Function-led design of new porous materials

Science 348, aaa8075

DOI: 10.1126/science.aaa8075

Citation Report

#	Article	IF	CITATIONS
2	Ï€â€Conjugated Microporous Polymer Films: Designed Synthesis, Conducting Properties, and Photoenergy Conversions. Angewandte Chemie - International Edition, 2015, 54, 13594-13598.	7.2	182
3	Room-temperature Synthesis of a Covalent Organic Framework with Enhanced Surface Area and Thermal Stability and Application to Nitrogen-doped Graphite Synthesis. Chemistry Letters, 2015, 44, 1488-1490.	0.7	23
6	Influence of Solventâ€Like Sidechains on the Adsorption of Light Hydrocarbons in Metal–Organic Frameworks. Chemistry - A European Journal, 2015, 21, 18764-18769.	1.7	32
7	Porphyrin Boxes: Rationally Designed Porous Organic Cages. Angewandte Chemie - International Edition, 2015, 54, 13241-13244.	7.2	161
8	Boosting Proton Conductivity in Highly Robust 3D Inorganic Cationic Extended Frameworks through Ion Exchange with Dihydrogen Phosphate Anions. Chemistry - A European Journal, 2015, 21, 17591-17595.	1.7	19
9	Reverse Engineering of Conjugated Microporous Polymers: Defect Structures of Tetrakis(4â€ethynylphenyl)stannane Networks. Angewandte Chemie - International Edition, 2015, 54, 14673-14676.	7.2	20
10	Mechanical Properties of Nanoporous Au: From Empirical Evidence to Phenomenological Modeling. Metals, 2015, 5, 1665-1694.	1.0	10
11	Continuous flow synthesis of a carbon-based molecular cage macrocycle via a three-fold homocoupling reaction. Chemical Communications, 2015, 51, 14231-14234.	2.2	29
12	An ultra-microporous organic polymer for high performance carbon dioxide capture and separation. Chemical Communications, 2015, 51, 13393-13396.	2.2	71
13	A multifunctional microporous anionic metal–organic framework for column-chromatographic dye separation and selective detection and adsorption of Cr ³⁺ . Journal of Materials Chemistry A, 2015, 3, 23426-23434.	5.2	117
14	Dynamic flow synthesis of porous organic cages. Chemical Communications, 2015, 51, 17390-17393.	2.2	52
15	Tunable Porosity through Cooperative Diffusion in a Multicomponent Porous Molecular Crystal. Journal of Physical Chemistry C, 2015, 119, 22577-22586.	1.5	15
16	A Suite of Tetraphenylethylene-Based Discrete Organoplatinum(II) Metallacycles: Controllable Structure and Stoichiometry, Aggregation-Induced Emission, and Nitroaromatics Sensing. Journal of the American Chemical Society, 2015, 137, 15276-15286.	6.6	260
17	Liquefied molecular holes. Nature, 2015, 527, 174-175.	13.7	35
18	Robust C–C bonded porous networks with chemically designed functionalities for improved CO ₂ capture from flue gas. Beilstein Journal of Organic Chemistry, 2016, 12, 2274-2279.	1.3	12
19	Hydroxy-functionalized hyper-cross-linked ultra-microporous organic polymers for selective CO2 capture at room temperature. Beilstein Journal of Organic Chemistry, 2016, 12, 1981-1986.	1.3	14
20	Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain. Materials, 2016, 9, 65.	1.3	13
21	Anionâ€Directed Entangling Coordination Networks: Luminescence Sensing and Magnetic Properties. ChemPlusChem, 2016, 81, 857-863.	1.3	11

#	Article	IF	Citations
22	The Dam Bursts for Porous Liquids. Advanced Materials, 2016, 28, 5712-5716.	11.1	88
23	Molecular Engineering of Conjugated Polybenzothiadiazoles for Enhanced Hydrogen Production by Photosynthesis. Angewandte Chemie, 2016, 128, 9348-9352.	1.6	70
24	Porous Organic Polymer Films with Tunable Work Functions and Selective Hole and Electron Flows for Energy Conversions. Angewandte Chemie, 2016, 128, 3101-3105.	1.6	25
25	Porous Organic Polymer Films with Tunable Work Functions and Selective Hole and Electron Flows for Energy Conversions. Angewandte Chemie - International Edition, 2016, 55, 3049-3053.	7.2	121
26	Molecular Engineering of Conjugated Polybenzothiadiazoles for Enhanced Hydrogen Production by Photosynthesis. Angewandte Chemie - International Edition, 2016, 55, 9202-9206.	7.2	326
27	Watchbandâ€Like Supercapacitors with Body Temperature Inducible Shape Memory Ability. Advanced Energy Materials, 2016, 6, 1600763.	10.2	94
28	Pore size tuning of poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene) hypercrosslinked polymers: Insights from molecular simulations. Polymer, 2016, 99, 173-184.	1.8	33
29	A Solventâ€Free Hotâ€Pressing Method for Preparing Metal–Organicâ€Framework Coatings. Angewandte Chemie - International Edition, 2016, 55, 3419-3423.	7.2	201
30	An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials. Nature Communications, 2016, 7, 13645.	5.8	205
31	Separation in Biorefineries by Liquid Phase Adsorption: Itaconic Acid as Case Study. ACS Sustainable Chemistry and Engineering, 2016, 4, 5921-5928.	3.2	34
32	The Synthesis of Organic Molecules of Intrinsic Microporosity Designed to Frustrate Efficient Molecular Packing. Chemistry - A European Journal, 2016, 22, 2466-2472.	1.7	49
33	Macrocyclic Tetraimines: Synthesis and Reversible Uptake of Diethyl Phthalate by a Porous Macrocycle. Journal of Organic Chemistry, 2016, 81, 5173-5180.	1.7	10
34	Observation of the wrapping mechanism in amine carbon dioxide molecular interactions on heterogeneous sorbents. Physical Chemistry Chemical Physics, 2016, 18, 14177-14181.	1.3	42
35	A versatile in situ etching-growth strategy for synthesis of yolk–shell structured periodic mesoporous organosilica nanocomposites. RSC Advances, 2016, 6, 51470-51479.	1.7	16
36	Outlook and challenges for hydrogen storage in nanoporous materials. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	129
37	Photonic hybrid crystals constructed from in situ host–guest nanoconfinement of a light-emitting complex in metal–organic framework pores. Nanoscale, 2016, 8, 6851-6859.	2.8	36
38	Modifiable diyne-based covalent organic framework: a versatile platform for in situ multipurpose functionalization. RSC Advances, 2016, 6, 39150-39158.	1.7	31
39	Four New Metal–Organic Supramolecular Networks Based on Aromatic Acid and Flexible Bis(imidazole) Ligand: Synthesis, Structures and Luminescent Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 648-659.	1.9	10

#	Article	IF	Citations
40	Genetic engineering of inorganic functional modular materials. Chemical Science, 2016, 7, 3472-3481.	3.7	10
41	Cationic Covalent Organic Frameworks: A Simple Platform of Anionic Exchange for Porosity Tuning and Proton Conduction. Journal of the American Chemical Society, 2016, 138, 5897-5903.	6.6	613
42	Solid-state emissive cyanostilbene based conjugated microporous polymers via cost-effective Knoevenagel polycondensation. Polymer Chemistry, 2016, 7, 3983-3988.	1.9	64
43	Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nature Chemistry, 2016, 8, 718-724.	6.6	913
44	A Series of Layered Assemblies of Hydrogen-Bonded, Hexagonal Networks of ⟨i⟩C⟨ i⟩⟨sub⟩3⟨ sub⟩-Symmetric I€-Conjugated Molecules: A Potential Motif of Porous Organic Materials. Journal of the American Chemical Society, 2016, 138, 6617-6628.	6.6	169
45	Cobalt(II) compounds with acetone isonicotinoyl hydrazone tautomers: Syntheses and crystal structures of complexes with free donor atoms. Inorganica Chimica Acta, 2016, 448, 86-92.	1.2	9
46	Tri- <i>s</i> -triazine-Based Crystalline Graphitic Carbon Nitrides for Highly Efficient Hydrogen Evolution Photocatalysis. ACS Catalysis, 2016, 6, 3921-3931.	5. 5	756
47	From brittle to ductile: a structure dependent ductility of diamond nanothread. Nanoscale, 2016, 8, 11177-11184.	2.8	84
48	Highly Efficient and Reversible Iodine Capture in Hexaphenylbenzene-Based Conjugated Microporous Polymers. Macromolecules, 2016, 49, 6322-6333.	2.2	307
49	Super-adsorbent material based on functional polymer particles with a multilevel porous structure. NPG Asia Materials, 2016, 8, e301-e301.	3.8	98
50	Anionic porous polymers with tunable structures and catalytic properties. Journal of Materials Chemistry A, 2016, 4, 15162-15168.	5.2	29
51	A Structurally Variable Porous Organic Salt Based on a Multidirectional Supramolecular Cluster. Chemistry - A European Journal, 2016, 22, 15430-15436.	1.7	19
52	Use of steric encumbrance to develop conjugated nanoporous polymers for metal-free catalytic hydrogenation. Chemical Communications, 2016, 52, 11919-11922.	2.2	17
53	Luminescent Porous Polymers Based on Aggregationâ€Induced Mechanism: Design, Synthesis and Functions. Small, 2016, 12, 6513-6527.	5.2	96
54	Narrow bandgap thienothiadiazole-based conjugated porous polymers: from facile direct arylation polymerization to tunable porosities and optoelectronic properties. Polymer Chemistry, 2016, 7, 6413-6421.	1.9	45
55	Multifunctional Porous Organic Polymers: Tuning of Porosity, CO ₂ , and H ₂ Storage and Visible-Light-Driven Photocatalysis. ACS Applied Materials & Interfaces, 2016, 8, 27669-27678.	4.0	128
56	Highly Efficient Electrocatalysts for Oxygen Reduction Reaction Based on 1D Ternary Doped Porous Carbons Derived from Carbon Nanotube Directed Conjugated Microporous Polymers. Advanced Functional Materials, 2016, 26, 8255-8265.	7.8	65
57	Peripheryâ€Functionalized Porous Organic Cages. Chemistry - A European Journal, 2016, 22, 16547-16553.	1.7	38

#	ARTICLE	IF	CITATIONS
58	Nanoporous ionic organic networks: from synthesis to materials applications. Chemical Society Reviews, 2016, 45, 6627-6656.	18.7	152
59	Reversible Water-Induced Structural and Magnetic Transformations and Selective Water Adsorption Properties of Poly(manganese 1,1′-ferrocenediyl-bis(H-phosphinate)). Crystal Growth and Design, 2016, 16, 5084-5090.	1.4	34
60	lonic Liquid/Zn-PPh ₃ Integrated Porous Organic Polymers Featuring Multifunctional Sites: Highly Active Heterogeneous Catalyst for Cooperative Conversion of CO ₂ to Cyclic Carbonates. ACS Catalysis, 2016, 6, 6091-6100.	5 . 5	186
61	A hydroxyl-functionalized microporous organic polymer for capture and catalytic conversion of CO ₂ . RSC Advances, 2016, 6, 76957-76963.	1.7	17
62	Hydrogenâ€Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Protonâ€Conducting Materials. Angewandte Chemie - International Edition, 2016, 55, 10667-10671.	7.2	334
63	Hydrogenâ€Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Protonâ€Conducting Materials. Angewandte Chemie, 2016, 128, 10825-10829.	1.6	76
64	Chemical RedOx Properties of a Donor-Acceptor Conjugated Microporous Dithienothiophene-Benzene co-Polymer FormedviaSuzuki-Miyaura Cross-coupling. ChemistrySelect, 2016, 1, 748-751.	0.7	5
65	Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. Journal of Membrane Science, 2016, 520, 860-868.	4.1	185
66	Constructing Crystalline Covalent Organic Frameworks from Chiral Building Blocks. Journal of the American Chemical Society, 2016, 138, 11489-11492.	6.6	262
67	<i>In Situ</i> Doping Strategy for the Preparation of Conjugated Triazine Frameworks Displaying Efficient CO ₂ Capture Performance. Journal of the American Chemical Society, 2016, 138, 11497-11500.	6.6	200
68	Exploiting Noncovalent Interactions in an Imineâ€Based Covalent Organic Framework for Quercetin Delivery. Advanced Materials, 2016, 28, 8749-8754.	11.1	302
69	Interconvertible structural transformations between two Zn(II) interpenetrating coordination polymers. Inorganic Chemistry Communication, 2016, 71, 61-64.	1.8	3
70	Konjugierte Polymere: Katalysatoren f $\tilde{A}^{1}\!\!/\!\!4$ r die photokatalytische Wasserstoffentwicklung. Angewandte Chemie, 2016, 128, 15940-15956.	1.6	110
71	Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2016, 55, 15712-15727.	7.2	703
72	Synthesis, gas transport and dielectric properties of fluorinated poly(arylene ether)s based on decafluorobiphenyl. Materials Chemistry and Physics, 2016, 183, 279-287.	2.0	19
73	Bandgap Engineering in π-Extended Pyrroles. A Modular Approach to Electron-Deficient Chromophores with Multi-Redox Activity. Journal of the American Chemical Society, 2016, 138, 11390-11398.	6.6	57
74	Tuning of Separation Mode Using Pyridinium Salt-branched Ionic Polymer-grafted Silica as Stationary Phase in HPLC. Chemistry Letters, 2016, 45, 13-15.	0.7	4
75	Synthesis and Structures of π-Extended [<i>n</i>]Cyclo- <i>para</i> -phenylenes (<i>n</i> = 12, 16, 20) Containing <i>n</i> /2 Nitrogen Atoms. Chemistry Letters, 2016, 45, 658-660.	0.7	17

#	Article	IF	Citations
76	Influence of Co-adsorbates on CO ₂ induced phase transition in functionalized pillared-layered metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 12963-12972.	5.2	25
77	Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 2016, $1, \dots$	23.3	1,031
78	Porous organic cages: soluble, modular and molecular pores. Nature Reviews Materials, 2016, 1, .	23.3	603
79	A stable room-temperature sodium–sulfur battery. Nature Communications, 2016, 7, 11722.	5.8	459
80	Minerals with metal-organic framework structures. Science Advances, 2016, 2, e1600621.	4.7	48
81	In silico discovery of metal-organic frameworks for precombustion CO ₂ capture using a genetic algorithm. Science Advances, 2016, 2, e1600909.	4.7	231
82	Construction of solvent-dependent self-assembled porous Ni(<scp>ii</scp>)-coordinated frameworks as effective catalysts for chemical transformation of CO ₂ . RSC Advances, 2016, 6, 108010-108016.	1.7	6
83	Assembled molecular face-rotating polyhedra to transfer chirality from two to three dimensions. Nature Communications, 2016, 7, 12469.	5.8	90
84	Pyridyl-phenylethynylene bis-urea macrocycles: self-assembly and utility as a nanoreactor for the selective photoreaction of isoprene. RSC Advances, 2016, 6, 98350-98355.	1.7	12
85	A "Molecular Water Pipe― A Giant Tubular Cluster {Dy ₇₂ } Exhibits Fast Proton Transport and Slow Magnetic Relaxation. Advanced Materials, 2016, 28, 10772-10779.	11.1	170
86	Superhydrophobicity: Constructing Homogeneous Catalysts into Superhydrophobic Porous Frameworks to Protect Them from Hydrolytic Degradation. CheM, 2016, 1, 628-639.	5.8	93
87	Three-dimensional protonic conductivity in porous organic cage solids. Nature Communications, 2016, 7, 12750.	5.8	133
88	Construction of Layered Assemblies of Two-Dimensional Porous Molecular Sheets Networked through Hydrogen Bonds. Nihon Kessho Gakkaishi, 2016, 58, 209-214.	0.0	0
89	Facile Construction of Structurally Defined Porous Membranes from Supramolecular Hexakistriphenylamine Metallacycles through Electropolymerization. Chemistry - A European Journal, 2016, 22, 5211-5218.	1.7	21
90	A Twofold Interpenetrated Metal–Organic Framework with High Performance in Selective Separation of C ₂ H ₂ /CH ₄ . ChemPlusChem, 2016, 81, 770-774.	1.3	31
91	The morphology and temperature dependent tensile properties of diamond nanothreads. Carbon, 2016, 107, 304-309.	5.4	46
92	Endohedrally functionalised porous organic cages. Chemical Communications, 2016, 52, 8850-8853.	2.2	31
93	Inexpensive polyphenylene network polymers with enhanced microporosity. Journal of Materials Chemistry A, 2016, 4, 10110-10113.	5.2	66

#	Article	IF	CITATIONS
94	Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chemical Society Reviews, 2016, 45, 5635-5671.	18.7	983
95	Porous carbons from inverse vulcanised polymers. Microporous and Mesoporous Materials, 2016, 232, 189-195.	2.2	34
96	Cavity partition and functionalization of a [2+3] organic molecular cage by inserting polar Pî€O bonds. Chemical Communications, 2016, 52, 9267-9270.	2.2	14
97	Pillar[5]arene Based Conjugated Microporous Polymers for Propane/Methane Separation through Host–Guest Complexation. Chemistry of Materials, 2016, 28, 4460-4466.	3.2	147
98	Emerging functional chiral microporous materials: synthetic strategies and enantioselective separations. Materials Today, 2016, 19, 503-515.	8.3	82
99	Selective Gold Recovery and Catalysis in a Highly Flexible Methionine-Decorated Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 7864-7867.	6.6	196
100	A Threeâ€Dimensional TetraphenylÃetheneâ€Based Metal–Organic Framework for Selective Gas Separation and Luminescence Sensing of Metal Ions. European Journal of Inorganic Chemistry, 2016, 2016, 4470-4475.	1.0	20
101	A Solventâ€Free Hotâ€Pressing Method for Preparing Metal–Organicâ€Framework Coatings. Angewandte Chemie, 2016, 128, 3480-3484.	1.6	22
102	The morphology and gasâ€separation performance of membranes comprising multiwalled carbon nanotubes/polysulfone–Kapton. Journal of Applied Polymer Science, 2016, 133, .	1.3	30
103	Intercalation of Coordinatively Unsaturated Fe ^{III} Ion within Interpenetrated Metal–Organic Framework MOFâ€5. Chemistry - A European Journal, 2016, 22, 7711-7715.	1.7	15
104	Systematic Postsynthetic Modification of Nanoporous Organic Frameworks for Enhanced CO ₂ Capture from Flue Gas and Landfill Gas. Journal of Physical Chemistry C, 2016, 120, 2592-2599.	1.5	69
105	Overall water splitting by Pt/g-C ₃ N ₄ photocatalysts without using sacrificial agents. Chemical Science, 2016, 7, 3062-3066.	3.7	835
106	Porous Organic Cages for Sulfur Hexafluoride Separation. Journal of the American Chemical Society, 2016, 138, 1653-1659.	6.6	200
107	Massive preparation of pitch-based organic microporous polymers for gas storage. Chemical Communications, 2016, 52, 2780-2783.	2.2	62
108	Models, simulation and convergence in the polity: An essay. Futures, 2016, 81, 4-14.	1.4	3
109	Porous cationic polymers: the impact of counteranions and charges on CO ₂ capture and conversion. Chemical Communications, 2016, 52, 934-937.	2.2	162
110	Chiral 2 + 3 Keto-Enamine Pseudocyclophanes Derived from 1,3,5-Triformylphloroglucinol. Organic Letters, 2016, 18, 12-15.	2.4	23
111	High-temperature post-processing treatment of silica nanofoams of controlled pore sizes and porosities. Materials and Design, 2016, 90, 815-819.	3.3	8

#	Article	IF	CITATIONS
112	Toward the Development and Deployment of Large-Scale Carbon Dioxide Capture and Conversion Processes. Industrial & Engineering Chemistry Research, 2016, 55, 3383-3419.	1.8	205
113	Isostructural compartmentalized spin-crossover coordination polymers for gas confinement. Inorganic Chemistry Frontiers, 2016, 3, 808-813.	3.0	8
114	Trace level detection of nitroanilines using a solution processable fluorescent porous organic polymer. Journal of Materials Chemistry C, 2016, 4, 4427-4433.	2.7	84
115	Fabrication of bimodal-pore SrTiO3 microspheres with excellent photocatalytic performance for Cr(VI) reduction under simulated sunlight. Journal of Hazardous Materials, 2016, 312, 45-54.	6.5	64
116	A Simple and Nonâ€Destructive Method for Assessing the Incorporation of Bipyridine Dicarboxylates as Linkers within Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 3713-3718.	1.7	28
117	Investigating the Reactivity of 1,4-Anthracene-Incorporated Cycloparaphenylene. Organic Letters, 2016, 18, 1574-1577.	2.4	49
118	The role of the internal molecular free volume in defining organic porous copolymer properties: tunable porosity and highly selective CO ₂ adsorption. Physical Chemistry Chemical Physics, 2016, 18, 11323-11329.	1.3	23
119	Ionic self-assembly affords mesoporous ionic networks by crosslinking linear polyviologens with polyoxometalate clusters. Dalton Transactions, 2016, 45, 4504-4508.	1.6	20
120	Discovering connections between terahertz vibrations and elasticity underpinning the collective dynamics of the HKUST-1 metal–organic framework. CrystEngComm, 2016, 18, 4303-4312.	1.3	96
121	Isoreticular zirconium-based metal–organic frameworks: discovering mechanical trends and elastic anomalies controlling chemical structure stability. Physical Chemistry Chemical Physics, 2016, 18, 9079-9087.	1.3	46
122	Synthesis of hierarchical porous \hat{l}^2 -FeOOH catalysts in ionic liquid/water/CH2Cl2 ionogels. Chemical Communications, 2016, 52, 4687-4690.	2.2	6
123	In situ DRIFT study of dimethyl ether carbonylation to methyl acetate on H-mordenite. Journal of Molecular Catalysis A, 2016, 417, 1-9.	4.8	59
124	Porphyrin-based assemblies directed by non-covalent interactions: highlights of recent investigations. CrystEngComm, 2016, 18, 3318-3339.	1.3	34
125	Metalated Mesoporous Poly(triphenylphosphine) with Azo Functionality: Efficient Catalysts for CO ₂ Conversion. ACS Catalysis, 2016, 6, 1268-1273.	5.5	122
126	Experimental and theoretical investigation of a mesoporous K _x WO ₃ material having superior mechanical strength. Nanoscale, 2016, 8, 2937-2943.	2.8	5
127	Explaining the mechanical mechanisms of zeolitic metal–organic frameworks: revealing auxeticity and anomalous elasticity. Dalton Transactions, 2016, 45, 4154-4161.	1.6	59
128	Mixed-linker solid solutions of functionalized pillared-layer MOFs $\hat{a}\in$ adjusting structural flexibility, gas sorption, and thermal responsiveness. Dalton Transactions, 2016, 45, 4230-4241.	1.6	40
129	Polymorphs of layered assemblies of hydrogen-bonded hexagonal networks caused by conformational frustration. Chemical Communications, 2016, 52, 300-303.	2.2	39

#	Article	IF	CITATIONS
130	Strategies for the design of porous polymers as efficient heterogeneous catalysts: from co-polymerization to self-polymerization. Catalysis Science and Technology, 2017, 7, 1028-1039.	2.1	48
131	Removal of nitroimidazole antibiotics from water by adsorption over metal–organic frameworks modified with urea or melamine. Chemical Engineering Journal, 2017, 315, 92-100.	6.6	186
132	Multifunctional Mesoporous Ionic Gels and Scaffolds Derived from Polyhedral Oligomeric Silsesquioxanes. ACS Applied Materials & Interfaces, 2017, 9, 3616-3623.	4.0	31
133	Impact of Shape Persistence on the Porosity of Molecular Cages. Journal of the American Chemical Society, 2017, 139, 3259-3264.	6.6	40
134	Porous organic polymers as emerging new materials for organic photovoltaic applications: current status and future challenges. Materials Horizons, 2017, 4, 546-556.	6.4	125
135	Meltâ€Quenched Hybrid Glasses from Metal–Organic Frameworks. Advanced Materials, 2017, 29, 1601705.	11.1	62
136	Highly efficient and reversible CO ₂ capture by tunable anionâ€functionalized macroâ€porous resins. AICHE Journal, 2017, 63, 3008-3015.	1.8	8
137	Palladium nanoparticles supported on a carbazole functionalized mesoporous organic polymer: synthesis and their application as efficient catalysts for the Suzuki–Miyaura cross coupling reaction. Polymer Chemistry, 2017, 8, 1488-1494.	1.9	27
138	Scalable Synthesis and Supramolecular Assembly of <i>trans</i> ê€A ₂ B ₂ Porphyrins with Pendant Carboxylic Functional Groups. ChemistrySelect, 2017, 2, 885-893.	0.7	10
139	Directed Phase Transfer of an Fe ^{II} ₄ L ₄ Cage and Encapsulated Cargo. Journal of the American Chemical Society, 2017, 139, 2176-2179.	6.6	47
140	Alkyne Activation by a Porous Silver Coordination Polymer for Heterogeneous Catalysis of Carbon Dioxide Cycloaddition. ACS Catalysis, 2017, 7, 2248-2256.	5.5	137
141	Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chemical Society Reviews, 2017, 46, 3322-3356.	18.7	938
142	Highly Anisotropic and Water Molecule-Dependent Proton Conductivity in a 2D Homochiral Copper(II) Metal–Organic Framework. Chemistry of Materials, 2017, 29, 2321-2331.	3.2	77
143	From Ru nanoparticle-encapsulated metal–organic frameworks to highly catalytically active Cu/Ru nanoparticle-embedded porous carbon. Journal of Materials Chemistry A, 2017, 5, 4835-4841.	5.2	80
144	Direct aerobic oxidative homocoupling of benzene to biphenyl over functional porous organic polymer supported atomically dispersed palladium catalyst. Applied Catalysis B: Environmental, 2017, 209, 679-688.	10.8	47
145	Molecular Gels as Intermediates in the Synthesis of Porous Materials and Fluorescent Films: Concepts and Applications. Langmuir, 2017, 33, 10419-10428.	1.6	34
146	Photocatalytic oxygen evolution from low-bandgap conjugated microporous polymer nanosheets: a combined first-principles calculation and experimental study. Nanoscale, 2017, 9, 4090-4096.	2.8	126
147	Chemically stable microporous hyper-cross-linked polymer (HCP): an efficient selective cationic dye scavenger from an aqueous medium. Materials Chemistry Frontiers, 2017, 1, 1384-1388.	3.2	34

#	Article	IF	CITATIONS
148	Nitrogen-doped mesoporous carbon nanosheets derived from metal-organic frameworks in a molten salt medium for efficient desulfurization. Carbon, 2017, 117, 376-382.	5.4	78
149	Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal–organic framework. Nature Chemistry, 2017, 9, 689-697.	6.6	790
150	Imparting Catalytic Activity to a Covalent Organic Framework Material by Nanoparticle Encapsulation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7481-7488.	4.0	157
151	Transforming waste expanded polystyrene foam into hyper-crosslinked polymers for carbon dioxide capture and separation. Chemical Engineering Journal, 2017, 323, 557-564.	6.6	71
152	A 2D Zn(II) metal-organic framework to show selective removal of Neutral Red (NR) from water. Inorganic Chemistry Communication, 2017, 80, 36-40.	1.8	10
153	Polymers of Intrinsic Microporosity derived from a carbocyclic analogue of Tröger's base. Polymer, 2017, 126, 324-329.	1.8	11
154	Trends and challenges for microporous polymers. Chemical Society Reviews, 2017, 46, 3302-3321.	18.7	386
155	Synthesis of Layered Carbonitrides from Biotic Molecules for Photoredox Transformations. Angewandte Chemie, 2017, 129, 6727-6731.	1.6	51
156	Poly(Ionic Liquid)â€Derived Carbon with Siteâ€Specific Nâ€Doping and Biphasic Heterojunction for Enhanced CO ₂ Capture and Sensing. Angewandte Chemie - International Edition, 2017, 56, 7557-7563.	7.2	119
157	State-of-the-Art Multifunctional Heterogeneous POP Catalyst for Cooperative Transformation of CO ₂ to Cyclic Carbonates. ACS Sustainable Chemistry and Engineering, 2017, 5, 4523-4528.	3.2	105
158	Rational Design and Construction of Well-Organized Macro-Mesoporous SiO ₂ /TiO ₂ Nanostructure toward Robust High-Performance Self-Cleaning Antireflective Thin Films. ACS Applied Materials & Samp; Interfaces, 2017, 9, 17466-17475.	4.0	40
159	Synthesis of Layered Carbonitrides from Biotic Molecules for Photoredox Transformations. Angewandte Chemie - International Edition, 2017, 56, 6627-6631.	7.2	173
160	Pollen-structured hierarchically meso/macroporous silica spheres with supported gold nanoparticles for high-performance catalytic CO oxidation. Materials Research Bulletin, 2017, 92, 129-137.	2.7	8
161	Chemistry-Inspired Adaptable Framework Structures. Accounts of Chemical Research, 2017, 50, 1222-1230.	7.6	316
162	Highly effective ammonia removal in a series of BrÃ,nsted acidic porous polymers: investigation of chemical and structural variations. Chemical Science, 2017, 8, 4399-4409.	3.7	89
163	Highly efficient visible light induced photocatalytic activity of a novel in situ synthesized conjugated microporous poly(benzothiadiazole)–C ₃ N ₄ composite. Catalysis Science and Technology, 2017, 7, 418-426.	2.1	30
164	Facile construction of butadiynylene based conjugated porous polymers by cost-effective Glaser coupling. Materials Chemistry Frontiers, 2017, 1, 867-872.	3.2	33
165	Salicylideneanilines-Based Covalent Organic Frameworks as Chemoselective Molecular Sieves. Journal of the American Chemical Society, 2017, 139, 8897-8904.	6.6	151

#	Article	IF	CITATIONS
166	Interconversion of molecular face-rotating polyhedra through turning inside out. Chemical Communications, 2017, 53, 8956-8959.	2.2	25
167	Enhanced proton conduction by post-synthetic covalent modification in a porous covalent framework. Journal of Materials Chemistry A, 2017, 5, 13659-13664.	5.2	38
168	Immobilized copper iodide on a porous organic polymer bearing P,N-ligation sites: A highly efficient heterogeneous catalyst for C O bond formation reaction. Molecular Catalysis, 2017, 438, 214-223.	1.0	11
169	Mixedâ€Matrixâ€Membranen. Angewandte Chemie, 2017, 129, 9420-9439.	1.6	69
170	Studies of the mechanical and extreme hydrothermal properties of periodic mesoporous silica and aluminosilica materials. Microporous and Mesoporous Materials, 2017, 252, 69-78.	2.2	4
171	Superacid-promoted synthesis of highly porous hypercrosslinked polycarbazoles for efficient CO ₂ capture. Chemical Communications, 2017, 53, 7645-7648.	2.2	32
172	Recent progress in fabrication and application of polydimethylsiloxane sponges. Journal of Materials Chemistry A, 2017, 5, 16467-16497.	5.2	207
173	Poly(Ionic Liquid)â€Derived Carbon with Siteâ€Specific Nâ€Doping and Biphasic Heterojunction for Enhanced CO ₂ Capture and Sensing. Angewandte Chemie, 2017, 129, 7665-7671.	1.6	27
174	Adsorptive Denitrogenation of Model Fuel with CuCl-Loaded Adsorbents: Contribution of Î-Complexation and Direct Interaction between Adsorbates and Cuprous Ions. Journal of Physical Chemistry C, 2017, 121, 11601-11608.	1.5	20
175	Porous Molecular Solids and Liquids. ACS Central Science, 2017, 3, 544-553.	5.3	194
176	Hexaazatriphenyleneâ€Based Hydrogenâ€Bonded Organic Framework with Permanent Porosity and Singleâ€Crystallinity. Chemistry - A European Journal, 2017, 23, 11611-11619.	1.7	80
177	Homochiral Porous Framework as a Platform for Durability Enhancement of Molecular Catalysts. Chemistry of Materials, 2017, 29, 5720-5726.	3.2	31
178	Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages. ACS Central Science, 2017, 3, 734-742.	5.3	68
179	Linker functionalisation triggers an alternative 3D-topology for Zn-isophthalate-4,4′-bipyridine frameworks. Dalton Transactions, 2017, 46, 8198-8203.	1.6	12
180	Advancing the n â†' Ï€* electron transition of carbon nitride nanotubes for H ₂ photosynthesis. Journal of Materials Chemistry A, 2017, 5, 12723-12728.	5.2	224
181	Bottomâ€Up Construction of Porous Organic Frameworks with Builtâ€In TEMPO as a Cathode for Lithium–Sulfur Batteries. ChemSusChem, 2017, 10, 2955-2961.	3.6	58
182	Protonated MIL-125-NH ₂ : Remarkable Adsorbent for the Removal of Quinoline and Indole from Liquid Fuel. ACS Applied Materials & Samp; Interfaces, 2017, 9, 20938-20946.	4.0	69
183	Inside information on xenon adsorption in porous organic cages by NMR. Chemical Science, 2017, 8, 5721-5727.	3.7	37

#	Article	IF	CITATIONS
184	Odd–Even Effect of Thiophene Chain Lengths on Excited State Properties in Oligo(thienyl) Tj ETQq0 0 0 rgBT /0	Overlock 1	0 <u>Tf</u> 50 742 1
185	Understanding gas adsorption in MOF-5/graphene oxide composite materials. Physical Chemistry Chemical Physics, 2017, 19, 11639-11644.	1.3	24
186	Mixedâ€Matrix Membranes. Angewandte Chemie - International Edition, 2017, 56, 9292-9310.	7.2	545
187	Adaptive Behavior of Dynamic Orthoester Cryptands. Angewandte Chemie, 2017, 129, 794-799.	1.6	43
188	Exceptionally stable Bakelite-type polymers for efficient pre-combustion CO2capture and H2purification. Journal of Materials Chemistry A, 2017, 5, 8431-8439.	5.2	11
189	Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: Quantitative analyses of H-bonding in adsorption. Chemical Engineering Journal, 2017, 322, 366-374.	6.6	204
190	A Microporous Amic Acid Polymer for Enhanced Ammonia Capture. ACS Applied Materials & Emp; Interfaces, 2017, 9, 33504-33510.	4.0	31
191	Highly porous photoluminescent diazaborole-linked polymers: synthesis, characterization, and application to selective gas adsorption. Polymer Chemistry, 2017, 8, 2509-2515.	1.9	11
193	Adsorptive denitrogenation of model fuel by functionalized UiO-66 with acidic and basic moieties. Chemical Engineering Journal, 2017, 321, 40-47.	6.6	61
194	The electrochemical discrimination of pinene enantiomers by a cyclodextrin metal–organic framework. Dalton Transactions, 2017, 46, 6830-6834.	1.6	34
195	Twisted Aromatic Frameworks: Readily Exfoliable and Solutionâ€Processable Twoâ€Dimensional Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2017, 56, 6946-6951.	7.2	100
196	Enantiomeric two-fold interpenetrated 3D zinc(<scp>ii</scp>) coordination networks as a catalytic platform: significant difference between water within the cage and trace water in transesterification. Dalton Transactions, 2017, 46, 4595-4601.	1.6	8
197	Twisted Aromatic Frameworks: Readily Exfoliable and Solutionâ€Processable Twoâ€Dimensional Conjugated Microporous Polymers. Angewandte Chemie, 2017, 129, 7050-7055.	1.6	21
198	A soluble conjugated porous organic polymer: efficient white light emission in solution, nanoparticles, gel and transparent thin film. Chemical Communications, 2017, 53, 1257-1260.	2.2	70
199	Constant Volume Gate-Opening by Freezing Rotational Dynamics in Microporous Organically Pillared Layered Silicates. Journal of the American Chemical Society, 2017, 139, 904-909.	6.6	25
200	A viologen-based coordination polymer exhibiting high sensitivity towards various light sources. CrystEngComm, 2017, 19, 722-726.	1.3	62
201	S,N-Containing Co-MOF derived Co ₉ S ₈ @S,N-doped carbon materials as efficient oxygen electrocatalysts and supercapacitor electrode materials. Inorganic Chemistry Frontiers, 2017, 4, 491-498.	3.0	108
202	Anchoring Triazole-Gold(I) Complex into Porous Organic Polymer To Boost the Stability and Reactivity of Gold(I) Catalyst. ACS Catalysis, 2017, 7, 1087-1092.	5.5	80

#	Article	IF	CITATIONS
203	Carbon Dioxide Capture Adsorbents: Chemistry and Methods. ChemSusChem, 2017, 10, 1303-1317.	3.6	313
204	Adaptive Behavior of Dynamic Orthoester Cryptands. Angewandte Chemie - International Edition, 2017, 56, 776-781.	7.2	72
205	Practical Porous Matrix for Molecular Structure Determination of General Liquid Chemicals. Crystal Growth and Design, 2017, 17, 6677-6683.	1.4	21
206	Highly shape- and regio-selective peroxyâ€"trifluoromethylation of styrene by metalâ€"organic framework Cu ₃ (BTC) ₂ . Catalysis Science and Technology, 2017, 7, 5872-5881.	2.1	17
207	Self-Supported BINOL-Derived Phosphoric Acid Based on a Chiral Carbazolic Porous Framework. Organic Letters, 2017, 19, 6072-6075.	2.4	24
208	Probing Dielectric Properties of Metal–Organic Frameworks: MIL-53(AI) as a Model System for Theoretical Predictions and Experimental Measurements via Synchrotron Far- and Mid-Infrared Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 5035-5040.	2.1	39
209	Efficient photocatalytic hydrogen evolution under visible light by ternary composite CdS@NU-1000/RGO. Catalysis Science and Technology, 2017, 7, 5113-5119.	2.1	67
210	Ferrocene-based porous organic polymer derived high-performance electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 22163-22169.	5.2	61
211	Solvent-induced diversity of luminescent metal–organic frameworks based on different secondary building units. RSC Advances, 2017, 7, 46125-46131.	1.7	8
212	Electrostaticâ€Assisted Liquefaction of Porous Carbons. Angewandte Chemie - International Edition, 2017, 56, 14958-14962.	7.2	56
213	Fluorinated, Sulfur-Rich, Covalent Triazine Frameworks for Enhanced Confinement of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Materials & Enhanced Confinement of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Materials & Enhanced Confinement of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Materials & Enhanced Confinement of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Materials & Enhanced Confinement of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Materials & Enhanced Confinement of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Materials & Enhanced Confinement of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Materials & Enhanced Confinement of Polysulfides in Lithium— Sulfur Batteries. ACS Applied Materials & Enhanced Confinement of Polysulfides in Lithium— Sulfur Batteries. ACS Applied Materials & Enhanced Confinement of Polysulfides in Lithium— Sulfur Batteries. ACS Applied Materials & Enhanced Confinement of Polysulfides in Lithium— Sulfur Batteries. ACS Applied Materials & Enhanced Confinement of Polysulfides in Lithium— Sulfur Batteries. ACS Applied Materials & Enhanced Confinement of Polysulfides in Lithium— Sulfur Batteries (1998) Sulfur Bat	4.0	164
214	Cross-linking Zr-based metal–organic polyhedra via postsynthetic polymerization. Chemical Science, 2017, 8, 7765-7771.	3.7	122
215	Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chemical Society Reviews, 2017, 46, 6927-6945.	18.7	347
216	Retrieving the original appearance of polyhedral oligomeric silsesquioxane-based porous polymers. Polymer, 2017, 130, 218-229.	1.8	20
217	Preparation and Characterization of Polyamides and Nitrogenâ€doped Carbons for Enhanced <scp>CO₂</scp> Capture. Bulletin of the Korean Chemical Society, 2017, 38, 1285-1292.	1.0	7
218	Electrostaticâ€Assisted Liquefaction of Porous Carbons. Angewandte Chemie, 2017, 129, 15154-15158.	1.6	32
219	Ultraâ€Fast Molecular Rotors within Porous Organic Cages. Chemistry - A European Journal, 2017, 23, 17217-17221.	1.7	22
220	Novel modified microcrystalline cellulose-based porous material for fast and effective heavy-metal removal from aqueous solution. Cellulose, 2017, 24, 5565-5577.	2.4	36

#	Article	IF	CITATIONS
221	Molecular Face-Rotating Cube with Emergent Chiral and Fluorescence Properties. Journal of the American Chemical Society, 2017, 139, 18142-18145.	6.6	188
222	Exosome-Coated Metal–Organic Framework Nanoparticles: An Efficient Drug Delivery Platform. Chemistry of Materials, 2017, 29, 8042-8046.	3.2	177
223	Reaction of Amines with Aldehydes and Ketones Revisited: Access To a Class of Non-Scorpionate Tris(pyrazolyl)methane and Related Ligands. Journal of Organic Chemistry, 2017, 82, 10549-10562.	1.7	9
224	High-Efficiency Co/Co _{<i>x</i>} S _{<i>y</i>} @S,N-Codoped Porous Carbon Electrocatalysts Fabricated from Controllably Grown Sulfur- and Nitrogen-Including Cobalt-Based MOFs for Rechargeable Zinc–Air Batteries. ACS Applied Materials & Diterfaces, 2017, 9, 34269-34278.	4.0	71
225	Solid-State Synthesis of Conjugated Nanoporous Polycarbazoles. ACS Macro Letters, 2017, 6, 1056-1059.	2.3	42
226	<i>In Situ</i> Time-Resolved Attenuated Total Reflectance Infrared Spectroscopy for Probing Metal–Organic Framework Thin Film Growth. Chemistry of Materials, 2017, 29, 8804-8810.	3.2	21
227	Design and preparation of porous polymer particles with polydopamine coating and selective enrichment for biomolecules. RSC Advances, 2017, 7, 45311-45319.	1.7	11
228	Microporous organic polymers involving thiadiazolopyridine for high and selective uptake of greenhouse gases at low pressure. Chemical Communications, 2017, 53, 10576-10579.	2.2	25
229	Enhancement of hydroformylation performance via increasing the phosphine ligand concentration in porous organic polymer catalysts. Catalysis Today, 2017, 298, 40-45.	2.2	24
230	Lightweight, thermally insulating and stiff carbon honeycomb-induced graphene composite foams with a horizontal laminated structure for electromagnetic interference shielding. Carbon, 2017, 123, 223-232.	5.4	91
231	Bulky Isopropyl Group Loaded Tetraaryl Pyrene Based Azo-Linked Covalent Organic Polymer for Nitroaromatics Sensing and CO ₂ Adsorption. ACS Omega, 2017, 2, 3572-3582.	1.6	31
232	Rational Design of S-UiO-66@GO Hybrid Nanosheets for Proton Exchange Membranes with Significantly Enhanced Transport Performance. ACS Applied Materials & Enhanced Transport Performance Performan	4.0	111
233	Molecular Simulation of Ionic Polyimides and Composites with Ionic Liquids as Gas-Separation Membranes. Langmuir, 2017, 33, 11377-11389.	1.6	36
234	A hydrophilic inorganic framework based on a sandwich polyoxometalate: unusual chemoselectivity for aldehydes/ketones with in situ generated hydroxylamine. Dalton Transactions, 2017, 46, 11537-11541.	1.6	10
235	Recent advances in AlEgen-based luminescent metal–organic frameworks and covalent organic frameworks. Materials Chemistry Frontiers, 2017, 1, 2474-2486.	3.2	136
236	Porous crystalline materials: closing remarks. Faraday Discussions, 2017, 201, 395-404.	1.6	11
237	Design of hyperporous graphene networks and their application in solid-amine based carbon capture systems. Journal of Materials Chemistry A, 2017, 5, 17833-17840.	5.2	48
238	Onâ€Surface Selfâ€Assembly of a <i>C</i> ₃ â€Symmetric Ï€â€Conjugated Molecule Family Studied b STM: Twoâ€Dimensional Nanoporous Frameworks. Chemistry - an Asian Journal, 2017, 12, 2558-2564.	^{DY} 1.7	18

#	Article	IF	CITATIONS
239	A Benchmark Quantum Yield for Water Photoreduction on Amorphous Carbon Nitride. Advanced Functional Materials, 2017, 27, 1702384.	7.8	115
240	Novel fullerene-based porous materials constructed by a solvent knitting strategy. Chemical Communications, 2017, 53, 12758-12761.	2.2	9
241	Benzimidazole linked arylimide based covalent organic framework as gas adsorbing and electrode materials for supercapacitor application. European Polymer Journal, 2017, 93, 448-457.	2.6	47
242	A remarkable adsorbent for removal of contaminants of emerging concern from water: Porous carbon derived from metal azolate framework-6. Journal of Hazardous Materials, 2017, 340, 179-188.	6.5	88
243	Structural-failure resistance of metal–organic frameworks toward multiple-cycle CO2 sorption. Chemical Communications, 2017, 53, 8653-8656.	2.2	24
244	Computational Screening of Nanoporous Materials for Hexane and Heptane Isomer Separation. Chemistry of Materials, 2017, 29, 6315-6328.	3.2	65
245	Detecting Molecular Rotational Dynamics Complementing the Low-Frequency Terahertz Vibrations in a Zirconium-Based Metal-Organic Framework. Physical Review Letters, 2017, 118, 255502.	2.9	60
246	Computational Screening of Porous Organic Molecules for Xenon/Krypton Separation. Journal of Physical Chemistry C, 2017, 121, 15211-15222.	1.5	45
247	Synthesis and Characterization of Terephthalic Acid Based Cr3+, Sb3+, In3+ and V3+ Metal-Organic Frameworks. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1333-1341.	1.9	15
248	Chemical Warfare Agents Detoxification Properties of Zirconium Metal–Organic Frameworks by Synergistic Incorporation of Nucleophilic and Basic Sites. ACS Applied Materials & Diterfaces, 2017, 9, 23967-23973.	4.0	100
249	Conjugated microporous poly(benzothiadiazole)/TiO2 heterojunction for visible-light-driven H2 production and pollutant removal. Applied Catalysis B: Environmental, 2017, 203, 563-571.	10.8	94
250	Click-based porous cationic polymers for enhanced carbon dioxide capture. Journal of Materials Chemistry A, 2017, 5, 372-383.	5.2	60
251	Benzothiazole- and benzoxazole-linked porous polymers for carbon dioxide storage and separation. Journal of Materials Chemistry A, 2017, 5, 258-265.	5.2	87
252	An ultra-absorbent alkyne-rich porous covalent polycalix[4]arene for water purification. Journal of Materials Chemistry A, 2017, 5, 62-66.	5.2	77
253	A Hierarchical Bipyridineâ€Constructed Framework for Highly Efficient Carbon Dioxide Capture and Catalytic Conversion. ChemSusChem, 2017, 10, 1186-1192.	3.6	94
254	Hybrid microporous and mesoporous organosilicate covalent polymers with high porosity. Microporous and Mesoporous Materials, 2017, 240, 205-215.	2.2	6
255	Zn-MOFs containing flexible $\hat{l}\pm, \hat{l}\%$ -alkane (or alkene)-dicarboxylates with 1,2-bis(4-pyridyl)ethylene: comparison with Zn-MOFs containing 1,2-bis(4-pyridyl)ethane ligands. CrystEngComm, 2017, 19, 99-109.	1.3	28
256	Efficient adsorption separation of acetylene and ethylene via supported ionic liquid on metalâ€organic framework. AICHE Journal, 2017, 63, 2165-2175.	1.8	62

#	ARTICLE	IF	CITATIONS
257	A Perspective on the Synthesis, Purification, and Characterization of Porous Organic Cages. Chemistry of Materials, 2017, 29, 149-157.	3.2	96
258	Ultraâ€High Surface Area Activated Porous Asphalt for CO ₂ Capture through Competitive Adsorption at High Pressures. Advanced Energy Materials, 2017, 7, 1600693.	10.2	87
259	Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. Journal of Membrane Science, 2017, 523, 596-613.	4.1	310
260	Reticular synthesis of porous molecular 1D nanotubes and 3D networks. Nature Chemistry, 2017, 9, 17-25.	6.6	122
261	How Much Pressure Is Too Much Pressure for a MOF?. CheM, 2017, 3, 924-925.	5.8	3
262	Two- and Three-dimensional Covalent Organic Frameworks (COFs). , 2017, , 271-290.		0
263	Drawing Sensors with Ball-Milled Blends of Metal-Organic Frameworks and Graphite. Sensors, 2017, 17, 2192.	2.1	90
264	Porous Organic Cages., 2017,, 139-197.		7
265	Self-Assembly for Mesoporous Carbon. , 2017, , 75-87.		0
266	Supramolecular frameworks based on [60]fullerene hexakisadducts. Beilstein Journal of Organic Chemistry, 2017, 13, 1-9.	1.3	9
267	Porous organic cage stabilised palladium nanoparticles: efficient heterogeneous catalysts for carbonylation reaction of aryl halides. Chemical Communications, 2018, 54, 2796-2799.	2.2	70
268	Transition metal coordination networks based on 1,3-bis(1,2,4-triazol-1-yl)benzene and isophthalic acid: Luminescence and magnetic properties. Polyhedron, 2018, 141, 87-93.	1.0	6
269	Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. Nature Catalysis, 2018, 1, 214-220.	16.1	310
270	Metalâ€Free Dehydrogenation of Nâ€Heterocycles by Ternary <i>h</i> à€BCN Nanosheets with Visible Light. Angewandte Chemie - International Edition, 2018, 57, 5487-5491.	7.2	146
271	Making metal–organic frameworks electron-deficient for ultrasensitive electrochemical detection of dopamine. Electrochemistry Communications, 2018, 89, 32-37.	2.3	42
272	Porous Zr6L3 Metallocage with Synergetic Binding Centers for CO2. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8685-8691.	4.0	38
273	Enhanced vapour sensing using silicon nanowire devices coated with Pt nanoparticle functionalized porous organic frameworks. Nanoscale, 2018, 10, 6884-6891.	2.8	13
274	"Greener―and modular synthesis of triazine-based conjugated porous polymers <i>via</i> direct arylation polymerization: structure–function relationship and photocatalytic application. Polymer Chemistry, 2018, 9, 1972-1982.	1.9	43

#	Article	IF	CITATIONS
275	Metalâ€Free Dehydrogenation of Nâ€Heterocycles by Ternary <i>h</i> â€BCN Nanosheets with Visible Light. Angewandte Chemie, 2018, 130, 5585-5589.	1.6	40
276	Remarkably efficient adsorbent for the removal of bisphenol A from water: Bio-MOF-1-derived porous carbon. Chemical Engineering Journal, 2018, 343, 225-234.	6.6	122
277	Porphyrin-based porous polyimide polymer/Pd nanoparticle composites as efficient catalysts for Suzuki–Miyaura coupling reactions. Polymer Chemistry, 2018, 9, 1430-1438.	1.9	43
278	Crystallographic snapshots of host–guest interactions in drugs@metal–organic frameworks: towards mimicking molecular recognition processes. Materials Horizons, 2018, 5, 683-690.	6.4	64
279	Multielectronâ€Transferâ€based Rechargeable Energy Storage of Twoâ€Dimensional Coordination Frameworks with Nonâ€Innocent Ligands. Angewandte Chemie - International Edition, 2018, 57, 8886-8890.	7.2	182
280	Thermal Instability Induced Oriented 2D Pores for Enhanced Sodium Storage. Small, 2018, 14, e1800639.	5.2	46
281	Synthesis of Porous Sulfonamide Polymers by Capturing Atmospheric Sulfur Dioxide. ChemSusChem, 2018, 11, 1751-1755.	3.6	11
282	Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste. Nature Communications, 2018, 9, 1644.	5.8	300
283	Chemical diversity in a metal–organic framework revealed by fluorescence lifetime imaging. Nature Communications, 2018, 9, 1647.	5.8	112
284	Vacancy defect configurations in the metal–organic framework UiO-66: energetics and electronic structure. Journal of Materials Chemistry A, 2018, 6, 8507-8513.	5.2	49
285	Engineering nanoporous organic frameworks to stabilize naked Au clusters: a charge modulation approach. Chemical Communications, 2018, 54, 5058-5061.	2.2	19
286	Synthesis of Crystalline Porous Organic Salts with High Proton Conductivity. Angewandte Chemie, 2018, 130, 5443-5447.	1.6	41
287	IR and UV study of reversible water-induced structural transformations of poly(manganese) Tj ETQq0 0 0 rgBT /O of Molecular Structure, 2018, 1166, 237-242.	verlock 10 1.8	O Tf 50 267 To 14
288	Design and synthesis of a multifunctional porous N-rich polymer containing <i>s</i> -triazine and Tröger's base for CO ₂ adsorption, catalysis and sensing. Polymer Chemistry, 2018, 9, 2643-2649.	1.9	57
289	Dissecting Porosity in Molecular Crystals: Influence of Geometry, Hydrogen Bonding, and [π···π] Stacking on the Solid-State Packing of Fluorinated Aromatics. Journal of the American Chemical Society, 2018, 140, 6014-6026.	6.6	106
290	Efficient CO2/N2 and CO2/CH4 separation using NH2-MIL-53(Al)/cellulose acetate (CA) mixed matrix membranes. Separation and Purification Technology, 2018, 199, 140-151.	3.9	130
292	Highâ€Flux Membranes Based on the Covalent Organic Framework COF‣ZU1 for Selective Dye Separation by Nanofiltration. Angewandte Chemie - International Edition, 2018, 57, 4083-4087.	7.2	584
293	Solvomorphism of Double-Layered Networks through Single-Crystal-to-Single-Crystal Transformation. Crystal Growth and Design, 2018, 18, 1278-1282.	1.4	11

#	Article	IF	CITATIONS
294	Advances in covalent organic frameworks in separation science. Journal of Chromatography A, 2018, 1542, 1-18.	1.8	213
295	Ni-MOF-74 as sensing material for resonant-gravimetric detection of ppb-level CO. Sensors and Actuators B: Chemical, 2018, 262, 562-569.	4.0	42
296	Covalent Organic Framework with Frustrated Bonding Network for Enhanced Carbon Dioxide Storage. Chemistry of Materials, 2018, 30, 1762-1768.	3.2	169
297	Metal–organic framework technologies for water remediation: towards a sustainable ecosystem. Journal of Materials Chemistry A, 2018, 6, 4912-4947.	5.2	369
298	Microporous Polymers as Macroligands for Pentamethylcyclopentadienylrhodium Transferâ∈Hydrogenation Catalysts. ChemCatChem, 2018, 10, 1778-1782.	1.8	14
300	Two Metal–Organic Frameworks with Structural Varieties Derived from <i>cis–trans</i> Isomerism Nodes and Effective Detection of Nitroaromatic Explosives. Crystal Growth and Design, 2018, 18, 1857-1863.	1.4	44
301	Wasserâ€Hochflussmembranen auf Basis der kovalenten organischen GerÃ⅓ststruktur COFâ€LZU1 fÃ⅓r die Farbstoffabtrennung durch Nanofiltration. Angewandte Chemie, 2018, 130, 4147-4151.	1.6	35
302	Covalent organic frameworks (COFs): perspectives of industrialization. CrystEngComm, 2018, 20, 1613-1634.	1.3	108
303	A thread-level parallelization of pairwise additive potential and force calculations suitable for current many-core architectures. Journal of Supercomputing, 2018, 74, 2449-2469.	2.4	4
304	Preparation of core-shell microspheres of lactose with flower-like morphology and tailored porosity. Powder Technology, 2018, 325, 309-315.	2.1	14
305	Molecular structure design of conjugated microporous poly(dibenzo[b,d]thiophene 5,5-dioxide) for optimized photocatalytic NO removal. Journal of Catalysis, 2018, 357, 188-194.	3.1	25
306	Accelerating Membraneâ€based CO ₂ Separation by Soluble Nanoporous Polymer Networks Produced by Mechanochemical Oxidative Coupling. Angewandte Chemie - International Edition, 2018, 57, 2816-2821.	7.2	44
307	Diacetylene Functionalized Covalent Organic Framework (COF) for Photocatalytic Hydrogen Generation. Journal of the American Chemical Society, 2018, 140, 1423-1427.	6.6	646
308	Accelerating Membraneâ€based CO ₂ Separation by Soluble Nanoporous Polymer Networks Produced by Mechanochemical Oxidative Coupling. Angewandte Chemie, 2018, 130, 2866-2871.	1.6	10
309	Thermoregulated Phaseâ€Transition Synthesis of Twoâ€Dimensional Carbon Nanoplates Rich in sp ² Carbon and Unimodal Ultramicropores for Kinetic Gas Separation. Angewandte Chemie - International Edition, 2018, 57, 1632-1635.	7.2	42
310	Synthesis of open helmet-like carbon skeletons for application in lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 3877-3883.	5.2	28
311	Hammett Parameter in Microporous Solids as Macroligands for Heterogenized Photocatalysts. ACS Catalysis, 2018, 8, 1653-1661.	5.5	50
312	O-containing hyper-cross-linked polymers and porous carbons for CO 2 capture. Microporous and Mesoporous Materials, 2018, 264, 104-111.	2.2	52

#	Article	IF	CITATIONS
313	Thermoregulated Phaseâ€Transition Synthesis of Twoâ€Dimensional Carbon Nanoplates Rich in sp ² Carbon and Unimodal Ultramicropores for Kinetic Gas Separation. Angewandte Chemie, 2018, 130, 1648-1651.	1.6	13
314	N-doped porous carbon sheets derived from ZIF-8: Preparation and their electrochemical capacitive properties. Journal of Electroanalytical Chemistry, 2018, 810, 86-94.	1.9	37
315	Synthesis of Metallic Nanoparticles Using Closedâ€Shell Structures as Templates. Chemistry - an Asian Journal, 2018, 13, 362-372.	1.7	27
316	Nitrogen-doped porous carbon from ionic liquid@Al-metal-organic framework: A prominent adsorbent for purification of both aqueous and non-aqueous solutions. Chemical Engineering Journal, 2018, 338, 107-116.	6.6	67
317	Recent advances of hexaazatriphenylene (HAT) derivatives: Their applications in self-assembly and porous organic materials. Tetrahedron Letters, 2018, 59, 592-604.	0.7	28
318	Silver Clusters as Robust Nodes and π– <i>A</i> ctivation Sites for the Construction of Heterogeneous Catalysts for the Cycloaddition of Propargylamines. ACS Catalysis, 2018, 8, 1384-1391.	5.5	85
319	Adsorptive removal of wide range of pharmaceuticals and personal care products from water using bio-MOF-1 derived porous carbon. Microporous and Mesoporous Materials, 2018, 270, 102-108.	2.2	68
320	Photocatalytic activity of self-assembled porous TiO2nano-columns array fabricated by oblique angle sputter deposition. Materials Research Express, 2018, 5, 045018.	0.8	3
321	Holding Open Micropores with Water: Hydrogen-Bonded Networks Supported by Hexaaquachromium(III) Cations. CheM, 2018, 4, 868-878.	5.8	16
322	Design of Openâ€Shell Ï€â€Conjugated Microporous Polymer Film with Superâ€High Conductivity. Macromolecular Chemistry and Physics, 2018, 219, 1700600.	1.1	3
323	Controlling the Recognition and Reactivity of Alkyl Ammonium Guests Using an Anion Coordination-Based Tetrahedral Cage. Journal of the American Chemical Society, 2018, 140, 5248-5256.	6.6	60
324	Transition metal coordination complexes based on V-shaped bis-triazole ligand: syntheses, structures, and properties. Journal of Coordination Chemistry, 2018, 71, 1063-1072.	0.8	1
326	Covalent Organic Frameworks as a Decorating Platform for Utilization and Affinity Enhancement of Chelating Sites for Radionuclide Sequestration. Advanced Materials, 2018, 30, e1705479.	11.1	398
327	Triptycene-Based Porous Metal-Assisted Salphen Organic Frameworks: Influence of the Metal Ions on Formation and Gas Sorption. Chemistry of Materials, 2018, 30, 2781-2790.	3.2	27
328	Templated Assembly of a Functional Ordered Protein Macromolecular Framework from P22 Virus-like Particles. ACS Nano, 2018, 12, 3541-3550.	7.3	52
329	Microporous frameworks with conjugated π-electron skeletons for enhanced gas and organic vapor capture. Microporous and Mesoporous Materials, 2018, 267, 80-83.	2.2	5
330	Role of templating agents in the spray drying and postcrystallization of lactose for the production of highly porous powders. Drying Technology, 2018, 36, 1882-1891.	1.7	16
331	Synthesis of Crystalline Porous Organic Salts with High Proton Conductivity. Angewandte Chemie - International Edition, 2018, 57, 5345-5349.	7.2	162

#	Article	IF	CITATIONS
332	Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chemical Engineering Journal, 2018, 335, 74-81.	6.6	127
333	Structural design, preparation and characterization of light, isotropic and robust statically determined organic frameworks as reusable adsorbents. Chemical Engineering Journal, 2018, 335, 887-895.	6.6	16
334	Synthesis and characterization of a Bio-MOF based on mixed adeninate/tricarboxylate ligands and zinc ions. Inorganica Chimica Acta, 2018, 469, 306-311.	1.2	15
335	Design of conjugated microporous polymer nanotubes for efficient benzene molecular adsorptions. International Journal of Quantum Chemistry, 2018, 118, e25492.	1.0	8
336	Porous Polymer Membranes by Hard Templating – A Review. Advanced Engineering Materials, 2018, 20, 1700611.	1.6	35
337	Temperature-responsive cellulose sponge with switchable pore size: Application as a water flow manipulator. Materials Letters, 2018, 210, 337-340.	1.3	16
338	Enhanced visible light photocatalytic activity of TiO ₂ assisted by organic semiconductors: a structure optimization strategy of conjugated polymers. Journal of Materials Chemistry A, 2018, 6, 153-159.	5.2	73
339	Porous ionic polymers: Design, synthesis, and applications. Progress in Polymer Science, 2018, 79, 121-143.	11.8	161
340	An overview of engineered porous material for energy applications: a mini-review. lonics, 2018, 24, 1-17.	1.2	61
341	Adsorption of diclofenac on a magnetic adsorbent based on maghemite: experimental and theoretical studies. New Journal of Chemistry, 2018, 42, 437-449.	1.4	63
342	Heteropoly acid-loaded ionic liquid@metal-organic frameworks: Effective and reusable adsorbents for the desulfurization of a liquid model fuel. Chemical Engineering Journal, 2018, 334, 2215-2221.	6.6	92
343	Features of supercritical CO2 in the delicate world of the nanopores. Journal of Supercritical Fluids, 2018, 134, 204-213.	1.6	14
344	Purely Physisorptionâ€Based COâ€Selective Gateâ€Opening in Microporous Organically Pillared Layered Silicates. Angewandte Chemie, 2018, 130, 573-577.	1.6	4
345	Covalent Organic Frameworks and Cage Compounds: Design and Applications of Polymeric and Discrete Organic Scaffolds. Angewandte Chemie - International Edition, 2018, 57, 4850-4878.	7.2	405
346	Kovalente organische Netzwerke und KÃ#gverbindungen: Design und Anwendungen von polymeren und diskreten organischen Gerüsten. Angewandte Chemie, 2018, 130, 4942-4972.	1.6	97
347	Electron transport shuttle mechanism <i>via</i> an Fe–N–C bond derived from a conjugated microporous polymer for a supercapacitor. Dalton Transactions, 2018, 47, 852-858.	1.6	30
348	Porous Polyelectrolytes: The Interplay of Charge and Pores for New Functionalities. Angewandte Chemie - International Edition, 2018, 57, 6754-6773.	7.2	122
349	Hierarchical Multicomponent Inorganic Metamaterials: Intrinsically Driven Selfâ€Assembly at the Nanoscale. Advanced Materials, 2018, 30, 1702226.	11.1	91

#	Article	IF	Citations
350	Polysulfone mixed-matrix membrane incorporating talc clay particles for gas separation. Polymer Bulletin, 2018, 75, 3723-3738.	1.7	19
351	Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces. Journal of Materials Chemistry A, 2018, 6, 293-312.	5.2	377
352	Por $\tilde{A}\P$ se Polyelektrolyte: Zusammenspiel zwischen Poren und Ladung f $\tilde{A}^{1}\!\!/\!\!4$ r neue Funktionen. Angewandte Chemie, 2018, 130, 6868-6889.	1.6	10
353	Carboxylic-acid-functionalized UiO-66-NH2: A promising adsorbent for both aqueous- and non-aqueous-phase adsorptions. Chemical Engineering Journal, 2018, 331, 124-131.	6.6	164
354	From 1D copper-based metal-organic coordination polymer to 1D multi-walled carbon nanotube: fabrication, characterization and property. Inorganic and Nano-Metal Chemistry, 2018, 48, 607-614.	0.9	1
355	Supramolecular Organization in Confined Nanospaces. ChemPhysChem, 2018, 19, 1249-1297.	1.0	60
356	Water as a modulator in the synthesis of surface-mounted metal–organic framework films of type HKUST-1. Dalton Transactions, 2018, 47, 16474-16479.	1.6	22
357	Novel Prussian-blue-analogue microcuboid assemblies and their derived catalytic performance for effective reduction of 4-nitrophenol. New Journal of Chemistry, 2018, 42, 20212-20218.	1.4	11
358	Growth inhibition of <i>Microcystic aeruginosa</i> by metalâ€"organic frameworks: effect of variety, metal ion and organic ligand. RSC Advances, 2018, 8, 35314-35326.	1.7	30
359	A benzoquinone-derived porous hydrophenazine framework for efficient and reversible iodine capture. Chemical Communications, 2018, 54, 12706-12709.	2.2	28
360	A supramolecular porous material comprising Fe(<scp>ii</scp>) mesocates. Chemical Communications, 2018, 54, 13391-13394.	2.2	15
361	Thiophene insertion for continuous modulation of the photoelectronic properties of triphenylamine-based metal–organic frameworks for photocatalytic sulfonylation–cyclisation of activated alkenes. New Journal of Chemistry, 2018, 42, 18448-18457.	1.4	13
362	Adsorption and visible-light photodegradation of organic dyes with TiO ₂ /conjugated microporous polymer composites. RSC Advances, 2018, 8, 34560-34565.	1.7	17
363	Self-assembled soft nanoparticle membranes with programmed free volume hierarchy. Journal of Materials Chemistry A, 2018, 6, 22925-22930.	5.2	21
364	Two-Dimensional Porous Polymers: From Sandwich-like Structure to Layered Skeleton. Accounts of Chemical Research, 2018, 51, 3191-3202.	7.6	108
365	Pristine and Carboxyl-Functionalized Tetraphenylethylene-Based Ladder Networks for Gas Separation and Volatile Organic Vapor Adsorption. ACS Omega, 2018, 3, 15966-15974.	1.6	15
366	Synthesis of Porous Covalent Quinazoline Networks (CQNs) and Their Gas Sorption Properties. Angewandte Chemie, 2019, 131, 882-886.	1.6	9
367	Tuning the balance between dispersion and entropy to design temperature-responsive flexible metal-organic frameworks. Nature Communications, 2018, 9, 4899.	5.8	90

#	ARTICLE	IF	CITATIONS
368	Growth Inhibition of Microcystis aeruginosa by Copperâ€based MOFs: Performance and Physiological Effect on Algal Cells. Applied Organometallic Chemistry, 2018, 32, e4600.	1.7	29
369	Dynamic Diels–Alder reactions of maleimide–furan amphiphiles and their fluorescence ON/OFF behaviours. Organic and Biomolecular Chemistry, 2018, 16, 7871-7877.	1.5	19
370	3D mapping of gas physisorption for the spatial characterisation of nanoporous materials. ChemPhysChem, 2018, 20, 524-528.	1.0	5
371	Electrochemical Reduction of CO ₂ over Heterogeneous Catalysts in Aqueous Solution: Recent Progress and Perspectives. Small Methods, 2019, 3, 1800369.	4.6	168
372	Pyrolyzed Triazine-Based Nanoporous Frameworks Enable Electrochemical CO ₂ Reduction in Water. ACS Applied Materials & Interfaces, 2018, 10, 43588-43594.	4.0	29
373	Combined Natural Gas Separation and Storage Based on in Silico Material Screening and Process Optimization. Industrial & Engineering Chemistry Research, 2018, 57, 16727-16750.	1.8	7
374	Porous Organic Polymer from Aggregation-Induced Emission Macrocycle for White-Light Emission. Macromolecules, 2018, 51, 7863-7871.	2.2	24
375	Graphene-based "hybrid―aerogels with carbon nanotubes: Mesoporous network–functionality promoted defect density and electrochemical activity correlations. Journal of Applied Physics, 2018, 124, .	1.1	8
376	Functional Conjugated Polymers for CO $<$ sub $>$ 2 $<$ /sub $>$ Reduction Using Visible Light. Chemistry - A European Journal, 2018, 24, 17454-17458.	1.7	112
377	Impact of Defects on Pyrazolate Based Metal Organic Frameworks. Israel Journal of Chemistry, 2018, 58, 1112-1118.	1.0	4
378	Rational Design and Construction of Hierarchical Superstructures Using Shape-Persistent Organic Cages: Porphyrin Box-Based Metallosupramolecular Assemblies. Journal of the American Chemical Society, 2018, 140, 14547-14551.	6.6	59
379	Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nature Chemistry, 2018, 10, 1180-1189.	6.6	883
380	Shedding New Light on Nanostructured Catalysts with Positron Annihilation Spectroscopy. Small Methods, 2018, 2, 1800268.	4.6	13
381	Modular Design of Porous Soft Materials via Self-Organization of Metal–Organic Cages. Accounts of Chemical Research, 2018, 51, 2437-2446.	7.6	133
382	Encapsulation of Metal Nanoparticle Catalysts Within Mesoporous Zeolites and Their Enhanced Catalytic Performances: A Review. Frontiers in Chemistry, 2018, 6, 550.	1.8	74
383	Rational Design of Noncovalent Diamondoid Microporous Materials for Low-Energy Separation of C ₆ -Hydrocarbons. Journal of the American Chemical Society, 2018, 140, 15031-15037.	6.6	34
384	A Flexible Hydrogen Bonded Organic Framework That Reversibly Adsorbs Acetic Acid: \hat{l}^3 Trimesic Acid. Crystal Growth and Design, 2018, 18, 6621-6626.	1.4	10
385	Porous Organic Frameworks: Advanced Materials in Analytical Chemistry. Advanced Science, 2018, 5, 1801116.	5.6	162

#	Article	IF	CITATIONS
386	Polyaniline-loaded metal-organic framework MIL-101(Cr): Promising adsorbent for CO2 capture with increased capacity and selectivity by polyaniline introduction. Journal of CO2 Utilization, 2018, 28, 319-325.	3.3	47
387	Nanocasting and Direct Synthesis Strategies for Mesoporous Carbons as Supercapacitor Electrodes. Chemistry of Materials, 2018, 30, 7391-7412.	3.2	92
388	Bringing Porous Organic and Carbonâ€Based Materials toward Thinâ€Film Applications. Advanced Functional Materials, 2018, 28, 1801545.	7.8	53
389	Bacterial Disinfection Using Polymer Based Hybrids. Key Engineering Materials, 0, 778, 331-335.	0.4	2
391	Covalent and electrostatic incorporation of amines into hypercrosslinked polymers for increased CO ₂ selectivity. Journal of Polymer Science Part A, 2018, 56, 2513-2521.	2.5	9
392	Controllable fabrication of redox-active conjugated microporous polymers on reduced graphene oxide for high performance faradaic energy storage. Journal of Materials Chemistry A, 2018, 6, 18827-18832.	5.2	50
393	Carving Out Pores in Redoxâ€Active Oneâ€Dimensional Coordination Polymers. Angewandte Chemie, 2018, 130, 14793-14796.	1.6	2
394	Carving Out Pores in Redoxâ€Active Oneâ€Dimensional Coordination Polymers. Angewandte Chemie - International Edition, 2018, 57, 14585-14588.	7.2	8
395	Changing the Dress to a MOF through Fluorination and Transmetalation. Structural and Gas-Sorption Effects. Crystal Growth and Design, 2018, 18, 6824-6832.	1.4	17
396	A porous BrÃ,nsted superacid as an efficient and durable solid catalyst. Journal of Materials Chemistry A, 2018, 6, 18712-18719.	5.2	24
397	Construction of Porous Aromatic Frameworks with Exceptional Porosity via Building Unit Engineering. Advanced Materials, 2018, 30, e1804169.	11.1	66
398	Naturally occurring gallic acid derived multifunctional porous polymers for highly efficient CO ₂ conversion and I ₂ capture. Green Chemistry, 2018, 20, 4655-4661.	4.6	37
399	Benzotrithiophene-Based Covalent Organic Frameworks: Construction and Structure Transformation under Ionothermal Condition. Journal of the American Chemical Society, 2018, 140, 11618-11622.	6.6	76
400	Fluorescence-Tuned Silicone Elastomers for Multicolored Ultraviolet Light-Emitting Diodes: Realizing the Processability of Polyhedral Oligomeric Silsesquioxane-Based Hybrid Porous Polymers. Chemistry of Materials, 2018, 30, 6370-6376.	3.2	46
401	Selective Adsorption and Separation of Xylene Isomers and Benzene/Cyclohexane with Microporous Organic Polymers POP-1. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32717-32725.	4.0	47
402	Multielectronâ€Transferâ€based Rechargeable Energy Storage of Twoâ€Dimensional Coordination Frameworks with Nonâ€Innocent Ligands. Angewandte Chemie, 2018, 130, 9024-9028.	1.6	34
403	The 4-pyridonyl group as a multifunctional electron donor in 1,8-naphthalimide-based photoluminescent and mechanically interlocked coordination compounds. Materials Chemistry Frontiers, 2018, 2, 1366-1373.	3.2	8
404	Exploring Applications of Covalent Organic Frameworks: Homogeneous Reticulation of Radicals for Dynamic Nuclear Polarization. Journal of the American Chemical Society, 2018, 140, 6969-6977.	6.6	62

#	Article	IF	Citations
405	The Influence of Chemical Modification on Linker Rotational Dynamics in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 8678-8681.	7.2	33
406	The Influence of Chemical Modification on Linker Rotational Dynamics in Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 8814-8817.	1.6	11
407	Discrete Triptyceneâ€Based Hexakis(metalsalphens): Extrinsic Soluble Porous Molecules of Isostructural Constitution. Chemistry - A European Journal, 2018, 24, 11433-11437.	1.7	16
408	Monolithic nanofoam based on conjugated microporous polymer nanotubes with ultrahigh mechanical strength and flexibility for energy storage. Journal of Materials Chemistry A, 2018, 6, 11676-11681.	5.2	46
409	Reusable N-Heterocyclic Carbene Complex Catalysts and Beyond: A Perspective on Recycling Strategies. Chemical Reviews, 2018, 118, 9843-9929.	23.0	169
410	On the internal architecture of emergent plants. Journal of the Mechanics and Physics of Solids, 2018, 119, 224-239.	2.3	55
411	Integrating Superwettability within Covalent Organic Frameworks for Functional Coating. CheM, 2018, 4, 1726-1739.	5.8	157
412	Methylene blue removal from water using the hydrogel beads of poly(vinyl alcohol)-sodium alginate-chitosan-montmorillonite. Carbohydrate Polymers, 2018, 198, 518-528.	5.1	299
413	Rapid synthesis of Ag/AgCl@ZIF-8 as a highly efficient photocatalyst for degradation of acetaminophen under visible light. Chemical Engineering Journal, 2018, 351, 782-790.	6.6	163
414	<i>S</i> , <i>N</i> -Heteroacene-Based Conjugated Microporous Polymers as Fluorescent Sensors and Effective Antimicrobial Carriers. ACS Applied Bio Materials, 2018, 1, 473-479.	2.3	21
415	Beyond pristine metal-organic frameworks: Preparation and application of nanostructured, nanosized, and analogous MOFs. Coordination Chemistry Reviews, 2018, 376, 20-45.	9.5	121
416	Distortion of the Large Cages Encapsulating Cyclic Molecules and Empty Small Cages of Structure II Clathrate Hydrates. Journal of Physical Chemistry C, 2018, 122, 18134-18141.	1.5	40
417	Porous Cubic Cesium Salts of Silicododecatungstate(molybdate)/Borododecatungstate Blends: Synthesis and Molecular Adsorption Properties. Inorganic Chemistry, 2018, 57, 8821-8830.	1.9	6
418	A smart photosensitizer based on a red emitting solution processable porous polymer: generation of reactive oxygen species. Chemical Communications, 2018, 54, 9123-9126.	2.2	35
419	Structure-Dependent Analysis of Nanoporous Metals: Clues from Mechanical, Conduction, and Flow Properties. Journal of Physical Chemistry C, 2018, 122, 16803-16809.	1.5	11
420	Switchable gate-opening effect in metal–organic polyhedra assemblies through solution processing. Chemical Science, 2018, 9, 6463-6469.	3.7	40
421	Nonporous Adaptive Crystals of Pillararenes. Accounts of Chemical Research, 2018, 51, 2064-2072.	7.6	364
422	BODIPY-Based Conjugated Porous Polymer and Its Derived Porous Carbon for Lithium-Ion Storage. ACS Omega, 2018, 3, 7727-7735.	1.6	10

#	Article	IF	CITATIONS
423	Covalent Organic Framework–Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation. Journal of the American Chemical Society, 2018, 140, 10094-10098.	6.6	500
424	MOF-derived synthesis of mesoporous In/Ga oxides and their ultra-sensitive ethanol-sensing properties. Journal of Materials Chemistry A, 2018, 6, 14930-14938.	5.2	37
425	Redox-active, pyrene-based pristine porous organic polymers for efficient energy storage with exceptional cyclic stability. Chemical Communications, 2018, 54, 6796-6799.	2.2	56
426	Semiconducting Polymer Nanocavities: Porogenic Synthesis, Tunable Host–Guest Interactions, and Enhanced Drug/siRNA Delivery. Small, 2018, 14, e1800239.	5.2	34
427	A pillar-layer metal-organic framework for efficient adsorption separation of propylene over propane. Separation and Purification Technology, 2018, 204, 75-80.	3.9	38
428	Creating solvation environments in heterogeneous catalysts for efficient biomass conversion. Nature Communications, 2018, 9, 3236.	5.8	70
429	A building block exchange strategy for the rational fabrication of <i>de novo</i> unreachable amino-functionalized imine-linked covalent organic frameworks. Journal of Materials Chemistry A, 2018, 6, 17307-17311.	5.2	50
430	Recent advances in covalent organic frameworks for separation and analysis of complex samples. TrAC - Trends in Analytical Chemistry, 2018, 108, 98-109.	5.8	78
431	Hierarchical Self-Assembly of Toroidal Micelles into Multidimensional Nanoporous Superstructures. ACS Macro Letters, 2018, 7, 1040-1045.	2.3	20
432	Mg–porphyrin complex doped divinylbenzene based porous organic polymers (POPs) as highly efficient heterogeneous catalysts for the conversion of CO ₂ to cyclic carbonates. Dalton Transactions, 2018, 47, 13135-13141.	1.6	30
433	Chemically stable ionic viologen-organic network: an efficient scavenger of toxic oxo-anions from water. Chemical Science, 2018, 9, 7874-7881.	3.7	91
434	An azine-linked covalent organic framework ACOF-1 membrane for highly selective CO ₂ /CH ₄ separation. Journal of Materials Chemistry A, 2018, 6, 16849-16853.	5.2	107
435	Characterisation of redox states of metal–organic frameworks by growth on modified thin-film electrodes. Chemical Science, 2018, 9, 6572-6579.	3.7	13
436	Single crystal fluorescence behavior of a new HOF material: a potential candidate for a new LED. Journal of Materials Chemistry C, 2018, 6, 6929-6939.	2.7	33
437	Docking Strategy To Construct Thermostable, Singleâ€Crystalline, Hydrogenâ€Bonded Organic Framework with High Surface Area. Angewandte Chemie - International Edition, 2018, 57, 12650-12655.	7.2	103
438	Molecular simulations of water adsorption and transport in mesopores with varying hydrophilicity arrangements. Nanoscale, 2018, 10, 11657-11669.	2.8	6
439	Docking Strategy To Construct Thermostable, Singleâ€Crystalline, Hydrogenâ€Bonded Organic Framework with High Surface Area. Angewandte Chemie, 2018, 130, 12832-12837.	1.6	23
440	Tuneable near white-emissive two-dimensional covalent organic frameworks. Nature Communications, 2018, 9, 2335.	5.8	230

#	Article	IF	CITATIONS
441	In Silico Design of 2D and 3D Covalent Organic Frameworks for Methane Storage Applications. Chemistry of Materials, 2018, 30, 5069-5086.	3.2	101
442	Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews, 2018, 118, 6189-6235.	23.0	505
443	Preparation of SSZ-13 zeolites from beta zeolite and their application in the conversion of ethylene to propylene. Chemical Engineering Journal, 2019, 377, 119546.	6.6	23
444	Homochiral Metal–Organic Frameworks for Enantioselective Separations in Liquid Chromatography. Journal of the American Chemical Society, 2019, 141, 14306-14316.	6.6	93
445	Bottom-up Synthesis of Defect-free Mixed-matrix Membranes by Using Polymer-grafted Metal–Organic Polyhedra. Chemistry Letters, 2019, 48, 597-600.	0.7	22
446	Copperâ€Halide Polymer Nanowires as Versatile Supports for Singleâ€Atom Catalysts. Small, 2019, 15, e1903197.	5.2	12
447	Donor–acceptor covalent organic frameworks for visible light induced free radical polymerization. Chemical Science, 2019, 10, 8316-8322.	3.7	124
448	Computational Evaluation of the Diffusion Mechanisms for C8 Aromatics in Porous Organic Cages. Journal of Physical Chemistry C, 2019, 123, 21011-21021.	1.5	11
449	Design Strategies to Enhance Amidoxime Chelators for Uranium Recovery. ACS Applied Materials & Interfaces, 2019, 11, 30919-30926.	4.0	91
450	Grignard synthesis of fluorinated nanoporous element organic frameworks based on the heteroatoms P, B, Si, Sn and Ge. Polymer Chemistry, 2019, 10, 5032-5036.	1.9	2
451	Facile preparation of a cationic COF functionalized magnetic nanoparticle and its use for the determination of nine hydroxylated polycyclic aromatic hydrocarbons in smokers' urine. Analyst, The, 2019, 144, 5829-5841.	1.7	36
452	Optical Properties of Isolated and Covalent Organic Framework-Embedded Ruthenium Complexes. Journal of Physical Chemistry A, 2019, 123, 6854-6867.	1.1	7
453	Bio-inspired creation of heterogeneous reaction vessels via polymerization of supramolecular ion pair. Nature Communications, 2019, 10, 3059.	5.8	19
454	Metal-organic frameworks for recognition and sequestration of toxic anionic pollutants. , 2019, , 95-140.		6
455	Location matters: cooperativity of catalytic partners in porous organic polymers for enhanced CO ₂ transformation. Chemical Communications, 2019, 55, 9180-9183.	2.2	24
456	Metal–Helix Frameworks Formed by <i>μ</i> ₃ â€NO ₃ ^{â°°} with Different Orientations and Connected to a Heterometallic Cu ^{II} ₁₀ Dy ^{III} _{Folded Cluster. Chemistry - A European Journal. 2019, 25, 10813-10817.}	1.7	18
457	A Chiral Bisâ€Naphthylated Tetrandrine Dibromide: Synthesis, Selfâ€Assembly into an Organic Framework Based On Nanosized Spherical Cages, and Inclusion Studies. ChemPlusChem, 2019, 84, 1140-1144.	1.3	3
458	Crystalline Anionic Germanate Covalent Organic Framework for High CO ₂ Selectivity and Fast Li Ion Conduction. Chemistry - A European Journal, 2019, 25, 13479-13483.	1.7	29

#	Article	IF	Citations
459	Two-dimensional Acetate-based Light Lanthanide Fluoride Nanomaterials (F–Ln, Ln = La, Ce, Pr, and Nd): Morphology, Structure, Growth Mechanism, and Stability. Journal of the American Chemical Society, 2019, 141, 13134-13142.	6.6	17
460	Chaperone-like chiral cages for catalyzing enantio-selective supramolecular polymerization. Chemical Science, 2019, 10, 8076-8082.	3.7	29
461	Shape-persistent porous organic cage supported palladium nanoparticles as heterogeneous catalytic materials. Nanoscale, 2019, 11, 14929-14936.	2.8	29
462	Rapid Prediction of Adsorption Isotherms of a Diverse Range of Molecules in Hyper-Cross-Linked Polymers. Journal of Physical Chemistry C, 2019, 123, 17884-17893.	1.5	17
463	Forming layered conjugated porous BBL structures. Polymer Chemistry, 2019, 10, 4185-4193.	1.9	13
464	Mechanism–Property Correlation in Coordination Polymer Crystals toward Design of a Superior Sorbent. ACS Applied Materials & Sorbent.	4.0	24
465	Three-Dimensional-Ordered Porous Nanostructures for Lithium–Sulfur Battery Anodes and Cathodes Confer Superior Energy Storage Performance. ACS Nano, 2019, 13, 13037-13046.	7.3	39
466	Stepwise Evolution of Molecular Nanoaggregates Inside the Pores of a Highly Flexible Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 17342-17350.	7.2	16
467	Multifunctional Tubular Organic Cageâ€Supported Ultrafine Palladium Nanoparticles for Sequential Catalysis. Angewandte Chemie - International Edition, 2019, 58, 18011-18016.	7.2	103
468	Multifunctional Tubular Organic Cageâ€Supported Ultrafine Palladium Nanoparticles for Sequential Catalysis. Angewandte Chemie, 2019, 131, 18179-18184.	1.6	30
469	Copper oxide/mesoporous carbon nanocomposite synthesis, morphology and electrochemical properties for gel polymer-based asymmetric supercapacitors. Journal of Electroanalytical Chemistry, 2019, 852, 113504.	1.9	29
470	Stepwise Evolution of Molecular Nanoaggregates Inside the Pores of a Highly Flexible Metal–Organic Framework. Angewandte Chemie, 2019, 131, 17503-17511.	1.6	11
471	A novel photochromic metal organic framework based on viologen exhibiting benzene detection and photocontrolled luminescence properties in solid state. Inorganic Chemistry Communication, 2019, 110, 107610.	1.8	21
472	Zr-MOF with free carboxylic acid for storage and controlled release of caffeine. Journal of Molecular Liquids, 2019, 296, 112060.	2.3	24
473	Regioselective Construction of Metal-Organic Framework (MoF) Sensing Film on Parylene-Patterned Resonant Microcantilever for Highly Toxic Molecules Detection., 2019,,.		0
474	Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal–Organic Framework Database: CoRE MOF 2019. Journal of Chemical & Database: CoRE MOF	1.0	372
475	Pore surface engineering of covalent organic frameworks: structural diversity and applications. Nanoscale, 2019, 11, 21679-21708.	2.8	82
476	Study of factors influencing the fabrication of Coâ€porphyrin porous coordination polymer via metal–organic gel intermediate. Applied Organometallic Chemistry, 2019, 33, e5215.	1.7	1

#	Article	IF	CITATIONS
477	Controlled Growth of Ag Nanocrystals in a Hâ€Bonded Open Framework. Chemistry - A European Journal, 2019, 25, 13705-13708.	1.7	3
478	Ordered Macro–Microporous Metal–Organic Framework Single Crystals and Their Derivatives for Rechargeable Aluminum-Ion Batteries. Journal of the American Chemical Society, 2019, 141, 14764-14771.	6.6	226
479	Photocatalytic Removal of Harmful Algae in Natural Waters by Ag/AgCl@ZIF-8 Coating under Sunlight. Catalysts, 2019, 9, 698.	1.6	14
480	A series of dysprosium-based hydrogen-bonded organic frameworks (Dy–HOFs): thermally triggered off → on conversion of a single-ion magnet. Inorganic Chemistry Frontiers, 2019, 6, 2906-2913.	3.0	42
481	Diffusion Kinetics of CO ₂ , CH ₄ , and their Binary Mixtures in Porous Organic Cage CC3 . Journal of Physical Chemistry C, 2019, 123, 24172-24180.	1.5	10
482	Connecting the Dots: Knitting <i>C</i> -Phenylresorcin[4]arenes with Aromatic Linkers for Task-Specific Porous Organic Polymers. Chemistry of Materials, 2019, 31, 8440-8450.	3.2	48
483	Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework. Beilstein Journal of Nanotechnology, 2019, 10, 1883-1893.	1.5	24
484	Experimental Evidence for Vibrational Entropy as Driving Parameter of Flexibility in the Metal–Organic Framework ZIF-4(Zn). Chemistry of Materials, 2019, 31, 8366-8372.	3.2	29
485	Thermal-Driven Formation of 2D Nanoporous Networks on Metal Surfaces. Journal of Physical Chemistry C, 2019, 123, 26263-26271.	1.5	1
486	Three-Dimensional Printing of Hierarchical Porous Architectures. Chemistry of Materials, 2019, 31, 10017-10022.	3.2	18
487	Polyimide-Based PolyHIPEs Prepared via Pickering High Internal Phase Emulsions. Polymers, 2019, 11, 1499.	2.0	2
488	A double helix of opposite charges to form channels with unique CO ₂ selectivity and dynamics. Chemical Science, 2019, 10, 730-736.	3.7	87
489	Two novel multichromic coordination polymers based on a new flexible viologen ligand exhibiting photocontrolled luminescence properties and sensitive detection for ammonia. CrystEngComm, 2019, 21, 1635-1641.	1.3	36
490	Design and control of gas diffusion process in a nanoporous soft crystal. Science, 2019, 363, 387-391.	6.0	332
491	Iridium Single-Atom Catalyst Performing a Quasi-homogeneous Hydrogenation Transformation of CO2 to Formate. CheM, 2019, 5, 693-705.	5.8	181
492	Effects of synthesis methodology on microporous organic hyper-cross-linked polymers with respect to structural porosity, gas uptake performance and fluorescence properties. Polymer Chemistry, 2019, 10, 1299-1311.	1.9	93
493	Bulk fabrication of porous organic framework polymers on flexible nanofibers and their application for water purification. Reactive and Functional Polymers, 2019, 135, 58-64.	2.0	10
494	Sustainable Porous Carbon Materials Derived from Wood-Based Biopolymers for CO2 Capture. Nanomaterials, 2019, 9, 103.	1.9	54

#	Article	IF	CITATIONS
495	Porosity and Guest Inclusion in Cyclobenzoin Esters. Crystal Growth and Design, 2019, 19, 562-567.	1.4	11
496	Manganese cluster-based MOF as efficient polysulfide-trapping platform for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 2838-2844.	5.2	64
497	Host–guest energetic materials constructed by incorporating oxidizing gas molecules into an organic lattice cavity toward achieving highly-energetic and low-sensitivity performance. Chemical Communications, 2019, 55, 909-912.	2,2	50
498	Fabrication of a covalent organic framework and its gold nanoparticle hybrids as stable mimetic peroxidase for sensitive and selective colorimetric detection of mercury in water samples. Talanta, 2019, 204, 224-228.	2.9	66
499	Specific ion effects directed noble metal aerogels: Versatile manipulation for electrocatalysis and beyond. Science Advances, 2019, 5, eaaw4590.	4.7	87
500	Phytic acid-encapsulated MIL-101(Cr): Remarkable adsorbent for the removal of both neutral indole and basic quinoline from model liquid fuel. Chemical Engineering Journal, 2019, 375, 121948.	6.6	18
501	NanoPOP: Solution-Processable Fluorescent Porous Organic Polymer for Highly Sensitive, Selective, and Fast Naked Eye Detection of Mercury. ACS Applied Materials & Interfaces, 2019, 11, 27394-27401.	4.0	45
502	Inactivation of harmful cyanobacteria by Ag/AgCl@ZIF-8 coating under visible light: Efficiency and its mechanisms. Applied Catalysis B: Environmental, 2019, 256, 117866.	10.8	63
503	Direct synthesis of covalent triazine-based frameworks (CTFs) through aromatic nucleophilic substitution reactions. RSC Advances, 2019, 9, 18008-18012.	1.7	21
504	Spectroscopic Determination of the Site in MFI Zeolite where Cobalt(I) Performs Two-Electron Reduction of O ₂ at Room Temperature. Journal of Physical Chemistry C, 2019, 123, 17842-17854.	1.5	10
505	Molecular Sieving and Direct Visualization of CO ₂ in Binding Pockets of an Ultramicroporous Lanthanide Metal–Organic Framework Platform. ACS Applied Materials & Diterfaces, 2019, 11, 23192-23197.	4.0	26
506	Direct Arylation Polymerization for Synthesizing a Library of Conjugated Porous Polymers Containing Thiophene-Flanked Building Blocks. ACS Applied Polymer Materials, 2019, 1, 1697-1706.	2.0	13
507	Design of ZIF(Co & Design of ZIF(Co & Design of Pharmaceutical Intermediate from wastewater. Journal of Colloid and Interface Science, 2019, 552, 494-505.	5.0	87
508	Gas separation by adsorption: technological drivers and opportunities for improvement. Current Opinion in Chemical Engineering, 2019, 24, 131-142.	3.8	69
509	Development of a General Evaluation Metric for Rapid Screening of Adsorbent Materials for Postcombustion CO ₂ Capture. ACS Sustainable Chemistry and Engineering, 2019, 7, 11529-11539.	3.2	74
510	Efficient Separation of <i>cis</i> ―and <i>trans</i> âf•1,2â€Dichloroethene Isomers by Adaptive Biphen[3]arene Crystals. Angewandte Chemie, 2019, 131, 10387-10390.	1.6	38
511	A three-dimensional Cd(<scp>ii</scp>) metal–organic framework: a bifunctional luminescence sensor for benzaldehyde and Fe ²⁺ ions. New Journal of Chemistry, 2019, 43, 10575-10582.	1.4	12
512	Integrating amino groups within conjugated microporous polymers by versatile thiol–yne coupling for light-driven hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 16277-16284.	5.2	43

#	Article	IF	Citations
513	Water adsorption/desorption over metal-organic frameworks with ammonium group for possible application in adsorption heat transformation. Chemical Engineering Journal, 2019, 373, 1064-1071.	6.6	46
514	Construction and catalytic applications of an amino-functionalized covalent organic framework. Transition Metal Chemistry, 2019, 44, 689-697.	0.7	8
515	Metallopolymerization as a Strategy to Translate Ligand-Modulated Chemoselectivity to Porous Catalysts. Organometallics, 2019, 38, 3436-3443.	1.1	9
516	Challenges and opportunities for adsorption-based CO ₂ capture from natural gas combined cycle emissions. Energy and Environmental Science, 2019, 12, 2161-2173.	15.6	119
517	Divergent Synthesis of Chiral Covalent Organic Frameworks. Angewandte Chemie, 2019, 131, 9543-9547.	1.6	20
518	Efficient Separation of <i>cis</i> ―and <i>trans</i> â€1,2â€Dichloroethene Isomers by Adaptive Biphen[3]arene Crystals. Angewandte Chemie - International Edition, 2019, 58, 10281-10284.	7.2	115
519	Divergent Synthesis of Chiral Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 9443-9447.	7.2	81
520	A Porous Carbon with Excellent Gas Storage Properties from Waste Polystyrene. Nanomaterials, 2019, 9, 726.	1.9	15
521	Redox active nitrogen-containing conjugated porous polymer: An organic heterogeneous electrocatalysts for oxygen reduction reaction. Dyes and Pigments, 2019, 170, 107557.	2.0	2
522	Pyrrolidine-based chiral porous polymers for heterogeneous organocatalysis in water. Polymer Chemistry, 2019, 10, 3298-3305.	1.9	24
523	Highly stable fullerene-based porous molecular crystals with open metal sites. Nature Materials, 2019, 18, 740-745.	13.3	18
524	Novel metal–organic framework materials: blends, liquids, glasses and crystal–glass composites. Chemical Communications, 2019, 55, 8705-8715.	2.2	72
525	Modeling the Structural and Thermal Properties of Loaded Metal–Organic Frameworks. An Interplay of Quantum and Anharmonic Fluctuations. Journal of Chemical Theory and Computation, 2019, 15, 3237-3249.	2.3	22
526	Unravelling mass transport in hierarchically porous catalysts. Journal of Materials Chemistry A, 2019, 7, 11814-11825.	5.2	57
527	Advanced Porous Materials for Sensing, Capture and Detoxification of Organic Pollutants toward Water Remediation. ACS Sustainable Chemistry and Engineering, 2019, 7, 7456-7478.	3.2	189
528	Crystalline Polymers Based on Dative Boron–Nitrogen Bonds and the Quest for Porosity. , 2019, 1, 3-7.		33
530	Designing Hydrogenâ€Bonded Organic Frameworks (HOFs) with Permanent Porosity. Angewandte Chemie, 2019, 131, 11278-11288.	1.6	7
531	Designing Hydrogenâ€Bonded Organic Frameworks (HOFs) with Permanent Porosity. Angewandte Chemie - International Edition, 2019, 58, 11160-11170.	7.2	414

#	Article	IF	Citations
532	MOP × MOF: Collaborative Combination of Metal–Organic Polyhedra and Metal–Organic Framework for Proton Conductivity. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12639-12646.	4.0	45
533	<i>K</i> -Index: A Descriptor, Predictor, and Correlator of Complex Nanomorphology to Other Material Properties. ACS Nano, 2019, 13, 3677-3690.	7.3	29
534	Microwave-Assisted Synthesis of Porous Aggregates of CuS Nanoparticles for Sunlight Photocatalysis. ACS Omega, 2019, 4, 4825-4831.	1.6	57
535	Tunable superporous magnetic adsorbent prepared via eco-friendly Pickering MIPEs for high-efficiency adsorption of Rb+ and Sr2+. Chemical Engineering Journal, 2019, 368, 988-998.	6.6	25
536	A novel photochromic cadmium coordination polymer based on a new viologen ligand accompanying photoswitchable luminescence properties. Inorganic Chemistry Communication, 2019, 102, 240-244.	1.8	12
537	Selective host–guest interactions in metal–organic frameworks <i>via</i> multiple hydrogen bond donor–acceptor recognition sites. Journal of Materials Chemistry A, 2019, 7, 10379-10388.	5. 2	25
538	Triptycene, Phenolic-OH, and Azo-Functionalized Porous Organic Polymers: Efficient and Selective CO ₂ Capture. ACS Applied Polymer Materials, 2019, 1, 959-968.	2.0	62
539	Electronic properties of heterogenized Ru(<scp>ii</scp>) polypyridyl photoredox complexes on covalent triazine frameworks. Journal of Materials Chemistry A, 2019, 7, 8433-8442.	5. 2	6
540	Optimizing radionuclide sequestration in anion nanotraps with record pertechnetate sorption. Nature Communications, 2019, 10, 1646.	5.8	122
541	Metal–Organic Framework-Templated Biomaterials: Recent Progress in Synthesis, Functionalization, and Applications. Accounts of Chemical Research, 2019, 52, 1598-1610.	7.6	112
542	Opportunities of Porous Organic Polymers for Radionuclide Sequestration. Trends in Chemistry, 2019, 1, 292-303.	4.4	93
543	Metal-organic framework with various functional groups: Remarkable adsorbent for removal of both neutral indole and basic quinoline from liquid fuel. Chemical Engineering Journal, 2019, 370, 1467-1473.	6.6	37
544	Highly regioselective and sustainable solar click reaction: a new post-synthetic modified triazole organic polymer as a recyclable photocatalyst for regioselective azide–alkyne cycloaddition reaction. Green Chemistry, 2019, 21, 2677-2685.	4.6	15
545	Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nature Communications, 2019, 10, 1568.	5.8	278
546	Concepts for improving hydrogen storage in nanoporous materials. International Journal of Hydrogen Energy, 2019, 44, 7768-7779.	3.8	160
547	Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion. Nature Communications, 2019, 10, 676.	5. 8	278
548	Vanadium Docked Covalent-Organic Frameworks: An Effective Heterogeneous Catalyst for Modified Mannich-Type Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 4878-4888.	3.2	46
549	In Situ Two-Step Crystallization: Transformation of Kinetic Crystals into Thermodynamic Crystals. Crystal Growth and Design, 2019, 19, 2019-2023.	1.4	7

#	Article	IF	CITATIONS
550	General Way To Construct Micro- and Mesoporous Metal–Organic Framework-Based Porous Liquids. Journal of the American Chemical Society, 2019, 141, 19708-19714.	6.6	111
551	A novel photochromic coordination polymer based on a robust viologen ligand exhibiting multiple detection properties in the solid state. Dalton Transactions, 2019, 48, 17852-17857.	1.6	26
552	Three-dimensional porphyrin-based covalent organic frameworks with tetrahedral building blocks for single-site catalysis. New Journal of Chemistry, 2019, 43, 16907-16914.	1.4	28
553	Effect of Functional Groups of Metal–Organic Frameworks, Coated on Cotton, on Removal of Particulate Matters via Selective Interactions. ACS Applied Materials & Interfaces, 2019, 11, 47649-47657.	4.0	33
554	<i>N</i> , <i>N</i> ê²-Bicarbazole-Based Covalent Triazine Frameworks as High-Performance Heterogeneous Photocatalysts. Macromolecules, 2019, 52, 9786-9791.	2.2	42
555	NMR relaxation and modelling study of the dynamics of SF6 and Xe in porous organic cages. Physical Chemistry Chemical Physics, 2019, 21, 24373-24382.	1.3	12
556	Cationic Cd(II) metal â^' organic framework based on tetrakis(1,2,4-triazol-1-yl)methane. Journal of Coordination Chemistry, 2019, 72, 3495-3501.	0.8	1
557	Microporous Organically Pillared Layered Silicates (MOPS): A Versatile Class of Functional Porous Materials. Chemistry - A European Journal, 2019, 25, 2103-2111.	1.7	4
558	Three 1D coordination polymers based on bipyridinium carboxylate ligands: Photochromism. Dyes and Pigments, 2019, 160, 476-482.	2.0	21
559	Porous Carbon Hosts for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2019, 25, 3710-3725.	1.7	136
560	Highly porous Pt-Pb nanostructures as active and ultrastable catalysts for polyhydric alcohol electrooxidations. Science China Materials, 2019, 62, 341-350.	3.5	16
561	TiO ₂ -Integrated Carbon Prepared via Pyrolysis of Ti-Loaded Metal–Organic Frameworks for Redox Catalysis. ACS Applied Nano Materials, 2019, 2, 191-201.	2.4	17
562	Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chemical Society Reviews, 2019, 48, 488-516.	18.7	564
563	Covalent Organic Framework Decorated with Vanadium as a New Platform for Prins Reaction and Sulfide Oxidation. ACS Applied Materials & Sulfide Oxidation. ACS Applied Materials & Sulfide Oxidation.	4.0	66
564	Growth inhibition of harmful cyanobacteria by nanocrystalline Cu-MOF-74: Efficiency and its mechanisms. Journal of Hazardous Materials, 2019, 367, 529-538.	6.5	66
565	Lichtinduziertes Schalten der LeitfÄ ¤ igkeit von MOFs mit eingelagertem Spiropyran. Angewandte Chemie, 2019, 131, 1205-1210.	1.6	27
566	Hydrophilicityâ€Controlled Conjugated Microporous Polymers for Enhanced Visibleâ€Lightâ€Driven Photocatalytic H ₂ Evolution. Macromolecular Rapid Communications, 2019, 40, e1800494.	2.0	31
567	Anisotropic Water-Mediated Proton Conductivity in Large Iron(II) Metal–Organic Framework Single Crystals for Proton-Exchange Membrane Fuel Cells. ACS Applied Nano Materials, 2019, 2, 291-298.	2.4	39

#	Article	IF	CITATIONS
568	An Interpenetrating Porous Organic Polymer as a Precursor for FeP/Fe ₂ Pâ€Embedded Porous Carbon toward a pHâ€Universal ORR Catalyst. ChemSusChem, 2019, 12, 915-923.	3.6	45
569	A cationic porous organic polymer for high-capacity, fast, and selective capture of anionic pollutants. Journal of Hazardous Materials, 2019, 367, 348-355.	6.5	58
570	Porous Materials Based on 3-Dimensional Td-Directing Functionalized Adamantane Scaffolds and Applied as Recyclable Catalysts. Chemistry of Materials, 2019, 31, 619-642.	3.2	48
571	Poly(ionic liquid)s: Platform for CO2 capture and catalysis. Current Opinion in Green and Sustainable Chemistry, 2019, 16, 39-46.	3.2	47
572	Improving isosteric heat of CO2 adsorption by introducing nitro moieties into jungle-gym-type porous coordination polymers. Journal of Solid State Chemistry, 2019, 270, 11-18.	1.4	5
573	Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomedicine and Pharmacotherapy, 2019, 109, 1100-1111.	2.5	357
574	Conductance Photoswitching of Metal–Organic Frameworks with Embedded Spiropyran. Angewandte Chemie - International Edition, 2019, 58, 1193-1197.	7.2	116
575	Microporous Humins Prepared from Sugars and Bio-Based Polymers in Concentrated Sulfuric Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 1018-1027.	3.2	17
576	Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coordination Chemistry Reviews, 2019, 380, 330-352.	9.5	447
577	Opportunities of Covalent Organic Frameworks for Advanced Applications. Advanced Science, 2019, 6, 1801410.	5.6	368
578	Synthesis of Porous Covalent Quinazoline Networks (CQNs) and Their Gas Sorption Properties. Angewandte Chemie - International Edition, 2019, 58, 872-876.	7.2	46
579	Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): A new horizon for efficient CO2 separation. Progress in Materials Science, 2019, 102, 222-295.	16.0	179
580	Acid Responsive Hydrogen-Bonded Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 2111-2121.	6.6	205
581	Controlled Selfâ€Assembly of Mesoporous CuO Networks Guided by Organic Interlinking. Particle and Particle Systems Characterization, 2019, 36, 1800453.	1.2	1
582	Probing Local Structural Changes at Cu ²⁺ in a Flexible Mixed-Metal Metal-Organic Framework by <i>in Situ</i> Electron Paramagnetic Resonance during CO ₂ Ad- and Desorption. Journal of Physical Chemistry C, 2019, 123, 2940-2952.	1.5	24
583	Facile control of defect site density and particle size of UiO-66 for enhanced hydrolysis rates: insights into feasibility of Zr(IV)-based metal-organic framework (MOF) catalysts. Applied Catalysis B: Environmental, 2019, 245, 635-647.	10.8	79
584	Aggregation-Induced Emission on Supramolecular Coordination Complexes Platforms. , 2019, , 163-194.		1
585	Porous Polymers as Multifunctional Material Platforms toward Taskâ€Specific Applications. Advanced Materials, 2019, 31, e1802922.	11.1	315

#	Article	IF	Citations
586	Porous Organic Polymer Gel Derived Electrocatalysts for Efficient Oxygen Reduction. ChemElectroChem, 2019, 6, 485-492.	1.7	19
587	Interpenetration Isomerism in Triptyceneâ€Based Hydrogenâ€Bonded Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 1664-1669.	7.2	93
588	Interpenetration Isomerism in Triptyceneâ€Based Hydrogenâ€Bonded Organic Frameworks. Angewandte Chemie, 2019, 131, 1678-1683.	1.6	29
589	Synthesis of SSZ-13 zeolite in the presence of dimethylethylcyclohexyl ammonium ion and direct conversion of ethylene to propylene with the SSZ-13. Chemical Engineering Journal, 2019, 377, 120116.	6.6	16
590	Recent advances in development of amine functionalized adsorbents for CO2 capture. Adsorption, 2020, 26, 5-50.	1.4	94
591	Metal-organic framework MIL-101 loaded with polymethacrylamide with or without further reduction: Effective and selective CO2 adsorption with amino or amide functionality. Chemical Engineering Journal, 2020, 380, 122496.	6.6	68
592	Polymernetzwerke: Von Kunststoffen und Gelen zu porösen Gerüsten. Angewandte Chemie, 2020, 132, 5054-5085.	1.6	16
593	Polymer Networks: From Plastics and Gels to Porous Frameworks. Angewandte Chemie - International Edition, 2020, 59, 5022-5049.	7.2	194
594	Tuning catalytic performance by controlling reconstruction process in operando condition. Applied Catalysis B: Environmental, 2020, 260, 118103.	10.8	68
595	Microporosity of a Guanidinium Organodisulfonate Hydrogenâ€Bonded Framework. Angewandte Chemie - International Edition, 2020, 59, 1997-2002.	7.2	45
596	Polyvinylamine-loaded metal–organic framework MIL-101 for effective and selective CO2 adsorption under atmospheric or lower pressure. Chemical Engineering Journal, 2020, 389, 123429.	6.6	50
597	Microporosity of a Guanidinium Organodisulfonate Hydrogenâ€Bonded Framework. Angewandte Chemie, 2020, 132, 2013-2018.	1.6	14
598	Highly enhanced adsorption of methyl blue on weakly cross-linked ammonium-functionalized hollow polymer particles. Applied Surface Science, 2020, 505, 144607.	3.1	29
599	Nanoparticle Sizeâ€Fractionation through Selfâ€Standing Porous Covalent Organic Framework Films. Angewandte Chemie - International Edition, 2020, 59, 1161-1165.	7.2	90
600	Aurophilicityâ€Mediated Construction of Emissive Porous Molecular Crystals as Versatile Hosts for Liquid and Solid Guests. Chemistry - A European Journal, 2020, 26, 735-744.	1.7	19
601	Carbon-derived from metal-organic framework MOF-74: A remarkable adsorbent to remove a wide range of contaminants of emerging concern from water. Applied Surface Science, 2020, 504, 144348.	3.1	44
602	From Molecular Precursors to Nanoparticlesâ€"Tailoring the Adsorption Properties of Porous Carbon Materials by Controlled Chemical Functionalization. Advanced Functional Materials, 2020, 30, 1908371.	7.8	57
603	Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO ₂ Separation. Angewandte Chemie - International Edition, 2020, 59, 6068-6073.	7.2	50

#	Article	IF	CITATIONS
604	Assembly of Molecular Building Blocks into Integrated Complex Functional Molecular Systems: Structuring Matter Made to Order. Advanced Functional Materials, 2020, 30, 1907625.	7.8	34
605	Influence of annealing temperature in nitrogen doped porous carbon balls derived from hypercross-linked polymer of anthracene for supercapacitor applications. Journal of Energy Storage, 2020, 28, 101196.	3.9	36
606	Porous Nanosheet Assembly for Macrocyclization and Self-Release. Journal of the American Chemical Society, 2020, 142, 1904-1910.	6.6	19
607	Hydrogen-bonded porous frameworks constructed by rigid π-conjugated molecules with carboxy groups. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 96, 215-231.	0.9	58
608	Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO ₂ Separation. Angewandte Chemie, 2020, 132, 6124-6129.	1.6	15
609	Macrocyclic multinuclear metal complexes acting as catalysts for organic synthesis. Catalysis Science and Technology, 2020, 10, 12-34.	2.1	34
610	Photocatalytic inactivation of harmful algae and degradation of cyanotoxins microcystin-LR using GO-based Z-scheme nanocatalysts under visible light. Chemical Engineering Journal, 2020, 392, 123767.	6.6	45
611	Controlled Synthesis of Hollow Bimetallic Prussian Blue Analog for Conversion into Efficient Oxygen Evolution Electrocatalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 1319-1328.	3.2	39
612	Nanoparticle Sizeâ€Fractionation through Selfâ€Standing Porous Covalent Organic Framework Films. Angewandte Chemie, 2020, 132, 1177-1181.	1.6	27
613	As(V) removal from water using the La(III)- Montmorillonite hydrogel beads. Reactive and Functional Polymers, 2020, 147, 104456.	2.0	15
614	Inorganic Porous Bulk Discs as a Matrix for Thin-Layer Chromatography and Translucent Hard Composite Materials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 3727-3735.	4.0	1
615	Flexible Cyclosiloxane-Linked Fluorescent Porous Polymers for Multifunctional Chemical Sensors. ACS Macro Letters, 2020, 9, 43-48.	2.3	35
616	Scrutinizing the Pore Chemistry and the Importance of Cu(I) Defects in TCNQ-Loaded Cu ₃ (BTC) ₂ by a Multitechnique Spectroscopic Approach. ACS Applied Materials & Amp; Interfaces, 2020, 12, 1024-1035.	4.0	17
617	Hierarchical Porous Organometallic Polymers Fabricated by Direct Knitting: Recyclable Singleâ€6ite Catalysts with Enhanced Activity. Advanced Materials, 2020, 32, e1905950.	11.1	41
618	Mixed matrix membranes comprising a polymer of intrinsic microporosity loaded with surface-modified non-porous pearl-necklace nanoparticles. Journal of Membrane Science, 2020, 597, 117627.	4.1	18
619	Microcrystalline cellulose (MCC) based materials as emerging adsorbents for the removal of dyes and heavy metals $\hat{a} \in A$ review. Science of the Total Environment, 2020, 717, 135070.	3.9	111
620	Superhydrophobic Covalent Organic Frameworks Prepared via Pore Surface Modifications for Functional Coatings under Harsh Conditions. ACS Applied Materials & Interfaces, 2020, 12, 2926-2934.	4.0	59
621	Efficient solid phase extraction of \hat{l} ±-tocopherol and \hat{l} 2-sitosterol from sunflower oil waste by improving the mesoporosity of the zeolitic adsorbent. Food Chemistry, 2020, 311, 125890.	4.2	11

#	Article	IF	Citations
622	Preparation of cobalt-based metal organic framework and its application as synergistic flame retardant in thermoplastic polyurethane (TPU). Composites Part B: Engineering, 2020, 182, 107498.	5.9	115
623	Highly Efficient and Selective Removal of Lead Ions from Aqueous Solutions by Conjugated Microporous Polymers with Functionalized Heterogeneous Pores. Crystal Growth and Design, 2020, 20, 337-344.	1.4	22
624	Lysozyme Adsorption on Porous Organic Cages: A Molecular Simulation Study. Langmuir, 2020, 36, 12299-12308.	1.6	8
625	Functionalization Chemistry of Porous Materials. Advanced Functional Materials, 2020, 30, 2003875.	7.8	17
626	Pore Size Gradient Effect in Monolithic Silica Mesopore Networks Revealed by In-Situ SAXS Physisorption. Langmuir, 2020, 36, 11996-12009.	1.6	10
627	Structural and Photophysical Properties of Various Polypyridyl Ligands: A Combined Experimental and Computational Study. ChemPhysChem, 2020, 21, 2489-2505.	1.0	5
628	Predicting permeability via statistical learning on higher-order microstructural information. Scientific Reports, 2020, 10, 15239.	1.6	28
629	Effects of Phase Purity and Pore Reinforcement on Mechanical Behavior of NU-1000 and Silica-Infiltrated NU-1000 Metal–Organic Frameworks. ACS Applied Materials & Diterfaces, 2020, 12, 49971-49981.	4.0	10
630	Porous Metal–Organic Polyhedra: Morphology, Porosity, and Guest Binding. Inorganic Chemistry, 2020, 59, 15646-15658.	1.9	16
631	Hydrogen-Bonded Organic Frameworks: A Rising Class of Porous Molecular Materials. Accounts of Materials Research, 2020, 1, 77-87.	5.9	206
632	Best Practices for Evaluating New Materials as Adsorbents for Water Treatment., 2020, 2, 1532-1544.		47
633	Adsorptive Separation of Benzene, Cyclohexene, and Cyclohexane by Amorphous Nonporous Amide Naphthotube Solids. Angewandte Chemie - International Edition, 2020, 59, 19945-19950.	7.2	60
634	Selective CO2 adsorption over functionalized Zr-based metal organic framework under atmospheric or lower pressure: Contribution of functional groups to adsorption. Chemical Engineering Journal, 2020, 402, 126254.	6.6	58
635	Organic solid-state lasers: a materials view and future development. Chemical Society Reviews, 2020, 49, 5885-5944.	18.7	250
636	Coordinated Water as New Binding Sites for the Separation of Light Hydrocarbons in Metal–Organic Frameworks with Open Metal Sites. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9448-9456.	4.0	11
637	Unimolecularly thick monosheets of vinyl polymers fabricated in metal–organic frameworks. Nature Communications, 2020, 11, 3573.	5.8	27
638	Removal of nitrogen-containing compounds from microalgae derived biofuel by adsorption over functionalized metal organic frameworks. Fuel, 2020, 280, 118622.	3.4	31
639	A flow distribution and collection feature for ensuring scalable uniform flow in a chromatography device. Journal of Chromatography A, 2020, 1618, 460892.	1.8	19

#	Article	IF	CITATIONS
640	Intramolecular Energy Transfer in a Series of Star-Shaped Molecules with a Central Porphyrin Core and Four Oligocarbazole Arms. Journal of Physical Chemistry C, 2020, 124, 27356-27365.	1.5	2
641	Vertical two-dimensional layered conjugated porous organic network structures of poly-benzimidazobenzophenanthroline (BBL): A first-principles study. Applied Physics Letters, 2020, 117, .	1.5	16
642	Integral Mass Balance (IMB) Method for Measuring Multicomponent Gas Adsorption Equilibria in Nanoporous Materials. Industrial & Engineering Chemistry Research, 2020, 59, 20478-20491.	1.8	13
643	Hydroxide-Enhanced Superexchange Magnetic Couplings in Ionic Clathrate Hydrates. Journal of Physical Chemistry C, 2020, 124, 25455-25464.	1.5	O
644	Hybrids Based on BOPHY-Conjugated Porous Polymers as Photocatalysts for Hydrogen Production: Insight into the Charge Transfer Pathway. ACS Catalysis, 2020, 10, 9804-9812.	5.5	38
645	Rh-catalyzed highly regioselective hydroformylation to linear aldehydes by employing porous organic polymer as a ligand. RSC Advances, 2020, 10, 29263-29267.	1.7	16
646	Versatile Platform of Ion Conducting 2D Anionic Germanate Covalent Organic Frameworks with Potential for Capturing Toxic Acidic Gases. ACS Applied Materials & Interfaces, 2020, 12, 40372-40380.	4.0	22
647	Effective removal of particulate matter from air by using zeolite-coated filters. Journal of Materials Chemistry A, 2020, 8, 17960-17968.	5.2	10
648	Removal of particulate matter with metal–organic framework-incorporated materials. Coordination Chemistry Reviews, 2020, 422, 213477.	9.5	66
649	Liquid-based porous membranes. Chemical Society Reviews, 2020, 49, 7907-7928.	18.7	89
650	An Eco-Friendly Fluidizable FexOy/CaO- \hat{l}^3 -Al2O3 Catalyst for Tar Cracking during Biomass Gasification. Catalysts, 2020, 10, 806.	1.6	14
651	An Electron-Deficient Coordination Polymer Based on a Viologen Ligand Accompanying Photochromism, Vaporchromism, and Photoswitchable Luminescence Properties. Russian Journal of Inorganic Chemistry, 2020, 65, 874-879.	0.3	5
652	Toxic heavy metal cadmium removal using chitosan and polypropylene based fiber composite. International Journal of Biological Macromolecules, 2020, 164, 1809-1824.	3.6	27
653	Exploration of advanced porous organic polymers as a platform for biomimetic catalysis and molecular recognition. Chemical Communications, 2020, 56, 10631-10641.	2.2	29
654	Adsorptive Separation of Benzene, Cyclohexene, and Cyclohexane by Amorphous Nonporous Amide Naphthotube Solids. Angewandte Chemie, 2020, 132, 20117-20122.	1.6	8
655	[Si(O ₂ C ₆ F ₄) ₂] ₁₄ : Selfâ€Assembly of a Giant Perfluorinated Macrocyclic Host by Lowâ€Barrier Siâ°O Bond Metathesis. Angewandte Chemie - International Edition, 2020, 59, 22510-22513.	7.2	19
656	[Si(O 2 C 6 F 4) 2] 14 : Selbstassemblierung eines perfluorierten makrocyclischen Wirts durch Siâ€Oâ€Bindungsmetathese mit niedriger Barriere. Angewandte Chemie, 2020, 132, 22699-22702.	1.6	2
657	Hierarchical Zeolite Single-Crystal Reactor for Excellent Catalytic Efficiency. Matter, 2020, 3, 1226-1245.	5.0	66

#	Article	IF	CITATIONS
658	Gigantic Porphyrinic Cages. CheM, 2020, 6, 3374-3384.	5.8	69
659	Fabrication of Conjugated Porous Polymer Catalysts for Oxygen Reduction Reactions: A Bottom-Up Approach. Catalysts, 2020, 10, 1224.	1.6	1
660	Nanoribbon Superstructures of Graphene Nanocages for Efficient Electrocatalytic Hydrogen Evolution. Nano Letters, 2020, 20, 7342-7349.	4.5	30
661	Carbonyl-Incorporated Aromatic Hyper-Cross-Linked Polymers with Microporous Structure and Their Functional Materials for CO ₂ Adsorption. Industrial & Engineering Chemistry Research, 2020, 59, 15955-15966.	1.8	25
662	Metal-Organic Frameworks for Macromolecular Recognition and Separation. Matter, 2020, 3, 652-663.	5.0	28
663	Cavitand and Molecular Cage-Based Porous Organic Polymers. ACS Omega, 2020, 5, 28413-28424.	1.6	46
664	A Porous Organic Polymer Nanotrap for Efficient Extraction of Palladium. Angewandte Chemie, 2020, 132, 19786-19790.	1.6	10
665	Conjugated microporous polymers bearing isocyanurate moiety as efficient antibacterial membrane and aerogels. Separation and Purification Technology, 2020, 248, 117020.	3.9	25
666	Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chemical Society Reviews, 2020, 49, 3981-4042.	18.7	162
667	Porous silica beads produced by nanofluid emulsion freezing. Microporous and Mesoporous Materials, 2020, 305, 110362.	2.2	4
668	Enabling efficient exploration of metal–organic frameworks in the Cambridge Structural Database. CrystEngComm, 2020, 22, 7152-7161.	1.3	42
669	A Porous Organic Polymer Nanotrap for Efficient Extraction of Palladium. Angewandte Chemie - International Edition, 2020, 59, 19618-19622.	7.2	57
670	Polyaniline-derived carbons: Remarkable adsorbents to remove atrazine and diuron herbicides from water. Journal of Hazardous Materials, 2020, 396, 122624.	6.5	15
671	A heterogeneous pore decoration strategy on a hydrophobic microporous polymer for high-coverage capture of metabolites. Chemical Communications, 2020, 56, 7167-7170.	2.2	19
672	Efficient and Tunable White‣ight Emission Using a Dispersible Porous Polymer. Macromolecular Rapid Communications, 2020, 41, 2000176.	2.0	1
673	Highly Improved Performance of Cotton Air Filters in Particulate Matter Removal by the Incorporation of Metal–Organic Frameworks with Functional Groups Capable of Large Charge Separation. ACS Applied Materials & Interfaces, 2020, 12, 28885-28893.	4.0	48
674	Covalent organic frameworks functionalized carbon fiber paper for the capture and detection of hydroxyl radical in the atmosphere. Chinese Chemical Letters, 2020, 31, 2495-2498.	4.8	23
675	Rare earth metal lanthanum-organic frameworks derived three-dimensional mesoporous interconnected carbon nanosheets for advanced energy storage. Electrochimica Acta, 2020, 353, 136597.	2.6	13

#	Article	IF	CITATIONS
676	Intrinsically microporous oligomers as organic porogens for mixed-matrix membranes. Korean Journal of Chemical Engineering, 2020, 37, 1050-1056.	1.2	0
677	Facile Synthesis of Porous Polymer Using Biomass Polyphenol Source for Highly Efficient Separation of Cs+ from Aqueous Solution. Scientific Reports, 2020, 10, 8221.	1.6	5
678	Porous Organic Polymers as Promising Electrode Materials for Energy Storage Devices. Advanced Materials Technologies, 2020, 5, .	3.0	72
679	Targeted classification of metal–organic frameworks in the Cambridge structural database (CSD). Chemical Science, 2020, 11, 8373-8387.	3.7	119
680	Phenanthroline-functionalized porous aromatic framework: An efficient heterogeneous catalyst for the tandem reaction of 2-iodoanilines and isothiocyanates in water. Microporous and Mesoporous Materials, 2020, 305, 110313.	2.2	11
681	Matching Charge Towards Synthesis of Tetrazole Frameworks for Iodine Uptake. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4764-4770.	1.9	0
682	Cationic porous aromatic framework with hierarchical structure for selective, rapid and efficient removal of anionic dyes from water. SN Applied Sciences, 2020, 2, 1.	1.5	3
683	A Convenient and Versatile Strategy for the Functionalization of Silica Foams Using High Internal Phase Emulsion Templates as Microreactors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14607-14619.	4.0	15
684	Temperatureâ€induced formation of two dinuclear dysprosium complexes with different magnetic properties. Applied Organometallic Chemistry, 2020, 34, e5622.	1.7	5
685	Amidoxime-based materials for uranium recovery and removal. Journal of Materials Chemistry A, 2020, 8, 7588-7625.	5.2	234
686	Atomically Precise Structure Determination of Porous Organic Cage from Ab Initio PXRD Structure Analysis: Its Molecular Click Postfunctionalization and CO2 Capture Application. ACS Applied Materials & Samp; Interfaces, 2020, 12, 17815-17823.	4.0	7
687	Luminescent metal–organic frameworks (LMOFs) as potential probes for the recognition of cationic water pollutants. Inorganic Chemistry Frontiers, 2020, 7, 1801-1821.	3.0	126
688	Solvent-controlled self-assembly of tetrapodal [4 + 4] phosphate organic molecular cage. Scientific Reports, 2020, 10, 4712.	1.6	7
689	Covalent Organic Framework-Functionalized Magnetic CuFe2O4/Ag Nanoparticles for the Reduction of 4-Nitrophenol. Nanomaterials, 2020, 10, 426.	1.9	46
690	The Chemistry of Porous Polymers: The Holey Grail. Israel Journal of Chemistry, 2020, 60, 140-150.	1.0	16
691	Removal of Particulate Matters with Isostructural Zr-Based Metal–Organic Frameworks Coated on Cotton: Effect of Porosity of Coated MOFs on Removal. ACS Applied Materials & Diterfaces, 2020, 12, 34423-34431.	4.0	26
692	Inter-conversion between zeolitic imidazolate frameworks: a dissolution–recrystallization process. Journal of Materials Chemistry A, 2020, 8, 13710-13717.	5.2	10
693	2D Coordination Network of Trioxotriangulene with Multiple Redox Abilities and Its Rechargeable Battery Performance. International Journal of Molecular Sciences, 2020, 21, 4723.	1.8	10

#	Article	IF	CITATIONS
694	Modulation of Crystal Packing via the Tuning of Peripheral Functionality for a Family of Dinuclear Mesocates. Chemistry - an Asian Journal, 2020, 15, 2716-2723.	1.7	0
695	Nitrogen-doped carbon nanoflowers with in situ generated Fe3C embedded carbon nanotubes for efficient oxygen reduction electrocatalysts. Applied Surface Science, 2020, 529, 147174.	3.1	27
696	Volatile Organic Compound Sensing Properties of Parylene E: Thermal Transition and Sorption Kinetics. Macromolecules, 2020, 53, 6024-6031.	2.2	1
697	Lithium Accommodation in a Redoxâ€Active Covalent Triazine Framework for High Areal Capacity and Fastâ€Charging Lithiumâ€ion Batteries. Advanced Functional Materials, 2020, 30, 2003761.	7.8	86
698	Computational Investigation of Correlations in Adsorbate Entropy for Pure-Silica Zeolite Adsorbents. Journal of Physical Chemistry C, 2020, 124, 16350-16361.	1.5	4
699	Secondary Sphere Effects on Porous Polymeric Organocatalysts for CO ₂ Transformations: Subtle Modifications Resulting in Superior Performance. ACS Applied Materials & Amp; Interfaces, 2020, 12, 32827-32833.	4.0	28
700	New Microporous Lanthanide Organic Frameworks. Synthesis, Structure, Luminescence, Sorption, and Catalytic Acylation of 2-Naphthol. Molecules, 2020, 25, 3055.	1.7	12
701	Advances on Porous Materials. , 2020, , .		1
702	Metal hydrogen-bonded organic frameworks: structure and performance. Dalton Transactions, 2020, 49, 10708-10723.	1.6	46
703	Multifunctional ionic porous frameworks for CO ₂ conversion and combating microbes. Chemical Science, 2020, 11, 7910-7920.	3.7	45
704	Recognition of Polymer Terminus by Metal–Organic Frameworks Enabling Chromatographic Separation of Polymers. Journal of the American Chemical Society, 2020, 142, 3701-3705.	6.6	50
705	The Chemistry of Porous Organic Molecular Materials. Advanced Functional Materials, 2020, 30, 1909842.	7.8	224
706	Porous Carbons: Structureâ€Oriented Design and Versatile Applications. Advanced Functional Materials, 2020, 30, 1909265.	7.8	316
707	Molecular Porous Photosystems Tailored for Longâ€√Ferm Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 5116-5122.	7.2	60
708	Covalent Organic Frameworks: Design, Synthesis, and Functions. Chemical Reviews, 2020, 120, 8814-8933.	23.0	1,968
709	C60/Na4FeO3/Li3V2(PO4)3/soft carbon quaternary hybrid superstructure for high-performance battery-supercapacitor hybrid devices. NPG Asia Materials, 2020, 12, .	3.8	15
710	Optimizing the performance of porous pyridinium frameworks for carbon dioxide transformation. Catalysis Today, 2020, 356, 557-562.	2.2	7
711	Adsorptive removal of nitrogenous compounds from microalgae-derived bio-oil using metal-organic frameworks with an amino group. Chemical Engineering Journal, 2020, 388, 124195.	6.6	25

#	Article	IF	CITATIONS
712	Molecular Porous Photosystems Tailored for Longâ€Term Photocatalytic CO 2 Reduction. Angewandte Chemie, 2020, 132, 5154-5160.	1.6	15
713	Advances in Conjugated Microporous Polymers. Chemical Reviews, 2020, 120, 2171-2214.	23.0	810
714	Surface Metallization of Porous Polymer Materials for Multifunctional Applications. Langmuir, 2020, 36, 1454-1461.	1.6	9
715	Investigation on Naphthalene and Its Derivativesâ€Based Microporous Organic Hyper rossâ€Linked Polymers via Different Methodologies. Macromolecular Chemistry and Physics, 2020, 221, 1900302.	1.1	6
716	Separation of Benzene and Cyclohexane by Nonporous Adaptive Crystals of a Hybrid[3]arene. Journal of the American Chemical Society, 2020, 142, 2228-2232.	6.6	85
717	Interlocking a synthesized polymer and bifunctional filler containing the same polymer's monomer for conformable hybrid membrane systems. Journal of Materials Chemistry A, 2020, 8, 3942-3955.	5.2	21
718	2D Covalent Organic Frameworks for Biomedical Applications. Advanced Functional Materials, 2020, 30, 2002046.	7.8	172
719	A remarkable adsorbent for removal of bisphenol S from water: Aminated metal-organic framework, MIL-101-NH2. Chemical Engineering Journal, 2020, 396, 125224.	6.6	63
720	Geometric landscapes for material discovery within energy–structure–function maps. Chemical Science, 2020, 11, 5423-5433.	3.7	23
721	COFs-based Porous Materials for Photocatalytic Applications. Chinese Journal of Polymer Science (English Edition), 2020, 38, 673-684.	2.0	31
722	New 1D chiral Zr-MOFs based on in situ imine linker formation as catalysts for asymmetric C C coupling reactions. Journal of Catalysis, 2020, 386, 106-116.	3.1	23
723	Facile synthesis of a Cu-based metal-organic framework from plastic waste and its application as a sensor for acetone. Journal of Cleaner Production, 2020, 263, 121492.	4.6	32
724	Tailored Porous Organic Polymers for Task-Specific Water Purification. Accounts of Chemical Research, 2020, 53, 812-821.	7.6	134
725	Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chemical Society Reviews, 2020, 49, 3348-3422.	18.7	190
726	Hollow porous organic nanospheres for anchoring Pd(PPh ₃) ₄ through a co-hyper-crosslinking mediated self-assembly strategy. New Journal of Chemistry, 2020, 44, 6661-6666.	1.4	7
727	Zeolite Adsorption Isotherms Predicted by Pore Channel and Local Environmental Descriptors: Feature Learning on DFT Binding Strength. Journal of Physical Chemistry C, 2020, 124, 9314-9328.	1.5	12
728	2D Porous Polymers with sp ² arbon Connections and Sole sp ² arbon Skeletons. Advanced Functional Materials, 2020, 30, 2000857.	7.8	42
729	Electroactive Organic Building Blocks for the Chemical Design of Functional Porous Frameworks (MOFs and COFs) in Electronics. Chemistry - A European Journal, 2020, 26, 10912-10935.	1.7	53

#	Article	IF	CITATIONS
730	Research Progress in Covalent Organic Frameworks for Photoluminescent Materials. Chemistry - A European Journal, 2020, 26, 16568-16581.	1.7	31
731	Urea formaldehyde modified alginate beads with improved stability and enhanced removal of Pb2+, Cd2+, and Cu2+. Journal of Hazardous Materials, 2020, 396, 122664.	6.5	44
732	An Ionic Liquid on a Porous Organic Framework Support: A Recyclable Catalyst for the Knoevenagel Condensation in an Aqueous System. ChemPlusChem, 2020, 85, 943-947.	1.3	6
733	A bifunctional hierarchical porous kaolinite geopolymer with good performance in thermal and sound insulation. Construction and Building Materials, 2020, 251, 118888.	3.2	31
734	Framework flexibility-driven CO ₂ adsorption on a zeolite. Materials Horizons, 2020, 7, 1528-1532.	6.4	39
735	Recent progress on single atom/sub-nano electrocatalysts for energy applications. Progress in Materials Science, 2021, 115, 100711.	16.0	27
736	A remarkable adsorbent for removal of nitrogenous compounds from fuel: A metal–organic framework functionalized both on metal and ligand. Chemical Engineering Journal, 2021, 404, 126491.	6.6	29
737	¹²⁹ Xe NMR on Porous Materials: Basic Principles and Recent Applications. Advanced Materials Interfaces, 2021, 8, 2001266.	1.9	23
738	The Origin of Selective Adsorption of CO ₂ on Merlinoite Zeolites. Angewandte Chemie - International Edition, 2021, 60, 4307-4314.	7.2	62
739	Solid-phase extraction and microextraction of chlorophenols and triazine herbicides with a novel hydrazone-based covalent triazine polymer as the adsorbent. Microchemical Journal, 2021, 160, 105634.	2.3	23
740	Self-cleaning and flexible filters based on aminopyridine conjugated microporous polymers nanotubes for bacteria sterilization and efficient PM2.5 capture. Science of the Total Environment, 2021, 766, 142594.	3.9	21
741	A Size-Selectively Biomolecule-Immobilized Nanoprobe-Based Chemiluminescent Lateral Flow Immunoassay for Detection of Avian-Origin Viruses. Analytical Chemistry, 2021, 93, 792-800.	3.2	22
742	BNâ€Doped Metal–Organic Frameworks: Tailoring 2D and 3D Porous Architectures through Molecular Editing of Borazines. Chemistry - A European Journal, 2021, 27, 4124-4133.	1.7	8
743	De novo synthesis of bifunctional conjugated microporous polymers for synergistic coordination mediated uranium entrapment. Nano Research, 2021, 14, 788-796.	5.8	20
744	Bio-tar-derived porous carbon with high gas uptake capacities. Renewable Energy, 2021, 167, 82-90.	4.3	7
745	Anionic Polymerization in Porous Organic Frameworks: A Strategy to Fabricate Anchored Polymers and Copolymers. Angewandte Chemie - International Edition, 2021, 60, 6117-6123.	7.2	3
746	Anionic Polymerization in Porous Organic Frameworks: A Strategy to Fabricate Anchored Polymers and Copolymers. Angewandte Chemie, 2021, 133, 6182-6188.	1.6	4
747	Spatial Engineering Direct Cooperativity between Binding Sites for Uranium Sequestration. Advanced Science, 2021, 8, 2001573.	5.6	43

#	ARTICLE	IF	Citations
748	Microporous framework membranes for precise molecule/ion separations. Chemical Society Reviews, 2021, 50, 986-1029.	18.7	191
749	A Roadmap for 3D Metal Aerogels: Materials Design and Application Attempts. Matter, 2021, 4, 54-94.	5. O	60
750	Allâ€inâ€One: Sensing, Adsorptive Removal, and Photocatalytic Degradation of Nitroâ€Explosive Contaminants by Microporous Polycarbazole Polymer. Macromolecular Rapid Communications, 2021, 42, e2000469.	2.0	13
751	Postâ€synthetic Modification of Covalent Organic Frameworks through inâ€situ Polymerization of Aniline for Enhanced Capacitive Energy Storage. Chemistry - an Asian Journal, 2021, 16, 158-164.	1.7	31
752	Electronic Doping of Metalâ€Organic Frameworks for Highâ€Performance Flexible Microâ€Supercapacitors. Small Structures, 2021, 2, 2000095.	6.9	25
7 53	Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coordination Chemistry Reviews, 2021, 430, 213655.	9.5	56
754	Can we predict materials that can be synthesised?. Chemical Science, 2021, 12, 830-840.	3.7	34
755	Molecular Engineering for Organic Cage Frameworks with Fixed Pore Size to Tune Their Porous Properties and Improve CO ₂ Capture. ACS Applied Polymer Materials, 2021, 3, 171-177.	2.0	9
756	Application of Metalâ€Organic Frameworks in Adsorptive Removal of Organic Contaminants from Water, Fuel and Air. Chemistry - an Asian Journal, 2021, 16, 185-196.	1.7	31
757	Programmable Local Orientation of Micropores by Moldâ€Assisted Ice Templating. Small Methods, 2021, 5, 2000963.	4.6	13
758	The Origin of Selective Adsorption of CO ₂ on Merlinoite Zeolites. Angewandte Chemie, 2021, 133, 4353-4360.	1.6	35
7 59	A hydrogen-bonded organic framework based on redox-active tri(dithiolylidene)cyclohexanetrione. Chemical Communications, 2021, 57, 1157-1160.	2.2	9
760	Design of Porous Coordination Materials with Dynamic Properties. Bulletin of the Chemical Society of Japan, 2021, 94, 60-69.	2.0	34
761	Mixed matrix membranes for hydrocarbons separation and recovery: a critical review. Reviews in Chemical Engineering, 2021, 37, 363-406.	2.3	32
762	Conversion of Y into SSZ-13 zeolite, in the absence of extra silica, alumina and seed crystals, with N,N,N-dimethylethylcyclohexylammonium bromide, and application of the SSZ-13 zeolite in the propylene production from ethylene. Catalysis Today, 2021, 375, 94-100.	2.2	10
763	Creating porosity in a trianglimine macrocycle by heterochiral pairing. Chemical Communications, 2021, 57, 6141-6144.	2.2	12
764	A new hydrazone-linked covalent organic framework for Fe(<scp>iii</scp>) detection by fluorescence and QCM technologies. CrystEngComm, 2021, 23, 3594-3601.	1.3	28
765	Adsorptive Purification of Water Contaminated with Hazardous Organics by Using Functionalized Metal-Organic Frameworks., 2021,, 269-290.		0

#	ARTICLE	IF	CITATIONS
766	Organic molecular sieve membranes for chemical separations. Chemical Society Reviews, 2021, 50, 5468-5516.	18.7	170
767	Transition-metal-free radical homocoupling polymerization to synthesize conjugated poly(phenylene) Tj ETQq $1\ 1$	0.784314	rgBT /Overl
768	Synthesis of a rod-based porous coordination polymer from a nucleotide as a sequential chiral inductor. Journal of Coordination Chemistry, 2021, 74, 200-215.	0.8	1
769	Construction of isostructural hydrogen-bonded organic frameworks: limitations and possibilities of pore expansion. Chemical Science, 2021, 12, 9607-9618.	3.7	47
770	Formation of a lead chalcogenide quantum dot-based supramolecular polymer network via pillar[5]arene-based host–guest complexation. Materials Chemistry Frontiers, 2021, 5, 5833-5840.	3.2	6
771	Melt-quenched porous organic cage glasses. Journal of Materials Chemistry A, 2021, 9, 19807-19816.	5.2	15
772	Synthesis of TEMPO radical decorated hollow porous aromatic frameworks for selective oxidation of alcohols. Chemical Communications, 2021, 57, 907-910.	2.2	14
773	An Anionic Indium–Organic Framework with Spirobifluorene-Based Ligand for Selective Adsorption of Organic Dyes. Inorganic Chemistry, 2021, 60, 1571-1578.	1.9	39
774	ZnO@ZIF-8 core–shell heterostructures with improved photocatalytic activity. CrystEngComm, 2021, 23, 4327-4335.	1.3	12
775	<i>N</i> , <i>N</i> ,°i>N倲-bicarbazole-benzothiadiazole-based conjugated porous organic polymer for reactive oxygen species generation in live cells. Chemical Communications, 2021, 57, 6875-6878.	2.2	12
776	Porous organic polymers as metal free heterogeneous organocatalysts. Green Chemistry, 2021, 23, 7361-7434.	4.6	54
777	Microalgae Oil Upgrading over Zeolite-Based Catalysts. ACS Symposium Series, 2021, , 89-124.	0.5	6
778	Emergent electrochemical functions and future opportunities of hierarchically constructed metal–organic frameworks and covalent organic frameworks. Nanoscale, 2021, 13, 6341-6356.	2.8	28
779	Three Mn(<scp>ii</scp>) metal–organic frameworks with the same chemical composition, but different topological structures and properties. CrystEngComm, 2021, 23, 2396-2403.	1.3	3
780	Solvent-controlled metal coordination polymers of Co(<scp>ii</scp>) with different topological structures and properties. CrystEngComm, 2021, 23, 7253-7261.	1.3	1
781	Evaluation of packing single and multiple atoms and molecules in the porous organic cage CC3- <i>R</i> . Physical Chemistry Chemical Physics, 2021, 23, 19255-19268.	1.3	2
782	Ultrahigh Nitric Oxide Capture by Tetrakis(azolyl)borate Ionic Liquid through Multiple-Sites Uniform Interaction. ACS Sustainable Chemistry and Engineering, 2021, 9, 3357-3362.	3.2	14
783	pH-dependent delivery of chlorhexidine from PGA grafted mesoporous silica nanoparticles at resin-dentin interface. Journal of Nanobiotechnology, 2021, 19, 43.	4.2	45

#	Article	IF	Citations
784	Functional Porous Organic Polymers with Conjugated Triaryl Triazine as the Core for Superfast Adsorption Removal of Organic Dyes. ACS Applied Materials & Interfaces, 2021, 13, 6359-6366.	4.0	98
785	Engineering Permanent Porosity into Liquids. Advanced Materials, 2021, 33, e2005745.	11.1	43
786	Endohedral Hydrogen Bonding Templates the Formation of a Highly Strained Covalent Organic Cage Compound**. Chemistry - A European Journal, 2021, 27, 6077-6085.	1.7	17
787	Effects of functional groups of –NH2 and –NO2 on water adsorption ability of Zr-based MOFs (UiO-66). Chemical Physics, 2021, 543, 111093.	0.9	25
788	Particulate matters removal by using cotton coated with isomeric metal-organic frameworks (MOFs): Effect of voidage of MOFs on removal. Journal of Industrial and Engineering Chemistry, 2021, 95, 277-285.	2.9	13
789	Covalent organic framework nanofluidic membrane as a platform for highly sensitive bionic thermosensation. Nature Communications, 2021, 12, 1844.	5.8	71
790	Photoinduced Enhancement of Uranium Extraction from Seawater by MOF/Black Phosphorus Quantum Dots Heterojunction Anchored on Cellulose Nanofiber Aerogel. Advanced Functional Materials, 2021, 31, 2100106.	7.8	139
791	Capture CO2 from N2 and CH4 by zeolite L with different crystal morphology. Microporous and Mesoporous Materials, 2021, 316, 110956.	2.2	17
792	Ferrocene-based porous organic polymer for photodegradation of methylene blue and high iodine capture. Microporous and Mesoporous Materials, 2021, 316, 110929.	2.2	17
793	The Ionic Organic Cage: An Effective and Recyclable Testbed for Catalytic CO2 Transformation. Catalysts, 2021, 11, 358.	1.6	5
794	In Situ-Doped Superacid in the Covalent Triazine Framework Membrane for Anhydrous Proton Conduction in a Wide Temperature Range from Subzero to Elevated Temperature. ACS Applied Materials & Samp; Interfaces, 2021, 13, 13604-13612.	4.0	21
795	Incorporation of Metals and Enzymes with Porous Imine Molecule Cages for Highly Efficient Semiheterogeneous Chemoenzymatic Catalysis. ACS Catalysis, 2021, 11, 5544-5553.	5.5	46
796	Porosity Engineering of MOFâ€Based Materials for Electrochemical Energy Storage. Advanced Energy Materials, 2021, 11, 2100154.	10.2	75
797	Engineering Bismuth–Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO ₂ Reduction to HCOOH. Angewandte Chemie - International Edition, 2021, 60, 12554-12559.	7.2	188
798	Benzene Ring Knitting Achieved by Ambientâ€√emperature Dehalogenation via Mechanochemical Ullmannâ€√ype Reductive Coupling. Advanced Materials, 2021, 33, e2008685.	11.1	27
799	Engineering Bismuth–Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO ₂ Reduction to HCOOH. Angewandte Chemie, 2021, 133, 12662-12667.	1.6	36
800	Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, computer simulations, and applications. Progress in Polymer Science, 2021, 115, 101374.	11.8	117
801	Diversity-oriented synthesis of polymer membranes with ion solvation cages. Nature, 2021, 592, 225-231.	13.7	83

#	Article	IF	Citations
802	A Tröger's Base-Derived Covalent Organic Polymer Containing Carbazole Units as a High-Performance Supercapacitor. Polymers, 2021, 13, 1385.	2.0	32
803	Thermochemical Investigation of Oxyanion Coordination in a Zirconium-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2021, , .	4.0	5
804	Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide Reduction. Journal of the American Chemical Society, 2021, 143, 7104-7113.	6.6	198
805	Fundamentals, advances and challenges of transition metal compounds-based supercapacitors. Chemical Engineering Journal, 2021, 412, 128611.	6.6	221
806	Isoreticular Crystallization of Highly Porous Cubic Covalent Organic Cage Compounds**. Angewandte Chemie - International Edition, 2021, 60, 17455-17463.	7.2	34
807	An amino-functionalized three-dimensional cadmium metal–organic framework: Synthesis, characterization and excellent fluorescence sensing of Fe ³⁺ . Journal of Chemical Research, 2021, 45, 845-849.	0.6	3
808	Two-Dimensional Single-Atom Catalyst TM ₃ (HAB) ₂ Monolayers for Electrocatalytic Dinitrogen Reduction Using Hierarchical High-Throughput Screening. ACS Applied Materials & Dinterfaces, 2021, 13, 26109-26122.	4.0	56
809	Design of Porous Membranes by Liquid Gating Technology. Accounts of Materials Research, 2021, 2, 407-419.	5.9	37
810	Imparting Ion Selectivity to Covalent Organic Framework Membranes Using <i>de Novo</i> Assembly for Blue Energy Harvesting. Journal of the American Chemical Society, 2021, 143, 9415-9422.	6.6	82
811	Isoretikul̮ Kristallisation von hochpor̦sen kubischen kovalentorganischen K̮gverbindungen**. Angewandte Chemie, 2021, 133, 17595-17604.	1.6	7
812	Interpretable Machine Learning-Based Predictions of Methane Uptake Isotherms in Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 3543-3552.	3.2	38
813	Ionic Salts@Metal–Organic Frameworks: Remarkable Component to Improve Performance of Fabric Filters to Remove Particulate Matters from Air. ACS Applied Materials & Samp; Interfaces, 2021, 13, 23092-23102.	4.0	10
814	Thermal and Gas Adsorption Properties of Tröger's Base/Diazaâ€eyclooctane Hybrid Ladder Polymers. ChemNanoMat, 2021, 7, 824-830.	1.5	4
815	Supramolecular Alloys from Fluorinated Hybrid Tri ⁴ Di ⁶ Imine Cages. Chemistry - A European Journal, 2021, 27, 8457-8460.	1.7	11
816	A Perspective on the Application of Covalent Organic Frameworks for Detection and Water Treatment. Nanomaterials, 2021, 11, 1651.	1.9	16
817	Polymer-Grafted Porous Silica Nanoparticles with Enhanced CO ₂ Permeability and Mechanical Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27411-27418.	4.0	14
818	Research progress on enhancing the performance of autotrophic nitrogen removal systems using microbial immobilization technology. Science of the Total Environment, 2021, 774, 145136.	3.9	28
819	Dynamics in Flexible Pillar[<i>n</i>)arenes Probed by Solid-State NMR. Journal of Physical Chemistry C, 2021, 125, 13370-13381.	1.5	5

#	Article	IF	Citations
820	A 2D Graphiticâ€Polytriaminopyrimidine (gâ€PTAP)/Poly(etherâ€blockâ€amide) Mixed Matrix Membrane for CO ₂ Separation. Chemistry - an Asian Journal, 2021, 16, 1839-1848.	1.7	6
821	Covalent organic frameworks: Design principles, synthetic strategies, and diverse applications. Giant, 2021, 6, 100054.	2.5	142
822	Design and Synthesis of Porous Organic Polymeric Materials from Norbornene Derivatives. Polymer Reviews, 2022, 62, 400-437.	5.3	15
823	Entangled nanofibrous copper: an efficient and high performance nanostructured catalyst in azide-alkyne cycloaddition reaction and reduction of nitroarenes and aromatic aldehydes. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 897.	0.8	3
824	A Hierarchically Tailored Wrinkled Three-Dimensional Foam for Enhanced Elastic Supercapacitor Electrodes. Nano Letters, 2021, 21, 7079-7085.	4.5	9
825	Have Covalent Organic Framework Films Revealed Their Full Potential?. Crystals, 2021, 11, 762.	1.0	2
826	Adsorption behavior of metal-organic frameworks: From single simulation, high-throughput computational screening to machine learning. Computational Materials Science, 2021, 193, 110383.	1.4	20
827	Synthesis of Sulfonated Porous Organic Polymers with a Hydrophobic Core for Efficient Acidic Catalysis in Organic Transformations. Chemistry - an Asian Journal, 2021, 16, 2041-2047.	1.7	7
828	Advanced Applications and Challenges of Electropolymerized Conjugated Microporous Polymer Films. Advanced Functional Materials, 2021, 31, 2101861.	7.8	41
829	Enhancing the activity, selectivity, and recyclability of Rh/PPh3 system-catalyzed hydroformylation reactions through the development of a PPh3-derived quasi-porous organic cage as a ligand. Chinese Journal of Catalysis, 2021, 42, 1216-1226.	6.9	13
830	MRIâ€Active Metalâ€Organic Frameworks: Concepts for the Translation from Lab to Clinic. Advanced Therapeutics, 2021, 4, 2100067.	1.6	6
831	25 Jahre retikulä Chemie. Angewandte Chemie, 2021, 133, 24142.	1.6	6
832	Metallocorrole-based porous organic polymers as a heterogeneous catalytic nanoplatform for efficient carbon dioxide conversion. Nano Research, 2022, 15, 1145-1152.	5.8	17
833	Versatile Porous Poly(arylene ether)s via Pd-Catalyzed C–O Polycondensation. Journal of the American Chemical Society, 2021, 143, 11828-11835.	6.6	20
834	Photoactive Hybrid Materials based on Conjugated Porous Polymers and Inorganic Nanoparticles. Advanced Photonics Research, 2021, 2, 2100060.	1.7	0
835	An Overview of Metal–Organic Frameworks for Green Chemical Engineering. Engineering, 2021, 7, 1115-1139.	3.2	94
836	Porous materials for carbon dioxide separations. Nature Materials, 2021, 20, 1060-1072.	13.3	271
838	Multivariate porous platform based on metal-organic polyhedra with controllable functionality assembly. Matter, 2021, 4, 2460-2473.	5.0	14

#	Article	IF	CITATIONS
839	Efficient Capture of Trace Acetylene by an Ultramicroporous Metal–Organic Framework with Purine Binding Sites. Chemistry of Materials, 2021, 33, 5800-5808.	3.2	22
840	25 Years of Reticular Chemistry. Angewandte Chemie - International Edition, 2021, 60, 23946-23974.	7.2	204
841	Metal–organic frameworks containing uncoordinated nitrogen: Preparation, modification, and application in adsorption. Materials Today, 2021, 51, 566-585.	8.3	50
842	Materials Precursor Score: Modeling Chemists' Intuition for the Synthetic Accessibility of Porous Organic Cage Precursors. Journal of Chemical Information and Modeling, 2021, 61, 4342-4356.	2.5	14
843	Acidic open-cage solution containing basic cage-confined nanospaces for multipurpose catalysis. National Science Review, 2022, 9, .	4.6	24
844	Development of Functional Materials via Polymer Encapsulation into Metal–Organic Frameworks. Bulletin of the Chemical Society of Japan, 2021, 94, 2139-2148.	2.0	26
845	Vapor-Phase-Infiltrated AlO <i>_x</i> /PIM-1 "Hybrid Scaffolds―as Solution-Processable Amine Supports for CO ₂ Adsorption. ACS Applied Polymer Materials, 2021, 3, 4460-4469.	2.0	7
846	Synthesis of Free-Standing Silver Foam via Oriented and Additive Nanojoining. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 38637-38646.	4.0	3
847	Porous nanomaterials: Main vein of agricultural nanotechnology. Progress in Materials Science, 2021, 121, 100812.	16.0	52
848	Highly effective selectively removal of carcinogenic dyes and iodine adsorption and release via a metal–organic framework based on multiple helical chains. Applied Organometallic Chemistry, 2021, 35, e6420.	1.7	1
849	Fabrication of cross-like ZIF-L structures with water repellency and self-cleaning property via a simple in-situ growth strategy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126731.	2.3	9
850	Improving Reproducibility in Hydrogen Storage Material Research. ChemPhysChem, 2021, 22, 2141-2157.	1.0	16
851	Imidazoliumâ€Functionalized Chemically Robust Ionic Porous Organic Polymers (<i>i</i> i>POPs) toward Toxic Oxoâ€Pollutants Capture from Water. Chemistry - A European Journal, 2021, 27, 13442-13449.	1.7	35
852	Recent advances in lignin-based porous materials for pollutants removal from wastewater. International Journal of Biological Macromolecules, 2021, 187, 880-891.	3.6	40
853	Stepwise Assembly of a Multicomponent Heterometallic Metal–Organic Framework via Th ₆ -Based Metalloligands. Inorganic Chemistry, 2021, 60, 14535-14539.	1.9	7
854	Inâ€Situ Encapsulation of Protein into Nanoscale Hydrogenâ€Bonded Organic Frameworks for Intracellular Biocatalysis. Angewandte Chemie, 2021, 133, 22489-22495.	1.6	13
855	Recommendation System to Predict Missing Adsorption Properties of Nanoporous Materials. Chemistry of Materials, 2021, 33, 7203-7216.	3.2	11
856	Molecular Cage-Mediated Radial Gradient Porous Sponge Nanofiber for Selective Adsorption of a Mustard Gas Simulant. ACS Applied Materials & Samp; Interfaces, 2021, 13, 47835-47844.	4.0	10

#	Article	IF	Citations
857	Macromolecular Design for Oxygen/Nitrogen Permselective Membranes—Top-Performing Polymers in 2020—. Polymers, 2021, 13, 3012.	2.0	13
858	Fundamentals and Designâ€Led Synthesis of Emulsionâ€Templated Porous Materials for Environmental Applications. Advanced Science, 2021, 8, e2102540.	5.6	30
859	Inâ€Situ Encapsulation of Protein into Nanoscale Hydrogenâ€Bonded Organic Frameworks for Intracellular Biocatalysis. Angewandte Chemie - International Edition, 2021, 60, 22315-22321.	7.2	70
860	Contribution of hydrogen bonding to liquid-phase adsorptive removal of hazardous organics with metal-organic framework-based materials. Chemical Engineering Journal, 2022, 430, 132596.	6.6	79
861	Synthesis and tailored properties of covalent organic framework thin films and heterostructures. Materials Today, 2021, 51, 427-448.	8.3	24
862	A Study to Derive Equivalent Mechanical Properties of Porous Materials with Orthotropic Elasticity. Materials, 2021, 14, 5132.	1.3	2
863	Adsorptive removal of pesticides from water with metal–organic framework-based materials. Chemical Engineering Journal, 2021, 421, 129688.	6.6	92
864	Riboflavin mediated photo-illumination for bonding zirconia to tooth structure. Materials Technology, 2022, 37, 1766-1777.	1.5	2
865	Recent advances of functionalized SBA-15 in the separation/preconcentration of various analytes: A review. Microchemical Journal, 2021, 169, 106601.	2.3	17
866	High-performance removal of radionuclides by porous organic frameworks from the aquatic environment: A review. Journal of Environmental Radioactivity, 2021, 238-239, 106710.	0.9	12
867	An electrostatic repulsion strategy construct ZIFs based liquids with permanent porosity for efficient CO2 capture. Separation and Purification Technology, 2021, 276, 119305.	3.9	15
868	Encapsulating metal nanoclusters inside porous organic cage towards enhanced radio-sensitivity and solubility. Chemical Engineering Journal, 2021, 426, 130872.	6.6	15
869	Oxidative modification of metal-organic framework-derived carbon: An effective strategy for adsorptive elimination of carbazole and benzonitrile. Fuel, 2022, 307, 121764.	3.4	16
870	Efficient capture of airborne PM by nanotubular conjugated microporous polymers based filters under harsh conditions. Journal of Hazardous Materials, 2022, 423, 127047.	6.5	11
871	Metal Organic Frameworks for Removal of Heavy Metal Cations and Emerging Organic Pollutants. Energy, Environment, and Sustainability, 2021, , 257-274.	0.6	1
872	Multiscale structural control of linked metal–organic polyhedra gel by aging-induced linkage-reorganization. Chemical Science, 2021, 12, 12556-12563.	3.7	24
873	Efficient capture of PM _{2.5} by intertwined tubular conjugated microporous polymer-based filters with high stability in a humid environment. Journal of Materials Chemistry A, 2021, 9, 7703-7711.	5.2	17
874	Research Progress on the Water Stability of a Metal-Organic Framework in Advanced Oxidation Processes. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	10

#	Article	IF	CITATIONS
875	Ferrocene-based porous organic polymer derived N-doped porous carbon/Fe ₃ C nanocrystal hybrids towards high-efficiency ORR for Zn–air batteries. Sustainable Energy and Fuels, 2021, 5, 1067-1074.	2.5	19
876	A novel multichromic Zn(<scp>ii</scp>) cationic coordination polymer based on a new flexible viologen ligand exhibiting aniline detection in the solid state. Dalton Transactions, 2021, 50, 10237-10242.	1.6	15
877	Dynamic porous organic polymers with tuneable crosslinking degree and porosity. RSC Advances, 2021, 11, 27714-27719.	1.7	12
878	Dynamics of a [2]rotaxane wheel in a crystalline molecular solid. Chemical Communications, 2021, 57, 8210-8213.	2.2	8
879	Computational design of structured chemical products. Frontiers of Chemical Science and Engineering, 2021, 15, 1033-1049.	2.3	0
880	Comparative Study of Nanocarbon-Based Flexible Multifunctional Composite Electrodes. ACS Omega, 2021, 6, 2526-2541.	1.6	10
881	MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nature Communications, 2021, 12, 38.	5.8	212
882	Metal–Organic Frameworkâ€Derived Graphitic Nanoribbons Anchored on Graphene for Electroionic Artificial Muscles. Advanced Functional Materials, 2020, 30, 1910326.	7.8	27
883	Oriented Twoâ€Dimensional Porous Organic Cage Crystals. Angewandte Chemie, 2017, 129, 9519-9523.	1.6	13
884	Mehr als nur ein Netzwerk: Strukturierung retikulÃ r er Materialien im Nanoâ€, Meso―und Volumenbereich. Angewandte Chemie, 2020, 132, 22534-22556.	1.6	8
885	Oriented Twoâ€Dimensional Porous Organic Cage Crystals. Angewandte Chemie - International Edition, 2017, 56, 9391-9395.	7.2	33
886	Purely Physisorptionâ€Based COâ€Selective Gateâ€Opening in Microporous Organically Pillared Layered Silicates. Angewandte Chemie - International Edition, 2018, 57, 564-568.	7.2	7
887	Beyond Frameworks: Structuring Reticular Materials across Nanoâ€, Mesoâ€, and Bulk Regimes. Angewandte Chemie - International Edition, 2020, 59, 22350-22370.	7.2	60
888	Strategies for Hydrogen Storage in Porous Organic Polymers. , 2017, , 203-223.		2
889	Remarkable metal–organic framework composites for adsorptive removal of nitrogenous compounds from fuel. Chemical Engineering Journal, 2020, 398, 125590.	6.6	9
890	Poly(ionic liquid)s with engineered nanopores for energy and environmental applications. Polymer, 2020, 202, 122640.	1.8	39
891	Microwave-assisted synthesis of novel imine-linked copper porphyrin conjugated microporous polymers as heterogeneous photocatalysts. Reactive and Functional Polymers, 2020, 154, 104633.	2.0	14
892	Metal organic framework of MOF-5 with hierarchical nanopores as micro-gravimetric sensing material for aniline detection. Sensors and Actuators B: Chemical, 2018, 256, 639-647.	4.0	67

#	Article	IF	CITATIONS
893	Self-assembly of metal–organic polyhedra into supramolecular polymers with intrinsic microporosity. Nature Communications, 2018, 9, 2506.	5.8	152
894	Applications of electron paramagnetic resonance spectroscopy for interrogating catalytic systems. Electron Paramagnetic Resonance, 2018, , 130-170.	0.2	5
895	A chemically stable cucurbit[6]uril-based hydrogen-bonded organic framework for potential SO ₂ /CO ₂ separation. Journal of Materials Chemistry A, 2020, 8, 19799-19804.	5.2	32
896	Precise membrane separation of nanoparticles using a microporous polymer containing radially π-conjugated molecular carbocycles. Chemical Communications, 2021, 57, 11867-11870.	2.2	5
897	Vinylene-bridged donor–acceptor type porous organic polymers for enhanced photocatalysis of amine oxidative coupling reactions under visible light. RSC Advances, 2021, 11, 33653-33660.	1.7	2
898	Assembled triphenylamine <i>bis</i> -urea macrocycles: exploring photodriven electron transfer from host to guests. Physical Chemistry Chemical Physics, 2021, 23, 23953-23960.	1.3	5
899	Porous Pyrene Organic Cage with Unusual Absorption Bathochromic-Shift Enables Visible Light Photocatalysis. CCS Chemistry, 2022, 4, 2588-2596.	4.6	18
900	Crystal Structure Transformation in Hydrogenâ€bonded Organic Frameworks via Ion Exchange. Chemistry - an Asian Journal, 2021, 16, 3978-3984.	1.7	10
901	Theoretical and Experimental Studies on the Ability of Intracrystalline Pores of β-La ₂ (SO ₄) ₃ To Accommodate Various Gas Species with a Special Focus on Ammonia Insertion Behaviors. ACS Applied Materials & Species, 2021, 13, 52793-52801.	4.0	2
902	Polymeric Toroidal Selfâ€Assemblies: Diverse Formation Mechanisms and Functions. Advanced Functional Materials, 2022, 32, 2106036.	7.8	10
903	Engineering Mesopore Formation in Hierarchical Zeolites under High Hydrostatic Pressure. Chemistry of Materials, 2021, 33, 8440-8446.	3.2	4
904	Design and synthesis of noble metal–based electrocatalysts using metal–organic frameworks and derivatives. Materials Today Nano, 2022, 17, 100144.	2.3	17
905	A Tb-based-metal–organic framework prepared under ultrasound for detection of organic amines in aqueous solution through fluorescence quenching. Journal of Molecular Liquids, 2021, 344, 117765.	2.3	12
906	Nanostructured Membranes for Water Purification. Engineering Materials, 2019, , 243-274.	0.3	2
907	Design and Application of Porous Coordination Materials with Soft and Dynamic Nature. Bulletin of Japan Society of Coordination Chemistry, 2020, 75, 42-50.	0.1	0
908	Dithia-Crown-Ether Integrated Self-Exfoliated Polymeric Covalent Organic Nanosheets for Selective Sensing and Removal of Mercury. ACS Applied Polymer Materials, 2021, 3, 5527-5535.	2.0	14
909	Selective CO2 capture and multiresponsive luminescent sensor in aqueous solutions of cadmium metal-organic framework based on trigonal rigid ligand. Journal of Molecular Structure, 2022, 1250, 131797.	1.8	5
910	Study on the influence of the introduction of the thiophene group on the photocatalytic performance of polymer. High Performance Polymers, 2021, 33, 623-634.	0.8	0

#	Article	IF	Citations
911	Highly Thermostable Dynamic Structures of Polyaramid Two-Dimensional Polymers. Macromolecules, 2021, 54, 1291-1303.	2.2	3
912	Construction of tetraphenylethylene-based fluorescent hydrogen-bonded organic frameworks for detection of explosives. Dyes and Pigments, 2022, 197, 109881.	2.0	11
913	Covalentâ€Organic Framework Composites: A Review Report on Synthesis Methods. ChemistrySelect, 2021, 6, 11201-11223.	0.7	13
914	Ferric Porphyrin-Based Porous Organic Polymers for CO ₂ Photocatalytic Reduction to Syngas with Selectivity Control. Chemistry of Materials, 2021, 33, 8863-8872.	3.2	39
915	High efficient solid-phase microextraction based on a covalent organic framework for determination of trifluralin and chlorpyrifos in water and food samples by GC-CD-IMS. Food Chemistry, 2022, 373, 131527.	4.2	28
916	Facile fabrication of hollow tubular covalent organic frameworks using decomposable monomer as building block. RSC Advances, 2021, 11, 20899-20910.	1.7	5
917	Bis-isonicotinoyl linkers containing polyaromatic scaffolds: synthesis, structure and spectroscopic properties. Physical Chemistry Chemical Physics, 2022, 24, 1191-1201.	1.3	1
918	A facile method to prepare high-performance thermal insulation and flame retardant materials from amine-linked porous organic polymers. European Polymer Journal, 2022, 162, 110918.	2.6	15
919	One-pot synthesis of hierarchically porous carbons with high microporosity as high-rate electrocatalysts. Applied Surface Science, 2022, 576, 151853.	3.1	4
920	Phase behavior of hard circular arcs. Physical Review E, 2021, 104, 054604.	0.8	5
921	Effect of framework Si/Al ratio on the mechanism of CO2 adsorption on the small-pore zeolite gismondine. Chemical Engineering Journal, 2022, 433, 133800.	6.6	24
922	Advanced Support Materials and Interactions for Atomically Dispersed Nobleâ€Metal Catalysts: From Support Effects to Design Strategies. Advanced Energy Materials, 2022, 12, 2102556.	10.2	78
923	Li ⁺ Dynamics of Liquid Electrolytes Nanoconfined in Metal–Organic Frameworks. ACS Applied Materials & Dynamics of Liquid Electrolytes Nanoconfined in Metal–Organic Frameworks. ACS Applied Materials & Dynamics of Liquid Electrolytes Nanoconfined in Metal–Organic Frameworks. ACS Applied Materials & Dynamics of Liquid Electrolytes Nanoconfined in Metal–Organic Frameworks. ACS Applied Materials & Dynamics of Liquid Electrolytes Nanoconfined in Metal–Organic Frameworks. ACS Applied Materials & Dynamics of Liquid Electrolytes Nanoconfined in Metal–Organic Frameworks. ACS Applied Materials & Dynamics of Liquid Electrolytes Nanoconfined in Metal–Organic Frameworks. ACS Applied Materials & Dynamics &	4.0	8
924	Fundamentals of Porous Materials. Engineering Materials, 2022, , 1-15.	0.3	1
925	Nucleophilic Etching Growth of Zeolite Materials with High Tunability. Advanced Materials Interfaces, 2021, 8, .	1.9	2
926	A Porous Chalcogen-Bonded Organic Framework. Journal of the American Chemical Society, 2021, 143, 20207-20215.	6.6	27
927	Cobalt-seamed C-methylpyrogallol[4]arene nanocapsules-derived magnetic carbon cubes as advanced adsorbent toward drug contaminant removal. Chemical Engineering Journal, 2022, 433, 133857.	6.6	31
928	Magnetic Conjugated Microporous Polymer Hollow Spheres Decorated with Fe ₃ O ₄ Nanoparticles for Selective Absorption and Sterilization. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
929	"Useless Channels―in a Molecular Crystal Formed via F···F and F···π Halogen Bonds. Crystal Growth and Design, 0, , .	1.4	4
930	Shellâ€like Xenon Nanoâ€Traps within Angular Anionâ€Pillared Layered Porous Materials for Boosting Xe/Kr Separation. Angewandte Chemie, 2022, 134, .	1.6	3
931	Redox-active metal-organic frameworks for the removal of contaminants of emerging concern. Separation and Purification Technology, 2022, 284, 120246.	3.9	15
932	Metal-organic frameworks based on heterocyclic ligands and some transition metals as effective carbon steel corrosion inhibitors in aqueous environment. Journal of Molecular Liquids, 2022, 348, 118402.	2.3	11
933	Defect stabilized Fe atom on porous BN sheet as a potential electrocatalyst for oxygen reduction reaction: A first-principles investigation. Applied Surface Science, 2022, 580, 152271.	3.1	6
934	Review of the fabrication and application of porous materials from silicon-rich industrial solid waste. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 424-438.	2.4	33
935	Porous nickel and cobalt hexanuclear ring-like clusters built from two different kind of calixarene ligands – new molecular traps for small volatile molecules. CrystEngComm, 2022, 24, 330-340.	1.3	3
936	The structure and properties of porous poly(tetrafluoroethylene). Journal of Polymer Research, 2022, 29, 1.	1.2	2
937	2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Opticalâ€Electricalâ€Magnetic Functionalities. Advanced Materials, 2022, 34, e2102290.	11.1	96
938	Magnetic conjugated microporous polymer hollow spheres decorated with Fe ₃ O ₄ nanoparticles for selective absorption and sterilization. Environmental Science: Nano, 2022, 9, 1381-1390.	2.2	8
939	Shellâ€like Xenon Nanoâ€Traps within Angular Anionâ€Pillared Layered Porous Materials for Boosting Xe/Kr Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
940	Are you using the right probe molecules for assessing the textural properties of metal–organic frameworks?. Journal of Materials Chemistry A, 2021, 10, 157-173.	5. 2	33
941	Fabrication of hierarchical porous polymer particles via blending strategy of water and polymer mixture. Polymer International, 2022, 71, 921-930.	1.6	1
942	A physicochemical introspection of porous organic polymer photocatalysts for wastewater treatment. Chemical Society Reviews, 2022, 51, 1124-1138.	18.7	34
943	The Mechanochemical Synthesis and Activation of Carbonâ€Rich∢i>Ï€⟨/i>â€Conjugated Materials. Advanced Science, 2022, 9, e2105497.	5.6	28
944	Plasma Induced Nanocrystalline Domain Engineering and Surface Passivation in Mesoporous Chalcogenide Semiconductor Thin Films. Angewandte Chemie, 0, , .	1.6	1
945	Emerging porous organic polymers for biomedical applications. Chemical Society Reviews, 2022, 51, 1377-1414.	18.7	103
946	Plasmaâ€Induced Nanocrystalline Domain Engineering and Surface Passivation in Mesoporous Chalcogenide Semiconductor Thin Films. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8

#	Article	IF	CITATIONS
947	Adsorption and separation of CH4/N2 by electrically neutral skeleton AlPO molecular sieves. Separation and Purification Technology, 2022, 286, 120497.	3.9	6
948	Triazine based nanoarchitectonics of porous organic polymers for CO2 storage. Materials Letters, 2022, 313, 131757.	1.3	6
949	Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coordination Chemistry Reviews, 2022, 459, 214414.	9.5	114
950	Selective CO ₂ adsorption at low pressure with a Zr-based UiO-67 metal–organic framework functionalized with aminosilanes. Journal of Materials Chemistry A, 2022, 10, 8856-8865.	5.2	29
951	Porous organic polymers for high-performance supercapacitors. Chemical Society Reviews, 2022, 51, 3181-3225.	18.7	114
952	Effect of Framework Si/Al Ratio on the Adsorption Mechanism of Co2 on Small-Pore Zeolites: Ii. Merlinoite. SSRN Electronic Journal, 0, , .	0.4	0
953	Materials prepared by Freezing-Induced Self-Assembly of Dispersed Solutes: A Review. Materials Advances, 2022, 3, 3041-3054.	2.6	5
954	Coronene and Phthalocyanine Trapping Efficiency of a Two-Dimensional Kagomé Host-Nanoarchitecture. Nanomaterials, 2022, 12, 775.	1.9	7
955	Ag Nanoparticle-Enabled Electroless Deposition of Ni on Mine-Formaldehyde Sponges for Oil–Water Separation, Piezoresistive Sensing, and Electromagnetic Shielding. ACS Applied Nano Materials, 2022, 5, 4204-4213.	2.4	7
956	A Noncovalent Ï€â€Stacked Porous Organic Molecular Framework for Selective Separation of Aromatics and Cyclic Aliphatics. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
957	Sticky-MARTINI as a reactive coarse-grained model for molecular dynamics simulations of silica polymerization. Npj Computational Materials, 2022, 8, .	3.5	10
958	Luminescent Conjugated Microporous Polymers for Selective Sensing and Ultrafast Detection of Picric Acid. ACS Applied Polymer Materials, 2022, 4, 2648-2655.	2.0	26
959	A Noncovalent Ï€â€Stacked Porous Organic Molecular Framework for Selective Separation of Aromatics and Cyclic Aliphatics. Angewandte Chemie, 2022, 134, .	1.6	4
961	Porous solid inspired hyper-crosslinked polymer liquids with highly efficient regeneration for gas purification. Science China Materials, 2022, 65, 1937-1942.	3.5	3
963	Reconstructed covalent organic frameworks. Nature, 2022, 604, 72-79.	13.7	190
964	Transition Metal Nanoparticles atalyzed Organic Reactions within Porous Organic Cages. ChemCatChem, 0, , .	1.8	3
965	Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2 under low pressure. Journal of CO2 Utilization, 2022, 58, 101932.	3.3	36
966	Alkali Metal Cations Influence the CO ₂ Adsorption Capacity of Nanosized Chabazite: Modeling vs Experiment. ACS Applied Nano Materials, 2022, 5, 5578-5588.	2.4	22

#	ARTICLE	IF	Citations
967	129Xe NMR analysis reveals efficient gas transport between inborn micro-, meso- and macropores in geopolymers. Cement and Concrete Research, 2022, 155, 106779.	4.6	2
968	AIE based luminescent porous materials as cutting-edge tool for environmental monitoring: State of the art advances and perspectives. Coordination Chemistry Reviews, 2022, 463, 214539.	9.5	40
969	Artificial Sense Technology: Emulating and Extending Biological Senses. ACS Nano, 2021, 15, 18671-18678.	7.3	64
970	Regioselective Synthesis of <i>meta</i> â€Tetraarylâ€Substituted Adamantane Derivatives and Evaluation of Their White Light Emission. European Journal of Organic Chemistry, 2021, 2021, 6806-6810.	1.2	1
971	Sono-Cavitation and Nebulization-Based Synthesis of Conjugated Microporous Polymers for Energy Storage Applications. ACS Applied Materials & Storage Applications.	4.0	19
972	Reaction Behavior of Porous TiAl3 Intermetallics Fabricated by Thermal Explosion with Different Particle Sizes. Materials, 2021, 14, 7417.	1.3	1
973	3D Ordered Porous Nanostructure Confers Fast Charge Transfer Rate and Reduces the Electrode Polarization in Thick Electrode. Small, 2022, 18, e2104224.	5.2	12
974	Crystalline porous ionic salts assembled from polyoxometalates and cationic capsule for the selective photocatalytic aerobic oxidation of aromatic alcohols to aldehydes. Chinese Chemical Letters, 2023, 34, 107444.	4.8	4
975	MOF–COF "Alloy―Membranes for Efficient Propylene/Propane Separation. Advanced Materials, 2022, 34, e2201423.	11.1	39
976	Porous Organic Cages CC3 and CC2 as Adsorbents for the Separation of Carbon Dioxide from Nitrogen and Hydrogen. Industrial & Engineering Chemistry Research, 2022, 61, 10547-10553.	1.8	9
977	A Red-Emitting COF Ionic Exchanged With Green-Emitting Tb(III) Complex Anion: Synthesis, Characterization, Ratiometric Emission Sensing, and Removal of Picric Acid. Frontiers in Chemistry, 2022, 10, 865304.	1.8	2
978	Molecular Simulations of CH ₄ and CO ₂ Diffusion in Rigid Nanoporous Amorphous Materials. Journal of Physical Chemistry C, 2022, 126, 8530-8538.	1.5	7
979	Synthesis of MOF-derived nitrogen-doped carbon microtubules via template self-consumption. Rare Metals, 2022, 41, 2582-2587.	3.6	21
980	Underlying Polar and Nonpolar Modification MOF-Based Factors that Influence Permanent Porosity in Porous Liquids. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23392-23399.	4.0	11
981	Progress on 3Dâ€Printed Metalâ€Organic Frameworks with Hierarchical Structures. Advanced Materials Technologies, 2022, 7, .	3.0	10
982	Conjugated Boron Porous Polymers Having Strong pâ^'ï€* Conjugation for Amine Sensing and Absorption. Macromolecules, 2022, 55, 3850-3859.	2.2	9
983	Separation of ethyltoluene isomers by nonporous adaptive crystals of perethylated and perbromoethylated pillararenes. Materials Today Chemistry, 2022, 24, 100919.	1.7	11
984	Pore space of steatite ceramics triggered by the allowance of natural fibers: High-resolution X-ray microscopy analysis and related thermo-mechanical properties. Materials and Design, 2022, 218, 110704.	3.3	4

#	Article	IF	CITATIONS
985	lonic modification on COF with rare earth ions for the selective optical sensing and removal of picronitric acid. Chemosphere, 2022, 302, 134785.	4.2	6
986	Deep-Learning-Based End-to-End Predictions of CO ₂ Capture in Metal–Organic Frameworks. Journal of Chemical Information and Modeling, 2022, 62, 3281-3290.	2.5	9
987	Synergetic and Cooperative Effects in Multimetallic Macrocyclic Complexes for Biological, Catalytic and Magnetic Activity. Asian Journal of Chemistry, 2022, 34, 1333-1346.	0.1	0
988	An ionic covalent organic framework loaded with terbium-based probe for the sensing and removal of chrysolepic acid: Characterization and ratiometric behavior. Microporous and Mesoporous Materials, 2022, 339, 112002.	2.2	6
989	Effect of framework Si/Al ratio on the adsorption mechanism of CO2 on small-pore zeolites: II. Merlinoite. Chemical Engineering Journal, 2022, 446, 137100.	6.6	8
990	Dimethoxypillar[5]Arene Knitted Porous Polymers for Efficient Removal of Organic Micropollutants from Water. SSRN Electronic Journal, 0, , .	0.4	0
991	Machine learning for non-additive intermolecular potentials: quantum chemistry to first-principles predictions. Chemical Communications, 0 , , .	2.2	7
992	Electrochemical Preparation of Porous Organic Polymer Films for Highâ€Performance Memristors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
993	Azine- and azo-based flexible covalent organic frameworks for fluorescence sensing nitro-aromatic compounds and iodine and adsorbing iodine. Reactive and Functional Polymers, 2022, 176, 105309.	2.0	13
994	Mesoporous Polyimideâ€linked Covalent Organic Framework with Multiple Redoxâ€active Sites for Highâ€Performance Cathodic Li Storage. Angewandte Chemie, 0, , .	1.6	3
995	Electrochemical Preparation of Porous Organic Polymer Films for Highâ€Performance Memristors. Angewandte Chemie, 0, , .	1.6	0
996	Highly Selective Adsorption of Perfluorinated Greenhouse Gases by Porous Organic Cages. Advanced Materials, 2022, 34, .	11.1	33
997	Highly efficient solar photothermal conversion of graphene-coated conjugated microporous polymers hollow spheres. Journal of Colloid and Interface Science, 2022, 623, 856-869.	5.0	15
998	Mechanistic Advances of Metalâ^'Organic Frameworks Assisted Chemical Sensors. ACS Symposium Series, 0, , 33-70.	0.5	0
999	Amine-functionalized porous organic polymers for carbon dioxide capture. Materials Advances, 2022, 3, 6668-6686.	2.6	17
1000	Highly covalent molecular cage based porous organic polymer: pore size control and pore property enhancement. RSC Advances, 2022, 12, 16486-16490.	1.7	2
1001	Recent advances in nano-architectonics of metal-organic frameworks for chemodynamic therapy. Journal of Solid State Chemistry, 2022, 314, 123352.	1.4	23
1002	Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations. Nature Communications, 2022, 13, .	5.8	28

#	Article	IF	CITATIONS
1003	Ultramicroporous Organophosphorus Polymers via Self-Accelerating P–C Coupling Reactions: Kinetic Effects on Crosslinking Environments and Porous Structures. Journal of the American Chemical Society, 2022, 144, 11748-11756.	6.6	12
1004	Porous polyisothiocyanurates for selective palladium recovery and heterogeneous catalysis. CheM, 2022, 8, 2043-2059.	5.8	28
1005	Porous Organic Polymers: Promising Testbed for Heterogeneous Reactive Oxygen Species Mediated Photocatalysis and Nonredox CO ₂ Fixation. Chemical Record, 2022, 22, .	2.9	12
1006	Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. Journal of the American Chemical Society, 2022, 144, 10663-10687.	6.6	174
1007	Programmable assembly of multiple donor-acceptor systems in metal-organic framework for heterogeneity manipulation and functions integration. Matter, 2022, 5, 2918-2932.	5.0	10
1008	Porous polyvinyl alcohol/graphene oxide composite film for strain sensing and energy-storage applications. Nanotechnology, 2022, 33, 415701.	1.3	6
1009	Mesoporous Polyimideâ€Linked Covalent Organic Framework with Multiple Redoxâ€Active Sites for Highâ€Performance Cathodic Li Storage. Angewandte Chemie - International Edition, 2022, 61, .	7.2	79
1010	Three layered cucurbit[6]uril-based metal–organic rotaxane networks functionalized by sulfonic groups for proton conduction. Dalton Transactions, 2022, 51, 12225-12231.	1.6	5
1011	Homochiral Organic Molecular Cage Rcc3-R-Modified Silica as a New Multi-Mode and Multi-Functional Stationary Phase for High Performance Liquid Chromtagraphy. SSRN Electronic Journal, 0, , .	0.4	0
1012	Eye-Visible Oxygen Sensing via In-Situ Synthesizing Blue-Emitting Cu(I) Cluster in Red-Emitting COF: Characterization and Performance. Materials, 2022, 15, 4525.	1.3	0
1013	Porous Polymeric Catalysts Constructed from Vinylated Functionalities. Accounts of Materials Research, 2022, 3, 772-781.	5.9	5
1014	A Coordination Network Featuring Two Distinct Copper(II) Coordination Environments for Highly Selective Acetylene Adsorption. Chemistry - A European Journal, 2022, 28, .	1.7	4
1015	Low-velocity impact analysis of functionally graded porous circular plate reinforced with graphene platelets. Waves in Random and Complex Media, 0, , 1-27.	1.6	9
1016	Atomic Insight into the Local Structure and Microenvironment of Isolated Co-Motifs in MFI Zeolite Frameworks for Propane Dehydrogenation. Journal of the American Chemical Society, 2022, 144, 12127-12137.	6.6	60
1017	A General Route to Flame Aerosol Synthesis and In Situ Functionalization of Mesoporous Silica. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
1018	A General Route to Flame Aerosol Synthesis and in situ Functionalization of Mesoporous Silica. Angewandte Chemie, 0, , .	1.6	1
1019	Ultrafine Palladium Embedded in Nâ€doped Porous Carbon Material from Carbazoleâ€covalent Triazine Polymer for Green Suzukiâ€Miyaura Coupling Reaction. ChemNanoMat, 0, , .	1.5	2
1020	Recent developments in CO2 capture/storage/utilization with aromatic macrocycles. Carbon Capture Science & Technology, 2022, 4, 100058.	4.9	5

#	Article	IF	CITATIONS
1021	Porous Supramolecular Assembly of Pentiptycene-Containing Gold(I) Complexes: Persistent Excited-State Aurophilicity and Inclusion-Induced Emission Enhancement. Inorganic Chemistry, 2022, 61, 11981-11991.	1.9	4
1022	Oxygen vacancy and support adsorption synergistic effect in aerobic oxidation of HMF to FDCA: A case study using nitrogen-doped porous carbon supported Bi-CeO2. Journal of the Taiwan Institute of Chemical Engineers, 2022, 138, 104439.	2.7	9
1023	High-throughput computational screening of Covalentâ^'Organic framework membranes for helium purification. Results in Engineering, 2022, 15, 100538.	2.2	9
1024	Metallopolymer Particle Engineering via Etching of Boronate Polymers toward Highâ€Performance Overall Water Splitting Catalysts. Small, 2022, 18, .	5. 2	2
1025	Synthesis of Novel Ionic Porous Organic Polymers and Its Application in Hydroxyl Condensation Reaction. Catalysis Letters, 0, , .	1.4	0
1026	Mechanism for selective binding of aromatic compounds on oxygen-rich graphene nanosheets based on molecule size/polarity matching. Science Advances, 2022, 8, .	4.7	5
1027	The Promise of Softâ€Matterâ€Enabled Quantum Materials. Advanced Materials, 2023, 35, .	11.1	4
1028	Stable Porous Organic Polymers Used for Reversible Adsorption and Efficient Separation of Trace SO ₂ . ACS Macro Letters, 2022, 11, 999-1007.	2.3	9
1029	Oxidation of benzyl alcohol in the copper-doped ZIF-8 metal-organic framework with encapsulated nitroxyl radical. Russian Chemical Bulletin, 2022, 71, 1422-1428.	0.4	1
1030	Ultrastable Photoluminescence Enabled by 1D Rare-Earth Metal–Organic Frameworks Based on Double Thiacalix[4]arene-Capped Nodes. ACS Applied Materials & Samp; Interfaces, 2022, 14, 37894-37903.	4.0	7
1031	Large-area self-standing thin film of porous hydrogen-bonded organic framework for efficient uranium extraction from seawater. CheM, 2022, 8, 2749-2765.	5.8	23
1032	Processable Conjugated Microporous Polymer Gels and Monoliths: Fundamentals and Versatile Applications. ACS Applied Materials & Samp; Interfaces, 2022, 14, 39701-39726.	4.0	11
1033	Sol-gel processing of a covalent organic framework for the generation of hierarchically porous monolithic adsorbents. CheM, 2022, 8, 2961-2977.	5.8	18
1034	Viscoelastic Covalent Organic Nanotube Fabric via Macroscopic Entanglement. Journal of the American Chemical Society, 2022, 144, 16052-16059.	6.6	12
1035	Dimethoxypillar[5]arene knitted porous polymers for efficient removal of organic micropollutants from water. Chemical Engineering Journal Advances, 2022, 12, 100384.	2.4	3
1036	Preparation of Fe-La montmorillonite nanosheets based composite hydrogel beads for As(V) removal from water. Chemical Physics Letters, 2022, 806, 139994.	1.2	4
1037	Single-atom Zn on bipyridine-functionalized porous organic polymers towards highly efficient N-formylation of amines with CO2 under mild conditions. Journal of CO2 Utilization, 2022, 65, 102214.	3.3	2
1038	Metal–organic framework-derived heteroatom-doped nanoarchitectures for electrochemical energy storage: Recent advances and future perspectives. Energy Storage Materials, 2022, 52, 685-735.	9.5	38

#	Article	IF	CITATIONS
1039	Finding the optimal CO2 adsorption material: Prediction of multi-properties of metal-organic frameworks (MOFs) based on DeepFM. Separation and Purification Technology, 2022, 302, 122111.	3.9	12
1040	The order–disorder conundrum: a trade-off between crystalline and amorphous porous organic polymers for task-specific applications. Journal of Materials Chemistry A, 2022, 10, 17077-17121.	5.2	32
1041	Intrareticular electron coupling pathway driven electrochemiluminescence in hydrogen-bonded organic frameworks. Journal of Materials Chemistry C, 2022, 10, 14488-14495.	2.7	11
1042	Facile metal-free synthesis of pyrrolo[3,2- <i>b</i>)pyrrolyl-based conjugated microporous polymers for high-performance photocatalytic degradation of organic pollutants. Polymer Chemistry, 2022, 13, 5300-5308.	1.9	16
1043	Recent advances in the applications of porous organic cages. Chemical Communications, 2022, 58, 11333-11346.	2.2	32
1044	Designing coordination polymers as multi-drug-self-delivery systems for tuberculosis and cancer therapy: <i>in vitro</i> viability and <i>in vivo</i> toxicity assessment. Biomaterials Science, 2022, 10, 6201-6216.	2.6	2
1045	Novel quadrilateral-pore 2D-COFs as visible-light driven catalysts evaluated by the descriptor of integrated p _{<i>z</i>} -orbital population. Nanoscale, 2022, 14, 15713-15723.	2.8	5
1046	Synthesis of stack plate covalent organic framework nanotubes using a self-assembled acid as a soft template. Chemical Communications, 2022, 58, 9148-9151.	2.2	7
1047	Redox-induced control of microporosity of zeolitic transition metal oxides based on $\hat{l}\mu$ -Keggin iron molybdate at an ultra-fine level. Inorganic Chemistry Frontiers, 2022, 9, 5305-5316.	3.0	1
1048	Virus-like Cage Hybrid: Covalent Organic Cages Attached to Metal Organic Cage. Chemistry, 2022, 4, 865-871.	0.9	2
1049	Bottom-Up De Novo Synthesis of Porous Organic Polymers with Enone Functionalities as Supports for Pd and Cu Nanoparticles for Catalytic Tandem Synthesis. ACS Applied Nano Materials, 2022, 5, 14296-14310.	2.4	5
1050	O2-induced emission color changing/sensing via the combination of red-emitting COF and blue-emitting halogen-bridging Cu(I) phosphor: In-situ synthesis and performance. Microporous and Mesoporous Materials, 2022, , 112253.	2.2	0
1051	Synthesis of Porous Organic Polymers Via Catalytic Vapor-Assisted Solvent-Free Method. Macromolecules, 2022, 55, 8365-8371.	2.2	5
1052	Development of Crystalline Covalent Triazine Frameworks to Enable ⟨i>In Situ⟨ i> Preparation of Single-Atom Ni–N⟨sub⟩3⟨ sub⟩–C for Efficient Electrochemical CO⟨sub⟩2⟨ sub⟩ Reduction., 2022, 4, 2143-2150.		8
1053	Exploring the Intense Lanthanide Luminescence and High Thermal Stability in a New Mixed Eu ³⁺ /Tb ³⁺ Organic Framework Series for Marking in Gunshot Residues. Journal of Physical Chemistry C, 2022, 126, 16568-16577.	1.5	2
1054	Ionothermal Synthesis of Fully Conjugated Covalent Organic Frameworks for Highâ€Capacity and Ultrastable Potassiumâ€lon Batteries. Advanced Materials, 2022, 34, .	11.1	31
1055	Site-selective synthesis of an amine-functionalized \hat{l}^2 -ketoenamine-linked covalent organic framework for improved detection and removal of Cu2+ ion from water. Journal of Solid State Chemistry, 2022, 316, 123644.	1.4	15
1056	Engineering the Coordination Interface of Isolated Co Atomic Sites Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2022, 14, 46401-46409.	4.0	11

#	Article	IF	CITATIONS
1057	Infinite building blocks for directed self-assembly of a supramolecular polyoxometalate–cyclodextrin framework for multifunctional oxidative catalysis. Inorganic Chemistry Frontiers, 2022, 9, 6534-6543.	3.0	7
1058	Coarse-grained modelling to predict the packing of porous organic cages. Chemical Science, 2022, 13, 13588-13599.	3.7	7
1059	Targeted design of porous materials without strong, directional interactions. Chemical Communications, 2022, 58, 13254-13257.	2.2	1
1060	Thermally responsive morphological changes of layered coordination polymers induced by disordering/ordering of flexible alkyl chains. Dalton Transactions, 2022, 51, 17967-17972.	1.6	0
1061	Single-Crystalline Hydrogen-Bonded Crosslinked Organic Frameworks and Their Dynamic Guest Sorption. Accounts of Materials Research, 2022, 3, 1186-1200.	5.9	9
1062	CAT: A Compound Attachment Tool for the Construction of Composite Chemical Compounds. Journal of Chemical Information and Modeling, 0, , .	2.5	0
1063	Thermally Conductive Self-Healing Nanoporous Materials Based on Hydrogen-Bonded Organic Frameworks. Nano Letters, 2022, 22, 8534-8540.	4.5	8
1064	Hydrophobic Cellulose Acetate Aerogels for Thermal Insulation. Gels, 2022, 8, 671.	2.1	8
1065	Acetylcholinesterase Immobilization on ZIF-8/Graphene Composite Engenders High Sensitivity Electrochemical Sensing for Organophosphorus Pesticides. Chemosensors, 2022, 10, 418.	1.8	6
1066	Investigating porous catalysts with synchrotron X-rays and neutrons. Chem Catalysis, 2022, 2, 3290-3303.	2.9	2
1067	Partial Liquid Alloy Microdroplet Sedimentation Induced a Gradient Porous Structured Elastomer with a Tunable Property for an Anisotropic Robotic Bulk. ACS Applied Materials & Emp; Interfaces, 0, , .	4.0	1
1068	Open-channel metal particle superlattices. Nature, 2022, 611, 695-701.	13.7	26
1069	Application of porous materials and structures for improving optical and thermal performance of inorganic and organic light-emitting diodes: A review. Sensors and Actuators A: Physical, 2022, 347, 113966.	2.0	2
1070	Preparation and applications of metal–organic frameworks composed of sulfonic acid. Coordination Chemistry Reviews, 2023, 474, 214868.	9.5	25
1071	MOFs with bridging or terminal hydroxo ligands: Applications in adsorption, catalysis, and functionalization. Coordination Chemistry Reviews, 2023, 475, 214912.	9.5	43
1072	A review on carbon materials production from plastic wastes. Chemical Engineering Journal, 2023, 453, 139725.	6.6	31
1073	Adsorptive removal of carbazole from model esterified bio-oil composed of methyl laurate by using metalâ€"organic frameworks functionalized with sulfonic acid both on metal and linker sites. Chemical Engineering Journal, 2023, 453, 139822.	6.6	7
1074	Porous organic polymers for CO ₂ capture, separation and conversion. Chemical Society Reviews, 2022, 51, 9831-9852.	18.7	83

#	Article	IF	Citations
1075	Eight semiconducting MOFs constructed with conjugated ligands and d-metals (Cd, Zn, Co and Ni) serve as functional materials for oxygen evolution reactions, photocatalytic degradation of dyes and photoluminescence. CrystEngComm, 2022, 24, 8407-8426.	1.3	2
1076	Porous organic polymer with high-density phosphoric acid groups as filler for hybrid proton exchange membranes. Journal of Membrane Science, 2023, 666, 121147.	4.1	17
1077	Molecular geometry effect on gas transport through nanochannels: Beyond Knudsen theory. Applied Surface Science, 2023, 611, 155613.	3.1	5
1078	Nitrogen doped porous carbon-based bifunctional oxygen electrocatalyst with controllable phosphorus content for zinc-air battery. Nano Research, 2023, 16, 5887-5893.	5.8	5
1079	Porous C2H3O2-substituted cellulose with thermal stability based on sodium chloride. Journal of Industrial and Engineering Chemistry, 2022, , .	2.9	1
1080	Ligand-Substitution-Induced Single-Crystal to Single-Crystal Transformations in a Redox-Versatile Cu(II) MOF toward Smartphone-Based Colorimetric Detection of Iodide. Inorganic Chemistry, 2022, 61, 19612-19623.	1.9	4
1081	Advances in organic microporous membranes for CO ₂ separation. Energy and Environmental Science, 2023, 16, 53-75.	15.6	24
1082	Persistent microporosity of a non-planar porphyrinoid based on multiple supramolecular interactions for nanomechanical sensor applications. Materials Chemistry Frontiers, 2023, 7, 325-332.	3.2	2
1083	Dative Bâ†N bonds based crystalline organic framework with permanent porosity for acetylene storage and separation. Chemical Science, 2023, 14, 533-539.	3.7	13
1084	A dispersion-corrected DFT method for zeolite-based CO2/N2 separation: Assessment and application. Journal of Environmental Chemical Engineering, 2023, 11, 109052.	3.3	2
1085	Preparation of cellulose carbon material from cow dung and its CO2 adsorption performance. Journal of CO2 Utilization, 2023, 68, 102377.	3.3	13
1086	Emerging Trends in Porogens toward Material Fabrication: Recent Progresses and Challenges. Polymers, 2022, 14, 5209.	2.0	9
1087	Covalent organic frameworks as promising materials for the removal of metal and organic pollutants from water. Materials Today Sustainability, 2023, 21, 100279.	1.9	11
1088	Robust Supramolecular Dimers Derived from Benzylic-Substituted 1,2,4-Selenodiazolium Salts Featuring Seleniumâ∢ï€ Chalcogen Bonding. International Journal of Molecular Sciences, 2022, 23, 14973.	1.8	7
1089	Lithium-Rich Porous Aromatic Framework-Based Quasi-Solid Polymer Electrolyte for High-Performance Lithium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 53798-53807.	4.0	8
1090	Metallocene-based covalent metal-organic porous polymers and their derivatives. Materials and Design, 2023, 225, 111547.	3.3	2
1091	Bio-inspired ion transport/extraction systems toward future energy demand. Cell Reports Physical Science, 2022, 3, 101167.	2.8	2
1092	Microporous Bâ†N framework: A stable and efficient material for separating C2H2 and CO2. CheM, 2023, 9, 13-15.	5.8	2

#	Article	IF	Citations
1093	Stepwise Crystallization of Millimeter Scale Thorium Cluster Single Crystals as a Bifunctional Platform for Xâ€ray Detection and Shielding. Small, 2023, 19, .	5.2	1
1094	Recent Advances in the Use of Covalent Organic Frameworks as Heterogenous Photocatalysts in Organic Synthesis. Advanced Materials, 2023, 35, .	11.1	42
1095	Recent Advances in Stimuliâ€Responsive Smart Membranes for Nanofiltration. Advanced Functional Materials, 2023, 33, .	7.8	24
1096	Nanoarchitectonics of metal–organic frameworks having hydroxy group for adsorption, catalysis, and sensing. Journal of Industrial and Engineering Chemistry, 2023, 119, 181-192.	2.9	8
1097	Solution-processable amorphous microporous polymers for membrane applications. Progress in Polymer Science, 2023, 137, 101636.	11.8	13
1098	Porous Materials for Water Purification. Angewandte Chemie - International Edition, 2023, 62, .	7.2	38
1099	Porous Materials for Water Purification. Angewandte Chemie, 2023, 135, .	1.6	0
1100	Active template strategy for the preparation of π-conjugated interlocked nanocarbons. Nature Chemistry, 2023, 15, 170-176.	6.6	21
1101	SeâçÏ€ Chalcogen Bonding in 1,2,4-Selenodiazolium Tetraphenylborate Complexes. Symmetry, 2023, 15, 212.	1.1	7
1102	Modulating Thermal Properties of Polymers through Crystal Engineering. Angewandte Chemie, 2023, 135, .	1.6	0
1103	Modulating Thermal Properties of Polymers through Crystal Engineering. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
1104	Accelerated Systematic Investigation of Solvents Suitability for Type II/III Porous Liquids. , 2023, 5, 549-557.		3
1105	A Decade of Electrocatalysis with Metal Aerogels: A Perspective. Catalysts, 2023, 13, 167.	1.6	4
1106	Electrospun nanofibers of chitosan/polyvinyl alcohol/UiO-66/nanodiamond: Versatile adsorbents for wastewater remediation and organic dye removal. Chemical Engineering Journal, 2023, 457, 141176.	6.6	30
1107	Overview of the materials design and sensing strategies of nanopore devices. Coordination Chemistry Reviews, 2023, 478, 214998.	9.5	12
1108	Novel Inorganic-Organic Hybrid Coordination Compound: Photochromic, Amine Vapor Detection, and Theoretical Calculation. Russian Journal of Inorganic Chemistry, 2022, 67, S29-S34.	0.3	2
1109	Covalent organic framework-functionalized Au and Ag nanoparticles: Synthesis and applications., 2023,, 355-378.		1
1110	Porous polycarbazole materials prepared by ionothermal synthesis method for carbon dioxide adsorption and electrochemical capacitors. Journal of Polymer Science, 2024, 62, 1569-1577.	2.0	2

#	Article	IF	Citations
1111	2D Covalent Organic Frameworks Based on Heteroacene Units. Small, 2023, 19, .	5.2	11
1112	Exploring multifunctional applications of a luminescent covalent triazine polymer in acid vapour sensing, CO ₂ capture, dye removal, and turn-off fluorescence sensing of dichromate ions. Materials Chemistry Frontiers, 2023, 7, 1831-1840.	3.2	3
1115	Porous organic polymers: a progress report in China. Science China Chemistry, 0, , .	4.2	5
1116	Sustainable nanocomposite porous absorbent and membrane sieves: Definition, classification, history, properties, synthesis, applications, and future prospects. Journal of Environmental Chemical Engineering, 2023, 11, 109367.	3.3	4
1117	Experimental Confirmation of a Predicted Porous Hydrogenâ€Bonded Organic Framework. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
1118	Highly Efficient Capture of Heavy Metal Ions on Amine-Functionalized Porous Polymer Gels. Gels, 2023, 9, 297.	2.1	1
1119	Carbon nanomaterials-PEDOT: PSS based electrochemical ionic soft actuators: Recent development in design and applications. Sensors and Actuators A: Physical, 2023, 354, 114277.	2.0	7
1120	Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coordination Chemistry Reviews, 2023, 483, 215066.	9.5	29
1121	Synthesis of porous dimethoxypillar [5] arene knitted \hat{l}^2 -cyclodextrin copolymers for efficient adsorption of organic micropollutants. Carbohydrate Polymers, 2023, 310, 120719.	5.1	4
1122	Single-Atom Iridium-Based Catalysts: Synthesis Strategies and Electro(Photo)-Catalytic Applications for Renewable Energy Conversion and Storage. Coordination Chemistry Reviews, 2023, 486, 215143.	9.5	8
1123	Fabrication of Double-Stranded Vinyl Polymers Mediated by Coordination Nanochannels. Journal of the American Chemical Society, 2023, 145, 2448-2454.	6.6	5
1124	Covalent Organic Frameworks: The Risingâ€Star Platforms for the Design of CO ₂ Separation Membranes. Small, 2023, 19, .	5.2	21
1125	Progress on fundamentals of adsorption transport of metal-organic frameworks materials and sustainable applications for water harvesting and carbon capture. Journal of Cleaner Production, 2023, 393, 136253.	4.6	6
1126	Photodynamic therapy: Innovative approaches for antibacterial and anticancer treatments. Medicinal Research Reviews, 2023, 43, 717-774.	5.0	32
1127	Block Copolymer-Assisted Synthesis of Iron Oxide Nanoparticles for Effective Removal of Congo Red. Molecules, 2023, 28, 1914.	1.7	2
1128	Perylene Diimide-Containing Dynamic Hyper-crosslinked Ionic Porous Organic Polymers: Modulation of Assembly and Gas Storage. ACS Applied Polymer Materials, 2023, 5, 2097-2104.	2.0	4
1129	[4 + 4]-Imine Cage Compounds with Nitrogen-Rich Cavities and Tetrahedral Geometry. Organic Materials, 2023, 5, 91-97.	1.0	0
1130	Research on Improved MOF Materials Modified by Functional Groups for Purification of Water. Molecules, 2023, 28, 2141.	1.7	3

#	Article	IF	CITATIONS
1131	Controllable assembly of three-dimensional porous graphene-Au dual aerogels and its application for high-efficient bioelectrocatalytic O2 reduction. Analytica Chimica Acta, 2023, 1251, 341013.	2.6	2
1132	Research Progress of Synthesis Methods for Crystalline Porous Materials. Acta Chimica Sinica, 2023, 81, 146.	0.5	3
1134	Microstructural controls on the plastic consolidation of porous brittle solids. Acta Materialia, 2023, 250, 118861.	3.8	0
1135	Directional freezing in natural rubber foams to construct reinforced networks. Polymers for Advanced Technologies, 2023, 34, 2125-2133.	1.6	1
1136	Hydrogen-bonded organic framework for red light-mediated photocatalysis. Nano Research, 2023, 16, 8809-8816.	5.8	5
1137	Exploring Zrâ€based Metal–Organic Frameworks as Smart Electrochromic Sensors by Coordinationâ€Driven Surface Engineering. Chemistry - A European Journal, 0, , .	1.7	1
1138	Recent advances and emerging opportunities in rapid thermal annealing (RTA) of polymers. Molecular Systems Design and Engineering, 2023, 8, 701-712.	1.7	1
1139	Porous Organic Cages. Chemical Reviews, 2023, 123, 4602-4634.	23.0	60
1140	Experimental Confirmation of a Predicted Porous Hydrogenâ€bonded Organic Framework. Angewandte Chemie, 0, , .	1.6	0
1141	Covalent scrambling in porous polyarylthioethers through a stepwise SNAr for tunable bandgap and porosity. Angewandte Chemie - International Edition, 0, , .	7.2	0
1142	Covalent scrambling in porous polyarylthioethers through a stepwise SNAr for tunable bandgap and porosity. Angewandte Chemie, 0, , .	1.6	0
1143	Preserving Macroporosity in Type III Porous Liquids. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
1144	Vesicular mesoporous copper oxide as anode for high lithium storage. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
1145	PreservingÂMacroporosityÂin Type IIIÂPorous Liquids. Angewandte Chemie, 0, , .	1.6	1
1160	Recent progress and prospects in active anion-bearing C12A7-mediated chemical reactions. Journal of Materials Chemistry A, 2023, 11, 15074-15099.	5.2	1
1177	Porous organic polymers (POPs) for environmental remediation. Materials Horizons, 2023, 10, 4083-4138.	6.4	13
1183	Emissive metallacages for biomedical applications. Science China Chemistry, 2023, 66, 2447-2459.	4.2	1
1184	Porous organic polymers as a promising platform for efficient capture of heavy metal pollutants in wastewater. Polymer Chemistry, 2023, 14, 4000-4032.	1.9	5

#	Article	IF	CITATIONS
1187	Conjugated Porous Polymers and Hybrids. , 2023, , 126-154.		0
1189	Covalent organic frameworks for CO ₂ capture: from laboratory curiosity to industry implementation. Chemical Society Reviews, 2023, 52, 6294-6329.	18.7	9
1196	Current trends in the detection and removal of heavy metal ions using functional materials. Chemical Society Reviews, 2023, 52, 5827-5860.	18.7	15
1197	Covalent organic frameworks: linkage types, synthetic methods and bio-related applications. Biomaterials Science, 2023, 11, 6942-6976.	2.6	2
1228	Heterogenization of molecular catalysts within porous solids: the case of Ni-catalyzed ethylene oligomerization from zeolites to metal–organic frameworks. Chemical Society Reviews, 2023, 52, 8059-8076.	18.7	1
1231	Expanding the horizons of covalent organic frameworks: sub-stoichiometric synthesis as an emerging toolkit for functional COFs. Journal of Materials Chemistry A, 2023, 11, 26340-26370.	5.2	0
1240	Carbon Capture by Functional Sorbents. , 2023, , .		0
1245	Cyclic peptoids as building blocks for engineering porous molecular solids. , 2023, , .		0
1246	Influence of donor point modifications on the assembly of chalcogen-bonded organic frameworks. Chemical Communications, 0 , , .	2.2	0
1261	Porous materials as effective chemiresistive gas sensors. Chemical Society Reviews, 2024, 53, 2530-2577.	18.7	O