Copula based drought frequency analysis considering the Southwest China

Journal of Hydrology 527, 630-640 DOI: 10.1016/j.jhydrol.2015.05.030

Citation Report

#	Article	IF	CITATIONS
1	Temporal and Spatial Variability of Droughts in Southwest China from 1961 to 2012. Sustainability, 2015, 7, 13597-13609.	1.6	22
2	Evaluation of Satellite and Reanalysis Soil Moisture Products over Southwest China Using Ground-Based Measurements. Remote Sensing, 2015, 7, 15729-15747.	1.8	86
3	Assessment of Meteorological Drought in Korea under Climate Change. Advances in Meteorology, 2016, 2016, 1-13.	0.6	21
4	Variations in the Runoff-Sediment Relationship of the Weihe River Basin Based on the Copula Function. Water (Switzerland), 2016, 8, 223.	1.2	13
5	Conditional Copula-Based Spatial–Temporal Drought Characteristics Analysis—A Case Study over Turkey. Water (Switzerland), 2016, 8, 426.	1.2	24
6	Use of a nonstationary copula to predict future bivariate low flow frequency in the Connecticut river basin. Hydrological Processes, 2016, 30, 3518-3532.	1.1	41
7	A Hybrid Index for Characterizing Drought Based on a Nonparametric Kernel Estimator. Journal of Applied Meteorology and Climatology, 2016, 55, 1377-1389.	0.6	13
8	Multivariate Copula-Based Joint Probability Distribution of Water Supply and Demand in Irrigation District. Water Resources Management, 2016, 30, 2361-2375.	1.9	20
9	Drought frequency change: An assessment in northern India plains. Agricultural Water Management, 2016, 176, 111-121.	2.4	20
10	Copula-based drought risk assessment combined with an integrated index in the Wei River Basin, China. Journal of Hydrology, 2016, 540, 824-834.	2.3	157
11	Review of dependence modeling in hydrology and water resources. Progress in Physical Geography, 2016, 40, 549-578.	1.4	89
12	Parameter estimation of copula functions using an optimization-based method. Theoretical and Applied Climatology, 2017, 129, 21-32.	1.3	27
13	Regional bivariate modeling of droughts using L-comoments and copulas. Stochastic Environmental Research and Risk Assessment, 2017, 31, 1199-1210.	1.9	30
14	Variations in precipitation and runoff from a multivariate perspective in the Wei River Basin, China. Quaternary International, 2017, 440, 30-39.	0.7	9
15	An integrated package for drought monitoring, prediction and analysis to aid drought modeling and assessment. Environmental Modelling and Software, 2017, 91, 199-209.	1.9	62
16	Quantitative and detailed spatiotemporal patterns of drought in China during 2001–2013. Science of the Total Environment, 2017, 589, 136-145.	3.9	60
17	Optimal moment determination in POME-copula based hydrometeorological dependence modelling. Advances in Water Resources, 2017, 105, 39-50.	1.7	13
18	Spatial hydrological drought characteristics in Karkheh River basin, southwest Iran using copulas. Journal of Earth System Science, 2017, 126, 1.	0.6	27

#	Article	IF	CITATIONS
19	Copula-based probability of concurrent hydrological drought in the Poyang lake-catchment-river system (China) from 1960 to 2013. Journal of Hydrology, 2017, 553, 773-784.	2.3	74
20	On the coupling between precipitation and potential evapotranspiration: contributions to decadal drought anomalies in the Southwest China. Climate Dynamics, 2017, 48, 3779-3797.	1.7	52
21	Temporal Evolution of Regional Drought Detected from GRACE TWSA and CCI SM in Yunnan Province, China. Remote Sensing, 2017, 9, 1124.	1.8	29
22	Analysis of Changes in Spatio-Temporal Patterns of Drought across South Korea. Water (Switzerland), 2017, 9, 679.	1.2	20
23	Probabilistic modelling of drought events in China via 2-dimensional joint copula. Journal of Hydrology, 2018, 559, 373-391.	2.3	72
24	Evaluating satellite-based precipitation products in monitoring drought events in southwest China. International Journal of Remote Sensing, 2018, 39, 3186-3214.	1.3	22
25	New approach in bivariate drought duration and severity analysis. Journal of Hydrology, 2018, 559, 166-181.	2.3	45
26	Comprehensive assessment of drought risk in the arid region of Northwest China based on the global palmer drought severity index gridded data. Science of the Total Environment, 2018, 627, 951-962.	3.9	59
27	Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index. Journal of Hydrology, 2018, 557, 651-667.	2.3	88
28	Estimation of return period and its uncertainty for the recent 2013–2015 drought in the Han River watershed in South Korea. Hydrology Research, 2018, 49, 1313-1329.	1.1	3
29	Assessment of Temporally Conditioned Runoff Fractions in Unregulated Rivers. Journal of Hydrologic Engineering - ASCE, 2018, 23, .	0.8	18
30	Increasing drought has been observed by SPEI_pm in Southwest China during 1962–2012. Theoretical and Applied Climatology, 2018, 133, 23-38.	1.3	27
31	A comparative frequency analysis of three standardized drought indices in the Poyang Lake basin, China. Natural Hazards, 2018, 91, 353-374.	1.6	11
32	Bivariate frequency analysis of flood and extreme precipitation under changing environment: case study in catchments of the Loess Plateau, China. Stochastic Environmental Research and Risk Assessment, 2018, 32, 2057-2074.	1.9	20
33	Reliability–Resiliency–Vulnerability Approach for Drought Analysis in South Korea Using 28 GCMs. Sustainability, 2018, 10, 3043.	1.6	32
34	Joint Risk of Rainfall and Storm Surges during Typhoons in a Coastal City of Haidian Island, China. International Journal of Environmental Research and Public Health, 2018, 15, 1377.	1.2	28
35	Space-time characterization of drought events and their impacts on vegetation in Central Asia. Journal of Hydrology, 2018, 564, 1165-1178.	2.3	112
36	Using Copulas to Evaluate Rationality of Rainfall Spatial Distribution in a Design Storm. Water (Switzerland), 2018, 10, 758.	1.2	4

# 37	ARTICLE Assessment of regional drought risk under climate change using bivariate frequency analysis. Stochastic Environmental Research and Risk Assessment, 2018, 32, 3439-3453.	lF 1.9	Citations
38	Multivariate probabilistic estimates of heat stress for rice across China. Stochastic Environmental Research and Risk Assessment, 2018, 32, 3137-3150.	1.9	7
39	Spatiotemporal variations of aridity in China during 1961–2015: decomposition and attribution. Science Bulletin, 2018, 63, 1187-1199.	4.3	26
40	Copula Theory. Springer Water, 2019, , 13-38.	0.2	2
41	Utilization status of rainwater harvesting and its improvement techniques in bare karst areas for domestic use and ecological restoration. Carbonates and Evaporites, 2019, 34, 1381-1390.	0.4	6
42	Three dimensional characterization of meteorological and hydrological droughts and their probabilistic links. Journal of Hydrology, 2019, 578, 124016.	2.3	65
43	Data-based bivariate uncertainty assessment of extreme rainfall-runoff using copulas: comparison between annual maximum series (AMS) and peaks over threshold (POT). Environmental Monitoring and Assessment, 2019, 191, 67.	1.3	16
44	A Continuous Drought Probability Monitoring System, CDPMS, Based on Copulas. Water (Switzerland), 2019, 11, 1925.	1.2	17
45	Copula-based frequency analysis of drought with identified characteristics in space and time: a case study in Huai River basin, China. Theoretical and Applied Climatology, 2019, 137, 2865-2875.	1.3	11
46	Compound effects of rainfall and storm tides on coastal flooding risk. Stochastic Environmental Research and Risk Assessment, 2019, 33, 1249-1261.	1.9	53
47	Copula based assessment of meteorological drought characteristics: Regional investigation of Iran. Agricultural and Forest Meteorology, 2019, 276-277, 107611.	1.9	79
48	Copulas-based bivariate socioeconomic drought dynamic risk assessment in a changing environment. Journal of Hydrology, 2019, 575, 1052-1064.	2.3	68
49	Quantifying the impacts of dams on riverine hydrology under non-stationary conditions using incomplete data and Gaussian copula models. Science of the Total Environment, 2019, 677, 599-611.	3.9	21
50	Assessment of candidate distributions for SPI/SPEI and sensitivity of drought to climatic variables in China. International Journal of Climatology, 2019, 39, 4392-4412.	1.5	64
51	Characterization of meteorological droughts across South Australia. Meteorological Applications, 2019, 26, 556-568.	0.9	16
52	Copulasâ€based risk analysis for interâ€seasonal combinations of wet and dry conditions under a changing climate. International Journal of Climatology, 2019, 39, 2005-2021.	1.5	75
53	A drought index: The standardized precipitation evapotranspiration runoff index. Journal of Hydrology, 2019, 571, 651-668.	2.3	48
54	Jointly Modeling Drought Characteristics with Smoothed Regionalized SPI Series for a Small Island. Water (Switzerland), 2019, 11, 2489.	1.2	11

#	Article	IF	CITATIONS
55	Drought Analysis. , 2019, , 489-536.		0
56	Copula-based joint probability distribution of water supply and demand in Luhun irrigation district. Water Science and Technology: Water Supply, 2019, 19, 932-943.	1.0	5
57	Development of a non-stationary Standardized Precipitation Index and its application to a South Australian climate. Science of the Total Environment, 2019, 657, 882-892.	3.9	51
58	Drought hotspot analysis and risk assessment using probabilistic drought monitoring and severity–duration–frequency analysis. Hydrological Processes, 2019, 33, 432-449.	1.1	22
59	Analysis of streamflow droughts using fixed and variable thresholds. Hydrological Processes, 2019, 33, 414-431.	1.1	18
60	Spatio-temporal variations in extreme drought in China during 1961–2015. Journal of Chinese Geography, 2019, 29, 67-83.	1.5	23
61	Multivariate Drought Frequency Analysis using Four-Variate Symmetric and Asymmetric Archimedean Copula Functions. Water Resources Management, 2019, 33, 103-127.	1.9	54
62	Developing a dual entropy-transinformation criterion for hydrometric network optimization based on information theory and copulas. Environmental Research, 2020, 180, 108813.	3.7	5
63	ls Southwest China drying or wetting? Spatiotemporal patterns and potential causes. Theoretical and Applied Climatology, 2020, 139, 1-15.	1.3	20
64	Severe drought events inducing large decrease of net primary productivity in mainland China during 1982–2015. Science of the Total Environment, 2020, 703, 135541.	3.9	60
65	Construction of 3D drought structures of meteorological drought events and their spatio-temporal evolution characteristics. Journal of Hydrology, 2020, 590, 125539.	2.3	15
66	A MCMC-based maximum entropy copula method for bivariate drought risk analysis of the Amu Darya River Basin. Journal of Hydrology, 2020, 590, 125502.	2.3	25
67	Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature, 2020, 586, 720-723.	13.7	320
68	Multidimensional Response Evaluation of Remote-Sensing Vegetation Change to Drought Stress in the Three-River Headwaters, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 6249-6259.	2.3	6
69	Joint Probability Study of Destructive Factors Related to the "Triad―Phenomenon during Typhoon Events in the Coastal Regions: Taking Jiangsu Province as an Example. Journal of Hydrologic Engineering - ASCE, 2020, 25, .	0.8	4
70	Spatio-Temporal Characteristics of Drought Events and Their Effects on Vegetation: A Case Study in Southern Tibet, China. Remote Sensing, 2020, 12, 4174.	1.8	8
71	National-Scale Variation and Propagation Characteristics of Meteorological, Agricultural, and Hydrological Droughts in China. Remote Sensing, 2020, 12, 3407.	1.8	26
72	Temporal and Spatial Characteristics of Multidimensional Extreme Precipitation Indicators: A Case Study in the Loess Plateau, China. Water (Switzerland), 2020, 12, 1217.	1.2	1

#	Article	IF	CITATIONS
73	Regionalization of drought severity–duration index across Iran. Natural Hazards, 2020, 103, 2813-2827.	1.6	13
74	Joint Modeling of Severe Dust Storm Events in Arid and Hyper Arid Regions Based on Copula Theory: A Case Study in the Yazd Province, Iran. Climate, 2020, 8, 64.	1.2	5
75	Analysis and Application of Drought Characteristics Based on Theory of Runs and Copulas in Yunnan, Southwest China. International Journal of Environmental Research and Public Health, 2020, 17, 4654.	1.2	19
76	Evidence for intensification of meteorological droughts in Oman over the past four decades. Atmospheric Research, 2020, 246, 105126.	1.8	24
77	Copula-based Joint Drought Index using SPI and EDDI and its application to climate change. Science of the Total Environment, 2020, 744, 140701.	3.9	71
78	Copula-based drought severity-area-frequency curve and its uncertainty, a case study of Heihe River basin, China. Hydrology Research, 2020, 51, 867-881.	1.1	17
79	A new framework for tracking flash drought events in space and time. Catena, 2020, 194, 104763.	2.2	49
80	A novel approach for longitudinal dispersion coefficient estimation via tri-variate archimedean copulas. Journal of Hydrology, 2020, 584, 124662.	2.3	8
81	Comprehensive evaluation of hydrological drought and its relationships with meteorological drought in the Yellow River basin, China. Journal of Hydrology, 2020, 584, 124751.	2.3	93
82	A probabilistic modeling framework for assessing the impacts of large reservoirs on river thermal regimes – A case of the Yangtze River. Environmental Research, 2020, 183, 109221.	3.7	12
83	Assessing agricultural drought risk and its dynamic evolution characteristics. Agricultural Water Management, 2020, 231, 106003.	2.4	116
84	Projected increases in magnitude and socioeconomic exposure of global droughts in 1.5Âand 2 °C warmer climates. Hydrology and Earth System Sciences, 2020, 24, 451-472.	1.9	69
85	Vine copula selection using mutual information for hydrological dependence modeling. Environmental Research, 2020, 186, 109604.	3.7	31
86	Bivariate Assessment of Drought Return Periods and Frequency in Brazilian Northeast Using Joint Distribution by Copula Method. Geosciences (Switzerland), 2020, 10, 135.	1.0	35
87	Modified Maximum Pseudo Likelihood Method of Copula Parameter Estimation for Skewed Hydrometeorological Data. Water (Switzerland), 2020, 12, 1182.	1.2	1
88	Human–Environment Natural Disasters Interconnection in China: A Review. Climate, 2020, 8, 48.	1.2	64
89	Copula-Based Multivariate Frequency Analysis of the 2012–2018 Drought in Northeast Brazil. Water (Switzerland), 2020, 12, 834.	1.2	48
90	Copula based analysis of meteorological drought and catchment resilience across Indian river basins. International Journal of Climatology, 2021, 41, E1137.	1.5	8

#	Article	IF	CITATIONS
91	Vegetation vulnerability and resistance to hydrometeorological stresses in water- and energy-limited watersheds based on a Bayesian framework. Catena, 2021, 196, 104879.	2.2	32
92	Application of PSO Method for Archimedean Copula Parameter Estimation in Flood (Rain) and Tide Joint Distribution Analysis. Journal of Hydrologic Engineering - ASCE, 2021, 26, .	0.8	5
93	Copula based analysis of meteorological, hydrological and agricultural drought characteristics across Indian river basins. International Journal of Climatology, 2021, 41, 4637-4652.	1.5	65
94	Assessing the responses of hydrological drought to meteorological drought in the Huai River Basin, China. Theoretical and Applied Climatology, 2021, 144, 1043-1057.	1.3	17
96	Regional GNSS-Derived SPCI: Verification and Improvement in Yunnan, China. Remote Sensing, 2021, 13, 1918.	1.8	10
97	Analysis of Drought Characteristics in Northern Shaanxi Based on Copula Function. Water (Switzerland), 2021, 13, 1445.	1.2	6
98	Copula-Based Risk Analysis of Agricultural Water Shortage under Natural Precipitation Conditions in the Guanzhong Plain, a Drought-Prone Region of China. Journal of Hydrologic Engineering - ASCE, 2021, 26, .	0.8	6
99	Spatiotemporal Characteristics of Drought in the North China Plain over the Past 58 Years. Atmosphere, 2021, 12, 844.	1.0	11
100	Copula-based risk evaluation of global meteorological drought in the 21st century based on CMIP5 multi-model ensemble projections. Journal of Hydrology, 2021, 598, 126265.	2.3	18
101	Spatio-temporal variation and future risk assessment of projected drought events in the Godavari River basin using regional climate models. Journal of Water and Climate Change, 2021, 12, 3240-3263.	1.2	11
102	Use of sustainability index and cellular automata-Markov model to determine and predict long-term spatio-temporal variation of drought in China. Journal of Hydrology, 2021, 598, 126248.	2.3	15
103	A weighted ensemble of regional climate projections for exploring the spatiotemporal evolution of multidimensional drought risks in a changing climate. Climate Dynamics, 2022, 58, 49-68.	1.7	6
104	A maximum entropy copula-based frequency analysis method for assessing bivariate drought risk: a case study of the Kaidu River Basin. Journal of Water and Climate Change, 2022, 13, 175-189.	1.2	10
105	Divergent impacts of droughts on vegetation phenology and productivity in the Yungui Plateau, southwest China. Ecological Indicators, 2021, 127, 107743.	2.6	49
106	Multivariate analysis of concurrent droughts and their effects on Kharif crops—A copulaâ€based approach. International Journal of Climatology, 2022, 42, 2773-2794.	1.5	4
107	Groundwater Drought and Cycles in Xuchang City, China. Frontiers in Earth Science, 2021, 9, .	0.8	3
108	River Runoff Modelling and Hydrological Drought Assessment Based on High-Resolution Brightness Temperatures in Mainland China. Water (Switzerland), 2021, 13, 2429.	1.2	1
109	Dynamic evolution and frequency analysis of hydrological drought from a threeâ€dimensional perspective. Journal of Hydrology, 2021, 600, 126675.	2.3	15

#	Article	IF	CITATIONS
110	Likelihood of compound dry and hot extremes increased with stronger dependence during warm seasons. Atmospheric Research, 2021, 260, 105692.	1.8	29
111	Integrated meteorological drought monitoring framework using multi-sensor and multi-temporal earth observation datasets and machine learning algorithms: A case study of central India. Journal of Hydrology, 2021, 601, 126638.	2.3	22
112	A time-varying drought identification and frequency analyzation method: A case study of Jinsha River Basin. Journal of Hydrology, 2021, 603, 126864.	2.3	14
113	The spatiotemporal variations and propagation of droughts in Plateau Mountains of China. Science of the Total Environment, 2022, 805, 150257.	3.9	33
115	Spatio-temporal analysis of maximum drought severity using Copulas in Northern Algeria. Journal of Water and Climate Change, 2020, 11, 68-84.	1.2	23
116	Characterizing and Monitoring Drought over Upper Blue Nile of Ethiopia with the Aid of Copula Analysis. International Journal of Environment and Climate Change, 0, , 283-294.	0.0	1
117	Comparison of the Calculated Drought Return Periods Using Tri-variate and Bivariate Copula Functions Under Climate Change Condition. Water Resources Management, 2021, 35, 4855-4875.	1.9	10
118	Research on meteorological drought in the middle and lower reaches of the Yangtze River. Journal of Natural Resources, 2019, 34, 374.	0.4	1
119	A generalized bivariate copula for flood analysis in Peninsular Malaysia. Malaysian Journal of Fundamental and Applied Sciences, 2019, 15, 38-49.	0.4	0
120	Returning Periods of Drought and Climate Change in the Zayandeh Rud River Basin. , 2020, , 107-139.		0
121	Long-term changes in surface soil moisture based on CCI SM in Yunnan Province, Southwestern China. Journal of Hydrology, 2020, 588, 125083.	2.3	5
122	The socio-ecological system of the pre-Sahara zone of Morocco: a conceptual framework to analyse the impact of drought and desertification. Geo Journal, 2022, 87, 4961-4974.	1.7	13
123	Assessment and management of composite risk in irrigated agriculture under water-food-energy nexus and uncertainty. Agricultural Water Management, 2022, 262, 107322.	2.4	17
124	Spatioâ€ŧemporal analysis of copulaâ€based probabilistic multivariate drought index using <scp>CMIP6</scp> model. International Journal of Climatology, 2022, 42, 4333-4350.	1.5	13
125	Multi-type assessment of global droughts and teleconnections. Weather and Climate Extremes, 2021, 34, 100402.	1.6	8
126	Spatio-temporal pattern of ecological droughts and their impacts on health of vegetation in Northwestern China. Journal of Environmental Management, 2022, 305, 114356.	3.8	23
127	Local trend analysis method of hydrological time series based on piecewise linear representation and hypothesis test. Journal of Cleaner Production, 2022, 339, 130695.	4.6	5
128	Multivariate global agricultural drought frequency analysis using kernel density estimation. Ecological Engineering, 2022, 177, 106550.	1.6	15

#	Article	IF	CITATIONS
129	Spatiotemporal Characteristics of Droughts and Their Propagation during the Past 67 Years in Northern Thailand. Atmosphere, 2022, 13, 277.	1.0	5
130	A voxel-based three-dimensional framework for flash drought identification in space and time. Journal of Hydrology, 2022, 608, 127568.	2.3	13
131	Spatiotemporal evolution and the driving factors of meteorological drought in the Hun-Taizi River basin, NE China. Journal of Water and Climate Change, 2022, 13, 1326-1339.	1.2	7
132	Drought Characteristics Encompassing Climate Indices in the Yangtze River Basin Using Nonstationary and Copula-Based Methods. Journal of Applied Meteorology and Climatology, 2022, 61, 473-487.	0.6	2
133	Uncertainty Analysis of Flood Control Design Under Multiple Floods. Water Resources Management, 2022, 36, 1175-1189.	1.9	3
134	Monitoring of Extreme Agricultural Drought of the Past 20 Years in Southwest China Using GLDAS Soil Moisture. Remote Sensing, 2022, 14, 1323.	1.8	19
135	Spatio-Temporal Differentiation Characteristic and Evolution Process of Meteorological Drought in Northwest China From 1960 to 2018. Frontiers in Earth Science, 2022, 10, .	0.8	6
136	Dryness–Wetness Encounter Probabilities' Analysis for Lake Ecological Water Replenishment Considering Non-Stationarity Effects. Frontiers in Environmental Science, 2022, 10, .	1.5	2
137	Toward coupling of groundwater drawdown and pumping time in a constant discharge. Applied Water Science, 2022, 12, 1.	2.8	4
138	Propagation dynamics and causes of hydrological drought in response to meteorological drought at seasonal timescales. Hydrology Research, 2022, 53, 193-205.	1.1	20
139	Quantifying uncertainty in multivariate quantile estimation of hydrometeorological extremes via copula: A comparison between bootstrapping and Markov chain Monte Carlo. International Journal of Climatology, 0, , .	1.5	1
140	Meteorological and agricultural drought monitoring in Southwest of Iran using a remote sensing-based combined drought index. Stochastic Environmental Research and Risk Assessment, 2022, 36, 3707-3724.	1.9	9
141	Response of Ecohydrological Variables to Meteorological Drought under Climate Change. Remote Sensing, 2022, 14, 1920.	1.8	7
142	Analysis of Hydrologic Drought Frequency Using Multivariate Copulas in Shaying River Basin. Water (Switzerland), 2022, 14, 1306.	1.2	7
143	Propagation characteristics and mechanism from meteorological to agricultural drought in various seasons. Journal of Hydrology, 2022, 610, 127897.	2.3	30
144	Meteorological drought analysis using copula theory for the case of upper Tekeze river basin, Northern Ethiopia. Theoretical and Applied Climatology, 2022, 149, 621-638.	1.3	9
145	Impacts of climate change on global meteorological multi-year droughts using the last millennium simulation as a baseline. Journal of Hydrology, 2022, 610, 127937.	2.3	3
146	Copula based hydrological drought probability analysis in the Lake Dongting-catchment-Yangtze River system. Hupo Kexue/Journal of Lake Sciences, 2022, 34, 1319-1334.	0.3	4

#	Article	IF	CITATIONS
147	Spatial based drought assessment: Where are we heading? A review on the current status and future. Science of the Total Environment, 2022, 844, 157239.	3.9	16
148	Assessment of Seasonal Rainfall Drought Indices, Nyala City Sudan. Agriculture (Switzerland), 2022, 12, 1069.	1.4	3
149	Meteorological and hydrological drought risks under changing environment on the Wanquan River Basin, Southern China. Natural Hazards, 2022, 114, 2941-2967.	1.6	3
150	Meteorological Drought Migration CharacterisiticsÂBased on an Improved Spatiotemporal Structure Approach. SSRN Electronic Journal, 0, , .	0.4	0
151	Identification and risk assessment of flash drought in the Pearl River basin based on the Standardized Evaporative Stress Ratio. Theoretical and Applied Climatology, 2022, 150, 1513-1529.	1.3	5
152	Responses of vegetation yield to precipitation and reference evapotranspiration in a desert steppe in Inner Mongolia, China. Journal of Arid Land, 2023, 15, 477-490.	0.9	1
153	Estimating propagation probability from meteorological to ecological droughts using a hybrid machine learning copula method. Hydrology and Earth System Sciences, 2023, 27, 559-576.	1.9	18
154	Modelación probabilÃstica de la relación entre ENSO y sequÃas agrÃcolas en el sur de Perú. , 2023, 28, 59-68.		0
156	Differences in phytohormone and flavonoid metabolism explain the sex differences in responses of <i>Salix rehderiana</i> to drought and nitrogen deposition. Plant Journal, 2023, 114, 534-553.	2.8	5
157	An entropy and copula-based framework for streamflow prediction and spatio-temporal identification of drought. Stochastic Environmental Research and Risk Assessment, 2023, 37, 2187-2204.	1.9	1
158	Constructing a new irrigation model for desert riparian forests based on response of canopy EVI loss and tree rings growth to groundwater fluctuation. Ecological Indicators, 2023, 148, 110060.	2.6	1
159	Historical agricultural drought patterns and drought-related factors over western China. Hydrological Sciences Journal, 2023, 68, 1016-1032.	1.2	0
169	Copula-Based Probabilistic Evaluation of Meteorological Drought Characteristics over India. Disaster Resilience and Green Growth, 2023, , 257-270.	0.2	0
170	A Case Study in Evaluating Spatiotemporal Variations in Drought and Its Risk Assessment over Telangana Using Satellite Data. Disaster Resilience and Green Growth, 2023, , 221-234.	0.2	0
176	Review article: Towards improved drought prediction in the Mediterranean region – modeling approaches and future directions. Natural Hazards and Earth System Sciences, 2023, 23, 3543-3583.	1.5	0
183	Comprehensive evaluation of distributed photovoltaic power randomness based on Copula function. , 2023, , .		0