoding in the coastal ecosystem of Sagami Bay, Japan. Metabarcoding and Metagenomics, 0, 6, .	0.0	1

#	Article	IF	CITATIONS
540	Biogeographical and seasonal dynamics of the marine Roseobacter community and ecological links to DMSP-producing phytoplankton. ISME Communications, 2022, 2, .	1.7	6
541	Microbial Diversity Associated with Photosynthetic Organisms. Diversity, 2022, 14, 140.	0.7	O
542	Significant Effects of Associated Microorganisms on the Community of Photosynthetic Picoeukaryotes. Microbial Ecology, 2022, , 1.	1.4	1
543	Spatial organization of the kelp microbiome at micron scales. Microbiome, 2022, 10, 52.	4.9	26
544	Comparative Gene Expression and Physiological Analyses Reveal Molecular Mechanisms in Wound-Induced Spore Formation in the Edible Seaweed Nori. Frontiers in Plant Science, 2022, 13, 840439.	1.7	5
545	Fatal affairs – conjugational transfer of a dinoflagellate-killing plasmid between marine Rhodobacterales. Microbial Genomics, 2022, 8, .	1.0	3
546	Nitratireductor rhodophyticola sp. nov., isolated from marine red algae. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	0.8	10
547	Growth-stage-related shifts in diatom endometabolome composition set the stage for bacterial heterotrophy. ISME Communications, 2022, 2, .	1.7	6
548	Diversity and distribution of bacterioplankton in the coastal upwelling waters off Hainan Island, China. Acta Oceanologica Sinica, 2022, 41, 76-85.	0.4	4
549	Metagenome-Assembled Genomes From Pyropia haitanensis Microbiome Provide Insights Into the Potential Metabolic Functions to the Seaweed. Frontiers in Microbiology, 2022, 13, 857901.	1.5	9
550	Recent advances of algae-bacteria consortia in aquatic remediation. Critical Reviews in Environmental Science and Technology, 2023, 53, 315-339.	6.6	37
551	A comparative whole-genome approach identifies bacterial traits for marine microbial interactions. Communications Biology, 2022, 5, 276.	2.0	18
552	Metabolomic Insights of the Effects of Bacterial Algicide IRI-160AA on Dinoflagellate Karlodinium veneficum. Metabolites, 2022, 12, 317.	1.3	6
553	Abundant Species Diversity and Essential Functions of Bacterial Communities Associated with Dinoflagellates as Revealed from Metabarcoding Sequencing for Laboratory-Raised Clonal Cultures. International Journal of Environmental Research and Public Health, 2022, 19, 4446.	1.2	7
554	Strain-specific transcriptional responses overshadow salinity effects in a marine diatom sampled along the Baltic Sea salinity cline. ISME Journal, 2022, 16, 1776-1787.	4.4	15
555	Microbial metabolites in the marine carbon cycle. Nature Microbiology, 2022, 7, 508-523.	5.9	71
556	Long-Term Stability of Bacterial Associations in a Microcosm of Ostreococcus tauri (Chlorophyta,) Tj ETQq0 0 0 r	gBT_/Overl	lock 10 Tf 50
557	Water masses and their associated temperature and cross-domain biotic factors co-shape upwelling microbial communities. Water Research, 2022, 215, 118274.	5.3	17

#	Article	IF	CITATIONS
558	An overview on microalgal-bacterial granular consortia for resource recovery and wastewater treatment. Bioresource Technology, 2022, 351, 127028.	4.8	18
559	TiO2 nanoparticles exert an adverse effect on aquatic microbial communities. Science of the Total Environment, 2022, 831, 154942.	3.9	6
560	Enhanced biomass production of Synechocystis sp. PCC 6803 by two associated bacteria Paenibacillus camelliae and Curtobacterium ammoniigenes. Archives of Microbiology, 2022, 204, 66.	1.0	2
561	Diel investments in metabolite production and consumption in a model microbial system. ISME Journal, 2022, 16, 1306-1317.	4.4	13
562	Effects of illumination time on biological community of algal-bacterial granules and lipid content. Environmental Engineering Research, 2022, 27, 210334-0.	1.5	1
563	Strong reorganization of multi-domain microbial networks associated with primary producers sedimentation from oxic to anoxic conditions in an hypersaline lake. FEMS Microbiology Ecology, 2022, 97, .	1.3	3
564	Three Novel Bacteria Associated with Two Centric Diatom Species from the Mediterranean Sea, Thalassiosira rotula and Skeletonema marinoi. International Journal of Molecular Sciences, 2021, 22, 13199.	1.8	5
565	Metagenomic Approaches to Explore the Quorum Sensing-Mediated Interactions Between Algae and Bacteria in Sequence Membrane Photo-Bioreactors. Frontiers in Bioengineering and Biotechnology, 2022, 10, 851376.	2.0	2
566	Chemotaxis shapes the microscale organization of the ocean's microbiome. Nature, 2022, 605, 132-138.	13.7	51
567	Microalgae-bacterial granular consortium: Striding towards sustainable production of biohydrogen coupled with wastewater treatment. Bioresource Technology, 2022, 354, 127203.	4.8	24
569	Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams. Nature Communications, 2022, 13, 2168.	5.8	25
570	Co-cultivation of Isochrysis galbana and Marinobacter sp. can enhance algal growth and docosahexaenoic acid production. Aquaculture, 2022, 556, 738248.	1.7	11
571	A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered, 2022, 13, 10412-10453.	1.4	48
572	Enhanced wastewater treatment performance by understanding the interaction between algae and bacteria based on quorum sensing. Bioresource Technology, 2022, 354, 127161.	4.8	24
652	Trait-Based Diatom Ecology. , 2022, , 3-27.		2
654	Towards a mechanistic understanding of microalgae–bacteria interactions: integration of metabolomic analysis and computational models. FEMS Microbiology Reviews, 2022, 46, .	3.9	5
656	An Ocean of Signals: Intracellular and Extracellular Signaling in Diatoms. , 2022, , 641-678.		3
657	The Diatom Microbiome: New Perspectives for Diatom-Bacteria Symbioses., 2022,, 679-712.		4

#	ARTICLE	IF	Citations
658	A metagenomic study of the bacteria in snow algae microbiomes. Canadian Journal of Microbiology, 2022, , .	0.8	1
659	Taxonomic and Bioactivity Characterizations of Mameliella alba Strain LZ-28 Isolated from Highly Toxic Marine Dinoflagellate Alexandrium catenella LZT09. Marine Drugs, 2022, 20, 321.	2.2	6
660	Abundance and Diversity of Dimethylsulfoniopropionate Degradation Genes of Roseobacter Group in the Northern South China Sea. Frontiers in Marine Science, 2022, 9, .	1.2	0
661	Exploring the Interactions Between Algae and Bacteria. Mini-Reviews in Medicinal Chemistry, 2022, 22, 2596-2607.	1.1	5
662	Gene Transfer Agent g5 Gene Reveals Bipolar and Endemic Distribution of Roseobacter Clade Members in Polar Coastal Seawater. Diversity, 2022, 14, 392.	0.7	1
663	Exploring the onset of <scp>B₁₂</scp> â€based mutualisms using a recently evolved <scp><i>Chlamydomonas</i></scp> auxotroph and <scp>B₁₂</scp> â€producing bacteria. Environmental Microbiology, 2022, 24, 3134-3147.	1.8	14
664	Bioactive Compounds for Quorum Sensing Signal-Response Systems in Marine Phycosphere. Journal of Marine Science and Engineering, 2022, 10, 699.	1.2	3
665	Inhibitory Effect of Isolated Bacteria from the Phycosphere of Levanderina fissa on the Growth of Different Microalgae. Frontiers in Marine Science, 2022, 9, .	1.2	0
666	Community Interaction Co-limitation: Nutrient Limitation in a Marine Microbial Community Context. Frontiers in Microbiology, 2022, 13, .	1.5	7
667	Trans-kingdom interactions in mixed biofilm communities. FEMS Microbiology Reviews, 2022, 46, .	3.9	12
668	Disentangling the Mechanisms Shaping the Prokaryotic Communities in a Eutrophic Bay. Microbiology Spectrum, 2022, 10, .	1.2	3
669	Functional Insights into the Kelp Microbiome from Metagenome-Assembled Genomes. MSystems, 2022, 7, .	1.7	26
670	Using hierarchical stable isotope to reveal microbial food web structure and trophic transfer efficiency differences during lake melt season. Science of the Total Environment, 2022, 842, 156893.	3.9	2
671	Bacterial Community Assembly, Succession, and Metabolic Function during Outdoor Cultivation of <i>Microchloropsis salina</i> . MSphere, 2022, 7, .	1.3	5
672	Physiology of Algae. Impact of Meat Consumption on Health and Environmental Sustainability, 2022, , 140-174.	0.4	0
673	Impact of Quorum Sensing and Tropodithietic Acid Production on the Exometabolome of Phaeobacter inhibens. Frontiers in Microbiology, $0,13,.$	1.5	0
674	Understanding the Variation of Bacteria in Response to Summertime Oxygen Depletion in Water Column of Bohai Sea. Frontiers in Microbiology, 0, 13 , .	1.5	3
675	Cross-feeding between cyanobacterium Synechococcus and Escherichia coli in an artificial autotrophic–heterotrophic coculture system revealed by integrated omics analysis. , 2022, 15, .		5

#	Article	IF	CITATIONS
676	The Differential Responses of Coastal Diatoms to Ocean Acidification and Warming: A Comparison Between Thalassiosira sp. and Nitzschia closterium f.minutissima. Frontiers in Microbiology, $0,13,1$	1.5	3
677	Gradient rise in seepage pollution levels in tailings ponds shapes closer linkages between phytoplankton and bacteria. Journal of Hazardous Materials, 2022, 437, 129432.	6.5	7
678	Revisiting algal lipids and cellular stress-causing strategies for ameliorating the productivity of suitable lipids of microalgae for biofuel applications. Sustainable Energy and Fuels, 2022, 6, 3907-3925.	2.5	1
679	Microbiomes of bloom-forming <i>Phaeocystis</i> algae are stable and consistently recruited, with both symbiotic and opportunistic modes. ISME Journal, 2022, 16, 2255-2264.	4.4	19
680	The Small-Molecule Language of Dynamic Microbial Interactions. Annual Review of Microbiology, 2022, 76, 641-660.	2.9	4
681	Uptake of Phytoplankton-Derived Carbon and Cobalamins by Novel <i>Acidobacteria</i> Genera in <i>Microcystis</i> Blooms Inferred from Metagenomic and Metatranscriptomic Evidence. Applied and Environmental Microbiology, 2022, 88, .	1.4	7
682	Bacterial exudates as growthâ€promoting agents for the cultivation of commercially relevant marine microalgal strains. Journal of the World Aquaculture Society, 2022, 53, 1101-1119.	1.2	5
683	Diversity of Free-Living and Particle-Attached Prokaryotes in a River-Influenced Coastal Area of the Northern Adriatic Sea. Frontiers in Marine Science, 0, 9, .	1.2	2
684	Microalgae-based wastewater treatment – Microalgae-bacteria consortia, multi-omics approaches and algal stress response. Science of the Total Environment, 2022, 845, 157110.	3.9	54
685	Novel Interactions Between Phytoplankton and Bacteria Shape Microbial Seasonal Dynamics in Coastal Ocean Waters. Frontiers in Marine Science, 0, 9, .	1.2	7
686	A review on algal-bacterial symbiosis system for aquaculture tail water treatment. Science of the Total Environment, 2022, 847, 157620.	3.9	14
687	Metabolic Phenotyping of Marine Heterotrophs on Refactored Media Reveals Diverse Metabolic Adaptations and Lifestyle Strategies. MSystems, 2022, 7, .	1.7	5
688	Bacterial exometabolites influence <i>Chlamydomonas</i> cell cycle and double algal productivity. FEMS Microbiology Ecology, 2022, 98, .	1.3	1
689	Heterogeneous Growth Enhancement of Vibrio cholerae in the Presence of Different Phytoplankton Species. Applied and Environmental Microbiology, 0, , .	1.4	2
690	Synergy between microalgae and microbiome in polluted waters. Trends in Microbiology, 2023, 31, 9-21.	3.5	26
691	Active meiosis during dinoflagellate blooms: A  sex for proliferation' hypothesis. Harmful Algae, 2022, 118, 102307.	2.2	7
692	Understanding the influence of free nitrous acid on microalgal-bacterial consortium in wastewater treatment: A critical review. Bioresource Technology, 2022, 363, 127916.	4.8	11
693	Diatoms: the Living Jewels and their Biodiversity, Phycosphere and Associated Phenotypic Plasticity: A Lesson to Learn from the Current Pandemic of Coronavirus. , 2022, , 385-429.		0

#	Article	IF	CITATIONS
694	Algae-Bacteria Interactomics Unveils Their Role in Growth and Production of High-Value Biorenewables. Clean Energy Production Technologies, 2022, , 165-176.	0.3	0
695	Flavobacterial exudates disrupt cell cycle progression and metabolism of the diatom <i>Thalassiosira pseudonana</i> . ISME Journal, 2022, 16, 2741-2751.	4.4	8
698	Estuarine microbial networks and relationships vary between environmentally distinct communities. PeerJ, 0, 10, e14005.	0.9	1
699	The microbiome of the dinoflagellate Prorocentrum cordatum in laboratory culture and its changes at higher temperatures. Frontiers in Microbiology, $0,13,.$	1.5	3
700	More than just hitchhikers: a survey of bacterial communities associated with diatoms originating from sea turtles. FEMS Microbiology Ecology, 2022, 98, .	1.3	2
701	A half-century of research on microalgae-bacteria for wastewater treatment. Algal Research, 2022, 67, 102828.	2.4	17
702	Frequent antibiotic exposure stabilized the associated bacterial community while altering physiological and biochemical characteristics of the coccolithophore Chrysotila roscoffensis. Algal Research, 2022, 67, 102807.	2.4	3
703	Selection, drift and community interactions shape microbial biogeographic patterns in the Pacific Ocean. ISME Journal, 2022, 16, 2653-2665.	4.4	27
704	Iron-dependent mutualism between <i>Chlorella sorokiniana</i> and <i>Ralstonia pickettii</i> forms the basis for a sustainable bioremediation system. ISME Communications, 2022, 2, .	1.7	12
705	Chemotaxonomic patterns in intracellular metabolites of marine microbial plankton. Frontiers in Marine Science, 0, 9, .	1.2	6
706	Effects of green tide on microbial communities in waters of the Jiangsu coastal area, China. Water Environment Research, 0, , .	1.3	1
707	A tripartite model system for Southern Ocean diatom-bacterial interactions reveals the coexistence of competing symbiotic strategies. ISME Communications, 2022, 2, .	1.7	4
708	Identification of the bacteria associated to the phycosphere of the Chlorella-like strain SEC_LI_ChL_1. Algal Research, 2022, 67, 102869.	2.4	6
709	Quantification of dissolved metabolites in environmental samples through cationâ€exchange solidâ€phase extraction paired with liquid chromatography–mass spectrometry. Limnology and Oceanography: Methods, 2022, 20, 683-700.	1.0	4
711	Dynamic Diatom-Bacteria Consortia in Synthetic Plankton Communities. Applied and Environmental Microbiology, 2022, 88, .	1.4	10
712	Specific bacterial microbiome enhances the sexual reproduction and auxospore production of the marine diatom, Odontella. PLoS ONE, 2022, 17, e0276305.	1.1	1
713	Microbial ecology of the Southern Ocean. FEMS Microbiology Ecology, 2022, 98, .	1.3	3
714	Effects of Random Environmental Perturbation on the Dynamics of a Nutrient–Phytoplankton–Zooplankton Model with Nutrient Recycling. Mathematics, 2022, 10, 3783.	1.1	0

#	ARTICLE	IF	CITATIONS
715	Obtaining Bioproducts from the Studies of Signals and Interactions between Microalgae and Bacteria. Microorganisms, 2022, 10, 2029.	1.6	6
716	Benthic exometabolites and their ecological significance on threatened Caribbean coral reefs. ISME Communications, 2022, 2, .	1.7	10
717	Illuminating the dark metabolome of <i>Pseudoâ€nitzschia</i> –microbiome associations. Environmental Microbiology, 2022, 24, 5408-5424.	1.8	6
718	Scale-dependent enhancement of productivity and stability in xenic Nannochloropsis cultures. Algal Research, 2022, 68, 102892.	2.4	0
719	Nanoparticles and antibiotics stress proliferated antibiotic resistance genes in microalgae-bacteria symbiotic systems. Journal of Hazardous Materials, 2023, 443, 130201.	6.5	13
720	Periphytic biofilms-mediated microbial interactions and their impact on the nitrogen cycle in rice paddies., 2022, 1, 172-180.		16
721	Phototroph-heterotroph interactions during growth and long-term starvation across <i>Prochlorococcus</i> and <i>Alteromonas</i> li> diversity. ISME Journal, 2023, 17, 227-237.	4.4	4
722	Bacterial dynamics along the west coast of India during the non-monsoon and monsoon season. Continental Shelf Research, 2022, 251, 104876.	0.9	4
723	Development of marine activated algal-bacterial granule: A novel replacement to the conventional algal remediation processes. Algal Research, 2023, 69, 102914.	2.4	1
724	The roles of bacteria in resource recovery, wastewater treatment and carbon fixation by microalgae-bacteria consortia: A critical review. Algal Research, 2023, 69, 102938.	2.4	4
725	Exploring the phycosphere of <i>Emiliania huxleyi</i> : From bloom dynamics to microbiome assembly experiments. Molecular Ecology, 2023, 32, 6507-6522.	2.0	6
726	Protists, Unexpected Players in Waterborne Antibiotic Resistance?. Reviews of Environmental Contamination and Toxicology, 2022, 260, .	0.7	1
728	Functional responses of key marine bacteria to environmental change $\hat{a} \in \text{``toward genetic counselling for coastal waters. Frontiers in Microbiology, 0, 13, .}$	1.5	2
729	Fight for carbon neutrality with state-of-the-art negative carbon emission technologies. , 2022, 1, 259-279.		18
730	Effects of phytoplankton, viral communities, and warming on free-living and particle-associated marine prokaryotic community structure. Nature Communications, 2022, 13, .	5.8	10
731	ConCISE: Consensus Annotation Propagation of Ion Features in Untargeted Tandem Mass Spectrometry Combining Molecular Networking and In Silico Metabolite Structure Prediction. Metabolites, 2022, 12, 1275.	1.3	7
732	Structure-Function Covariation of Phycospheric Microorganisms Associated with the Typical Cross-Regional Harmful Macroalgal Bloom. Applied and Environmental Microbiology, 0, , .	1.4	0
733	Studies of Lacustrine Phytoperiphyton: Current Trends and Prospects Considering Algae-Bacteria Interactions. Russian Journal of Ecology, 2022, 53, 478-484.	0.3	1

#	Article	IF	CITATIONS
734	Distinct glycoconjugate cell surface structures make the pelagic diatom <i>Thalassiosira rotula </i> an attractive habitat for bacteria. Journal of Phycology, 2023, 59, 309-322.	1.0	4
735	Emergence of an Auxin Sensing Domain in Plant-Associated Bacteria. MBio, 2023, 14, .	1.8	5
736	Complete Genome Sequence of a Cognatishimia activa Strain Assembled from the Phycosphere of the Marine Diatom Skeletonema tropicum. Microbiology Resource Announcements, 0, , .	0.3	0
737	Microalgal Consortia for Waste Treatment and Valuable Bioproducts. Energies, 2023, 16, 884.	1.6	2
738	Mutualistic Interactions between Dinoflagellates and Pigmented Bacteria Mitigate Environmental Stress. Microbiology Spectrum, 2023, 11 , .	1.2	6
739	Bacterial lifestyle switch in response to algal metabolites. ELife, 0, 12, .	2.8	20
740	How toxic is the COVID-19 drug azithromycin in the presence of Posidonia oceanica? Toxicokinetics and experimental approach of meiobenthic nematodes from a metallically pristine area. Environmental Pollution, 2023, 319, 121007.	3.7	1
741	Effects of Phycosphere Bacteria on Their Algal Host Are Host Species-Specific and Not Phylogenetically Conserved. Microorganisms, 2023, 11, 62.	1.6	2
743	Viral infection switches the balance between bacterial and eukaryotic recyclers of organic matter during coccolithophore blooms. Nature Communications, 2023, 14, .	5.8	11
745	Highâ€resolution phylogenetic analysis reveals longâ€term microbial dynamics and microdiversity in phytoplankton microbiome. Journal of Eukaryotic Microbiology, 2023, 70, .	0.8	2
746	Protists at the plant-bacterial interface: Impacts and prospective applications. Physiological and Molecular Plant Pathology, 2023, 125, 102011.	1.3	2
747	The structure changes of microbial food web during the culture of grass carp larvae. Aquaculture, 2023, 570, 739421.	1.7	1
748	Microbiome diversity from sponges biogeographically distributed between South America and Antarctica. Science of the Total Environment, 2023, 879, 163256.	3.9	1
749	Learning from mistakes: challenges in finding holobiont factors from environmental samples and the importance of methodological consistency. Current Opinion in Biotechnology, 2023, 80, 102897.	3.3	3
750	Microbial community composition and metabolic potential during a succession of algal blooms from Skeletonema sp. to Phaeocystis sp Frontiers in Microbiology, $0,14,.$	1.5	2
751	The holobiome of marine harmful algal blooms (HABs): A novel ecosystem-based approach for implementing predictive capabilities and managing decisions. Environmental Science and Policy, 2023, 143, 44-54.	2.4	3
752	Structural and Functional Changes in Bacterial Population of the Lake as a Response to Hydrotechnical Construction (by Example of Opechen Nyzhne Lake, Kyiv, Ukraine). Hydrobiological Journal, 2023, 59, 67-80.	0.2	0
753	Transitional traits determine the acclimation characteristics of the coccolithophore <i>Chrysotila dentata</i> to ocean warming and acidification. Environmental Microbiology, 2023, 25, 1099-1117.	1.8	1

#	Article	IF	CITATIONS
754	Chemotaxis increases metabolic exchanges between marine picophytoplankton and heterotrophic bacteria. Nature Microbiology, 2023, 8, 510-521.	5.9	13
755	Chlamydomonas reinhardtii, a Reference Organism to Study Algal–Microbial Interactions: Why Can't They Be Friends?. Plants, 2023, 12, 788.	1.6	2
756	The birth of a giant: evolutionary insights into the origin of auxin responses in plants. EMBO Journal, 2023, 42, .	3 . 5	15
758	Unravelling microalgal-bacterial interactions in aquatic ecosystems through 16S rRNA gene-based co-occurrence networks. Scientific Reports, 2023, 13, .	1.6	8
759	Algal-fungal interactions and biomass production in wastewater treatment: Current status and future perspectives. Algal Research, 2023, 70, 103021.	2.4	4
760	Evolutionary dynamics of hyperbolic language. PLoS Computational Biology, 2023, 19, e1010872.	1.5	1
761	Response of bacterial communities (Marivita, Marinobacter, and Oceanicaulis) in the phycosphere to the growth of Phaeodactylum tricornutum in different inorganic nitrogen sources. Frontiers in Marine Science, 0, 10, .	1.2	0
762	From the Sunlit to the Aphotic Zone: Assembly Mechanisms and Co-Occurrence Patterns of Protistan-Bacterial Microbiotas in the Western Pacific Ocean. MSystems, 2023, 8, .	1.7	5
763	The coral microbiome: towards an understanding of the molecular mechanisms of coral–microbiota interactions. FEMS Microbiology Reviews, 2023, 47, .	3.9	15
764	Vitamin B12 is not shared by all marine prototrophic bacteria with their environment. ISME Journal, 2023, 17, 836-845.	4.4	14
765	Effect of ocean acidification on the growth, response and hydrocarbon degradation of coccolithophore-bacterial communities exposed to crude oil. Scientific Reports, 2023, 13, .	1.6	1
766	Distinct algae–bacteria interactions driven by DMSP between different microalgae and the phycosphere bacterium Sulfitobacter pseudonitzschiae H46. Marine Ecology - Progress Series, 0, , .	0.9	0
767	Genomic Islands in Pseudomonas Species. , 2023, , 233-253.		0
768	A review on microalgal-bacterial co-culture: The multifaceted role of beneficial bacteria towards enhancement of microalgal metabolite production. Environmental Research, 2023, 228, 115872.	3.7	20
770	The microbiome of the endosymbiotic Symbiodiniaceae in corals exposed to thermal stress. Hydrobiologia, 2023, 850, 3685-3704.	1.0	4
771	Recent Advances on Using Functional Materials to Increase the Pollutant Removal Capabilities of Microalgae and Bacteria: Especially for Their Symbiotic Systems. Current Pollution Reports, 0, , .	3.1	0
775	Molecular discoveries in microbial DMSP synthesis. Advances in Microbial Physiology, 2023, , 59-116.	1.0	2
804	Progress and challenges in exploring aquatic microbial communities using non-targeted metabolomics. ISME Journal, 2023, 17, 2147-2159.	4.4	1

#	Article	IF	CITATIONS
808	Algal blooms in the ocean: hot spots for chemically mediated microbial interactions. Nature Reviews Microbiology, 2024, 22, 138-154.	13.6	1
841	Application and Mechanism Analysis of Photosynthetic Microbial Coculture Systems for Bioproduction., 2023,, 32-53.		O