Enhanced tropical methane production in response to i Atlantic

Science 348, 1016-1019 DOI: 10.1126/science.1262005

Citation Report

#	Article	IF	CITATIONS
2	Quantifying molecular oxygen isotope variations during a Heinrich stadial. Climate of the Past, 2015, 11, 1527-1551.	1.3	13
3	Views on grand research challenges for Quaternary geology, geomorphology and environments. Frontiers in Earth Science, 2015, 3, .	0.8	6
4	The WAIS Divide deep ice core WD2014 chronology – Part 1: Methane synchronization (68–31 ka BP) and the gas age–ice age difference. Climate of the Past, 2015, 11, 153-173.	1.3	172
5	Local artifacts in ice core methane records caused by layered bubble trapping and in situ production: a multi-site investigation. Climate of the Past, 2016, 12, 1061-1077.	1.3	23
6	Blake excursion at Vulcano (Aeolian Islands, Italy): Revised K-Ar and 40 Ar/ 39 Ar ages. Quaternary Geochronology, 2016, 35, 77-87.	0.6	6
7	A cosmogenic 10Be chronology for the local last glacial maximum and termination in the Cordillera Oriental, southern Peruvian Andes: Implications for the tropical role in global climate. Quaternary Science Reviews, 2016, 148, 54-67.	1.4	25
8	Electrical stratigraphy of the WAIS Divide ice core: Identification of centimeterâ€scale irregular layering. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1218-1229.	1.0	7
9	Introduction to special section on the WAIS Divide Special Issue of Paleoceanography. Paleoceanography, 2016, 31, 1474-1478.	3.0	1
10	Evolution of the stable carbon isotope composition of atmospheric CO ₂ over the last glacial cycle. Paleoceanography, 2016, 31, 434-452.	3.0	81
11	Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3465-3470.	3.3	109
12	Multi-proxy evidence of millennial climate variability from multiple Bahamian speleothems. Quaternary Science Reviews, 2017, 161, 18-29.	1.4	22
13	The impact of Last Glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6209-6214.	3.3	93
14	Atmospheric methane variability: Centennialâ€scale signals in the Last Glacial Period. Global Biogeochemical Cycles, 2017, 31, 575-590.	1.9	15
15	Anatomy of Heinrich Layer 1 and its role in the last deglaciation. Paleoceanography, 2017, 32, 284-303.	3.0	128
16	Synchronous volcanic eruptions and abrupt climate change â^¼17.7 ka plausibly linked by stratospheric ozone depletion. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10035-10040.	3.3	58
17	Vegetation dynamics during last 35,000Âyears at a cold desert locale: preferential loss of forbs with increased aridity. Ecosphere, 2017, 8, e01873.	1.0	7
18	Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH ₄ ice core records. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5778-E5786.	3.3	58
19	Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle. Climate of the Past, 2017, 13, 943-958.	1.3	15

#	Article	IF	CITATIONS
20	Atmospheric methane control mechanisms during the early Holocene. Climate of the Past, 2017, 13, 1227-1242.	1.3	16
21	Does Î ¹⁸ O of O ₂ record meridional shifts in tropical rainfall?. Climate of the Past, 2017, 13, 1323-1338.	1.3	26
22	An improved north–south synchronization of ice core records around the 41â€ [–] kyr ¹⁰ Be peak. Climate of the Past, 2017, 13, 217-229.	1.3	52
23	Analytical constraints on layered gas trapping and smoothing of atmospheric variability in ice under low-accumulation conditions. Climate of the Past, 2017, 13, 1815-1830.	1.3	28
24	Modelling firn thickness evolution during the last deglaciation: constraints on sensitivity to temperature and impurities. Climate of the Past, 2017, 13, 833-853.	1.3	28
25	The Interconnected Global Climate System—A Review of Tropical–Polar Teleconnections. Journal of Climate, 2018, 31, 5765-5792.	1.2	86
26	Mean global ocean temperatures during the last glacial transition. Nature, 2018, 553, 39-44.	13.7	122
27	South American monsoon response to iceberg discharge in the North Atlantic. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3788-3793.	3.3	84
28	Linking environmental changes with human occupations between 900 and 400 ka in Western Europe. Quaternary International, 2018, 480, 78-94.	0.7	50
29	Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature, 2018, 563, 681-685.	13.7	108
30	Ice core evidence for decoupling between midlatitude atmospheric water cycle and Greenland temperature during the last deglaciation. Climate of the Past, 2018, 14, 1405-1415.	1.3	29
31	Wave inhibition by sea ice enables trans-Atlantic ice rafting of debris during Heinrich events. Earth and Planetary Science Letters, 2018, 495, 157-163.	1.8	8
32	Lead pollution recorded in Greenland ice indicates European emissions tracked plagues, wars, and imperial expansion during antiquity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5726-5731.	3.3	174
33	Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise. Nature Communications, 2018, 9, 2503.	5.8	107
34	Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nature Geoscience, 2018, 11, 474-485.	5.4	166
35	Controls on Millennial cale Atmospheric CO ₂ Variability During the Last Glacial Period. Geophysical Research Letters, 2018, 45, 7731-7740.	1.5	29
36	Antarctic and global climate history viewed from ice cores. Nature, 2018, 558, 200-208.	13.7	96
37	Earth's radiative imbalance from the Last Glacial Maximum to the present. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14881-14886.	3.3	40

#	Article	IF	CITATIONS
38	Stable carbon isotopes in paleoceanography: atmosphere, oceans, and sediments. Earth-Science Reviews, 2019, 197, 102893.	4.0	72
39	Two-phase structure of tropical hydroclimate during Heinrich Stadial 1 and its global implications. Quaternary Science Reviews, 2019, 222, 105900.	1.4	24
40	N ₂ O changes from the Last Glacial Maximum to the preindustrial – Part 1: Quantitative reconstruction of terrestrial and marine emissions using N ₂ O stable isotopes in ice cores. Biogeosciences, 2019, 16, 3997-4021.	1.3	12
41	On the Causes and Consequences of Recent Trends in Atmospheric Methane. Current Climate Change Reports, 2019, 5, 259-274.	2.8	35
42	Spatial pattern of accumulation at Taylor Dome during Marine Isotope Stage 4: stratigraphic constraints from Taylor Glacier. Climate of the Past, 2019, 15, 1537-1556.	1.3	14
43	Three-phased Heinrich Stadial 4 recorded in NE Brazil stalagmites. Earth and Planetary Science Letters, 2019, 510, 94-102.	1.8	19
44	Competing Temperature and Atmospheric Circulation Effects on Southwest Madagascan Rainfall During the Last Deglaciation. Paleoceanography and Paleoclimatology, 2019, 34, 275-286.	1.3	11
45	Correlation between oxygen and carbon isotopes of speleothems from Tian'e Cave, central China: Insights into the phase relationship between Asian summer and winter monsoons. Journal of Asian Earth Sciences, 2019, 180, 103884.	1.0	6
46	Method for Correcting Continuous Ice-Core Elemental Measurements for Under-Recovery. Environmental Science & Technology, 2019, 53, 5887-5894.	4.6	9
47	Timing and structure of the weak Asian Monsoon event about 73,000 years ago. Quaternary Geochronology, 2019, 53, 101003.	0.6	11
48	Is the Noble Gasâ€Based Rate of Ocean Warming During the Younger Dryas Overestimated?. Geophysical Research Letters, 2019, 46, 5928-5936.	1.5	16
49	Unveiling the anatomy of Termination 3 using water and air isotopes in the Dome C ice core, East Antarctica. Quaternary Science Reviews, 2019, 211, 156-165.	1.4	5
50	High-latitude warming initiated the onset of the last deglaciation in the tropics. Science Advances, 2019, 5, eaaw2610.	4.7	11
51	Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica Et Cosmochimica Acta, 2020, 270, 409-430.	1.6	20
52	Robust Longitudinally Variable Responses of the ITCZ to a Myriad of Climate Forcings. Geophysical Research Letters, 2020, 47, e2020GL088833.	1.5	35
53	Glacial fluctuations in tropical Africa during the last glacial termination and implications for tropical climate following the Last Glacial Maximum. Quaternary Science Reviews, 2020, 243, 106455.	1.4	7
54	Fast and slow components of interstadial warming in the North Atlantic during the last glacial. Communications Earth & Environment, 2020, 1, .	2.6	10
55	Polar amplification of Pliocene climate by elevated trace gas radiative forcing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23401-23407.	3.3	15

#	Article	IF	CITATIONS
56	Timing and structure of the Younger Dryas event and its underlying climate dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23408-23417.	3.3	119
57	Abrupt CO ₂ release to the atmosphere under glacial and early interglacial climate conditions. Science, 2020, 369, 1000-1005.	6.0	35
58	Millennial cale Changes in Terrestrial and Marine Nitrous Oxide Emissions at the Onset and Termination of Marine Isotope Stage 4. Geophysical Research Letters, 2020, 47, e2020GL089110.	1.5	0
59	Antarctic air bubbles and the long-term ice core record of CO2 and other greenhouse gases. , 2020, , 27-50.		Ο
60	Controls on the Tropical Response to Abrupt Climate Changes. Geophysical Research Letters, 2020, 47, e2020GL087518.	1.5	8
61	Old carbon reservoirs were not important in the deglacial methane budget. Science, 2020, 367, 907-910.	6.0	50
62	Estimation of gas record alteration in very low-accumulation ice cores. Climate of the Past, 2020, 16, 503-522.	1.3	7
63	Methane, Monsoons, and Modulation of Millennialâ€5cale Climate. Geophysical Research Letters, 2020, 47, e2020GL087613.	1.5	19
64	Quaternary Climates. , 2021, , 463-474.		0
65	Persistent millennial-scale climate variability in Southern Europe during Marine Isotope Stage 6. Quaternary Science Advances, 2021, 3, 100016.	1.1	7
66	Using Water Table Depths Inferred From Testate Amoebae to Estimate Holocene Methane Emissions From the Hudson Bay Lowlands, Canada. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005969.	1.3	3
67	Abrupt changes in the global carbon cycle during the last glacial period. Nature Geoscience, 2021, 14, 91-96.	5.4	53
68	Carbon cycle dynamics during episodes of rapid climate change. Environmental Research Letters, 2021, 16, 040201.	2.2	1
70	Monitoring Australian Monsoon variability over the past four glacial cycles. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 568, 110280.	1.0	14
71	High precise dating on the variation of the Asian summer monsoon since 37Âka BP. Scientific Reports, 2021, 11, 9375.	1.6	13
72	Antarctic surface temperature and elevation during the Last Glacial Maximum. Science, 2021, 372, 1097-1101.	6.0	61
73	Different Trends in Antarctic Temperature and Atmospheric CO ₂ During the Last Glacial. Geophysical Research Letters, 2021, 48, e2021GL093868.	1.5	5
74	CH ₄ and N ₂ O fluctuations during the penultimate deglaciation. Climate of the Past, 2021, 17, 1627-1643.	1.3	5

#	Article	IF	CITATIONS
75	The Ice Core Gas Ageâ€Ice Age Difference as a Proxy for Surface Temperature. Geophysical Research Letters, 2021, 48, e2021GL094241.	1.5	8
76	An ice–climate oscillatory framework for Dansgaard–Oeschger cycles. Nature Reviews Earth & Environment, 2020, 1, 677-693.	12.2	38
77	Bipolar volcanic synchronization of abrupt climate change in Greenland and Antarctic ice cores during the last glacial period. Climate of the Past, 2020, 16, 1565-1580.	1.3	44
78	The SP19 chronology for the South Pole Ice Core – Part 2: gas chronology, Δage, and smoothing of atmospheric records. Climate of the Past, 2020, 16, 2431-2444.	1.3	16
79	A 156â€kyr smoothed history of the atmospheric greenhouse gases CO ₂ , CH ₄ , and N ₂ O and their radiative forcing. Earth System Science Data, 2017, 9, 363-387.	3.7	157
80	Late Quaternary Abrupt Climate Change in the Tropics and Subâ€Tropics: The Continental Signal of Tropical Hydroclimatic Events (THEs). Reviews of Geophysics, 2021, 59, e2020RG000732.	9.0	7
83	An 83 000-year-old ice core from Roosevelt Island, Ross Sea, Antarctica. Climate of the Past, 2020, 16, 1691-1713.	1.3	14
84	High-precision laser spectrometer for multiple greenhouse gas analysis in 1 mL air from ice core samples. Atmospheric Measurement Techniques, 2020, 13, 6391-6406.	1.2	3
85	The Global Last Glacial Maximum: the Eastern North Atlantic (marine sediments) and the Greenland Ice Sheet climatic signal. , 2022, , 189-194.		0
86	Radiocarbon as a Dating Tool and Tracer in Paleoceanography. Reviews of Geophysics, 2022, 60, .	9.0	16
87	Northern Hemisphere atmospheric history of carbon monoxide since preindustrial times reconstructed from multiple Greenland ice cores. Climate of the Past, 2022, 18, 631-647.	1.3	4
88	Paleoenvironmental dynamics in centralâ€eastern Brazil during the last 23 000 years: tropical peatland record in the Cerrado biome. Journal of Quaternary Science, 2023, 38, 61-75.	1.1	1
89	Stratigraphic templates for ice core records of the past 1.5 Myr. Climate of the Past, 2022, 18, 1563-1577.	1.3	3
90	The Dome Fuji ice core DF2021 chronology (0–207 kyr BP). Quaternary Science Reviews, 2022, 294, 107754.	1.4	3
91	Historical changes in aerosol. , 2022, , 249-297.		0
92	Chinese Interstadials 14–17 recorded in a precisely U-Th dated stalagmite from the northern edge of the Asian summer monsoon during the MIS 4/3 boundary. Palaeogeography, Palaeoclimatology, Palaeoeclimatology, Palaeoecology, 2022, , 111265.	1.0	0
93	Coupled atmosphere-ice-ocean dynamics during Heinrich Stadial 2. Nature Communications, 2022, 13, .	5.8	11
94	Stalagmite evidence of Last Glacial Maximum to early Holocene climate variability in southwestern Iran. Journal of Quaternary Science, 2023, 38, 308-318.	1.1	3

#	ARTICLE	IF	CITATIONS
95	Multi-phased Asian hydroclimate variability during Heinrich Stadial 5. Climate Dynamics, 2023, 60, 4003-4016.	1.7	1
96	Asian monsoon intensity coupled to Antarctic climate during Dansgaard–Oeschger 8 and Heinrich 4 glacial intervals. Communications Earth & Environment, 2022, 3, .	2.6	1
97	Sensitivity of the tropical dust cycle to glacial abrupt climate changes. Geophysical Research Letters, 0, , .	1.5	0
98	Laser-induced sublimation extraction for centimeter-resolution multi-species greenhouse gas analysis on ice cores. Atmospheric Measurement Techniques, 2023, 16, 355-372.	1.2	1
99	Revisiting Western United States Hydroclimate During the Last Deglaciation. Geophysical Research Letters, 2023, 50, .	1.5	3
102	Water isotopes, climate variability, and the hydrological cycle: recent advances and new frontiers. , 2023, 2, 022002.		8
113	N2, O2, and Ar in ice cores: Elemental and isotopic compositions. , 2023, , .		0
114	The thermal bipolar seesaw during abrupt climate change. , 2023, , .		0
117	Surface temperature characteristics in the Northern and Southern hemispheres during three global warming events since the last glacial maximum. , 2024, , .		0