The SLOW GROWTH3 Pentatricopeptide Repeat Protein Mitochondrial <i>NADH Dehydrogenase Subunit7</i>

Plant Physiology 168, 490-501 DOI: 10.1104/pp.15.00354

Citation Report

#	Article	IF	CITATIONS
1	Dysfunctional mitochondria regulate the size of root apical meristem and leaf development in Arabidopsis. Plant Signaling and Behavior, 2015, 10, e1071002.	1.2	16
2	Distinct role of <i>Arabidopsis</i> mitochondrial P-type pentatricopeptide repeat protein-modulating editing protein, PPME, in <i>nad1</i> RNA editing. RNA Biology, 2016, 13, 593-604.	1.5	29
3	Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex. Journal of Experimental Botany, 2016, 67, 3079-3093.	2.4	91
4	<i>Growing Slowly 1</i> locus encodes a PLS-type PPR protein required for RNA editing and plant development in Arabidopsis. Journal of Experimental Botany, 2016, 67, 5687-5698.	2.4	31
5	Changes in the OXPHOS system in leaf and root mitochondria of Arabidopsis thaliana subjected to long-term sulphur deficiency. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	3
6	<scp>EMPTY PERICARP</scp> 16 is required for mitochondrial <i>nad2</i> intron 4 <i>cis</i> â€splicing, complex I assembly and seed development in maize. Plant Journal, 2016, 85, 507-519.	2.8	97
7	Dysfunctional chloroplasts up-regulate the expression of mitochondrial genes in Arabidopsis seedlings. Photosynthesis Research, 2016, 127, 151-159.	1.6	9
8	The MTL1 Pentatricopeptide Repeat Protein Is Required for Both Translation and Splicing of the Mitochondrial <i>NADH DEHYDROGENASE SUBUNIT7</i> mRNA in Arabidopsis. Plant Physiology, 2016, 170, 354-366.	2.3	77
9	Group II introns in wheat mitochondria have degenerate structural features and varied splicing pathways. International Journal of Biochemistry and Cell Biology, 2017, 91, 156-167.	1.2	4
10	RNA editing of cytochrome c maturation transcripts is responsive to the energy status of leaf cells in Arabidopsis thaliana. Mitochondrion, 2017, 35, 23-34.	1.6	7
11	The mitochondrial pentatricopeptide repeat protein <scp>PPR</scp> 19 is involved in the stabilization of <i>NADH dehydrogenase 1</i> transcripts and is crucial for mitochondrial function and <i>Arabidopsis thaliana</i> development. New Phytologist, 2017, 215, 202-216.	3.5	60
12	<i>Emp10</i> encodes a mitochondrial <scp>PPR</scp> protein that affects the <i>cis</i> â€splicing of <i>nad2</i> intron 1 and seed development in maize. Plant Journal, 2017, 91, 132-144.	2.8	88
13	The Arabidopsis thiaminâ€deficient mutant <i>pale green1</i> lacks thiamin monophosphate phosphatase of the vitamin B ₁ biosynthesis pathway. Plant Journal, 2017, 91, 145-157.	2.8	44
14	Mitochondrial Function and Maize Kernel Development Requires Dek2, a Pentatricopeptide Repeat Protein Involved in nad1 mRNA Splicing. Genetics, 2017, 205, 239-249.	1.2	82
15	The PPR protein SLOW GROWTH 4 is involved in editing of nad4 and affects the splicing of nad2 intron 1. Plant Molecular Biology, 2017, 93, 355-368.	2.0	35
16	Dek35 Encodes a PPR Protein that Affects cis -Splicing of Mitochondrial nad4 Intron 1 andÂSeed Development in Maize. Molecular Plant, 2017, 10, 427-441.	3.9	106
17	WHITE STRIPE LEAF4 Encodes a Novel P-Type PPR Protein Required for Chloroplast Biogenesis during Early Leaf Development. Frontiers in Plant Science, 2017, 8, 1116.	1.7	71
18	Novel DYW-type pentatricopeptide repeat (PPR) protein BLX controls mitochondrial RNA editing and splicing essential for early seed development of Arabidopsis. Journal of Genetics and Genomics, 2018, 45, 155-168.	1.7	32

#	Article	IF	CITATIONS
19	Taiwan–Japan Plant Biology 2017 Spotlight Issue: From Light Signals/Signaling to Photosynthesis and Chloroplast Development. Plant and Cell Physiology, 2018, 59, 1099-1103.	1.5	2
20	Proteomic approach to understand the molecular physiology of symbiotic interaction between Piriformospora indica and Brassica napus. Scientific Reports, 2018, 8, 5773.	1.6	36
21	Maize <i>Dek37</i> Encodes a P-type PPR Protein That Affects <i>cis</i> -Splicing of Mitochondrial <i>nad2</i> Intron 1 and Seed Development. Genetics, 2018, 208, 1069-1082.	1.2	55
22	Transformation of <i>nad7</i> into the nuclear genome rescues the <i>slow growth3</i> mutant in Arabidopsis. RNA Biology, 2018, 15, 1385-1391.	1.5	4
23	Alternative Splicing as a Regulator of Early Plant Development. Frontiers in Plant Science, 2018, 9, 1174.	1.7	109
24	Three new pentatricopeptide repeat proteins facilitate the splicing of mitochondrial transcripts and complex I biogenesis in Arabidopsis. Journal of Experimental Botany, 2018, 69, 5131-5140.	2.4	36
25	The pentatricopeptide repeat protein <scp>EMPTY PERICARP</scp> 8 is required for the splicing of three mitochondrial introns and seed development in maize. Plant Journal, 2018, 95, 919-932.	2.8	52
26	OsNDUFA9 encoding a mitochondrial complex I subunit is essential for embryo development and starch synthesis in rice. Plant Cell Reports, 2018, 37, 1667-1679.	2.8	27
27	Different Types Domains are Present in Complex I from Immature Seeds and of CA Adult Plants in Arabidopsis thaliana. Plant and Cell Physiology, 2019, 60, 986-998.	1.5	7
28	Mitochondrial Transcriptome Control and Intercompartment Cross-Talk During Plant Development. Cells, 2019, 8, 583.	1.8	7
29	Maize <i>Empty Pericarp602</i> Encodes a P-Type PPR Protein That Is Essential for Seed Development. Plant and Cell Physiology, 2019, 60, 1734-1746.	1.5	35
30	Maize pentatricopeptide repeat protein DEK41 affects cis-splicing of mitochondrial nad4 intron 3 and is required for normal seed development. Journal of Experimental Botany, 2019, 70, 3795-3808.	2.4	35
31	Delineation of pentatricopeptide repeat codes for target RNA prediction. Nucleic Acids Research, 2019, 47, 3728-3738.	6.5	103
32	Genome-Wide Analysis of the DYW Subgroup PPR Gene Family and Identification of GmPPR4 Responses to Drought Stress. International Journal of Molecular Sciences, 2019, 20, 5667.	1.8	26
33	The mitochondrial pentatricopeptide repeat protein EMP12 is involved in the splicing of three <i>nad2</i> introns and seed development in maize. Journal of Experimental Botany, 2019, 70, 963-972.	2.4	50
34	DEK43 is a Pâ€ŧype pentatricopeptide repeat (PPR) protein responsible for the <i>Cis</i> â€splicing of <i>nad4</i> in maize mitochondria. Journal of Integrative Plant Biology, 2020, 62, 299-313.	4.1	37
35	PPR20 Is Required for the cis-Splicing of Mitochondrial nad2 Intron 3 and Seed Development in Maize. Plant and Cell Physiology, 2020, 61, 370-380.	1.5	29
36	RADICLELESS 1 (RL1)-mediated nad4 intron 1 splicing is crucial for embryo and endosperm development in rice (Oryza sativa L.). Biochemical and Biophysical Research Communications, 2020, 523, 220-225.	1.0	11

CITATION REPORT

#	Article	IF	CITATIONS
37	A Genome-Wide Analysis of the Pentatricopeptide Repeat (PPR) Gene Family and PPR-Derived Markers for Flesh Color in Watermelon (Citrullus lanatus). Genes, 2020, 11, 1125.	1.0	12
38	Schizosaccharomyces pombe Ppr10 is required for mitochondrial translation. FEMS Microbiology Letters, 2020, 367, .	0.7	6
39	Two Novel PLS-Class Pentatricopeptide Repeat Proteins Are Involved in the Group II Intron Splicing of Mitochondrial Transcripts in the Moss Physcomitrella patens. Plant and Cell Physiology, 2020, 61, 1687-1698.	1.5	5
40	DEK46 performs Câ€toâ€U editing of a specific site in mitochondrial <i>nad7</i> introns that is critical for intron splicing and seed development in maize. Plant Journal, 2020, 103, 1767-1782.	2.8	19
41	Two Pentatricopeptide Repeat Proteins Are Required for the Splicing of nad5 Introns in Maize. Frontiers in Plant Science, 2020, 11, 732.	1.7	14
42	Mitochondrial Pentatricopeptide Repeat Protein, EMB2794, Plays a Pivotal Role in NADH Dehydrogenase Subunit nad2 mRNA Maturation in Arabidopsis thaliana. Plant and Cell Physiology, 2020, 61, 1080-1094.	1.5	12
43	Mitochondrial ribosomal protein S9M is involved in male gametogenesis and seed development in Arabidopsis. Plant Biology, 2020, 22, 655-667.	1.8	6
44	PPR14 Interacts With PPR-SMR1 and CRM Protein Zm-mCSF1 to Facilitate Mitochondrial Intron Splicing in Maize. Frontiers in Plant Science, 2020, 11, 814.	1.7	18
45	Roles of Organellar RNA-Binding Proteins in Plant Growth, Development, and Abiotic Stress Responses. International Journal of Molecular Sciences, 2020, 21, 4548.	1.8	24
46	Accumulation of the RNA polymerase subunit RpoB depends on RNA editing by OsPPR16 and affects chloroplast development during early leaf development in rice. New Phytologist, 2020, 228, 1401-1416.	3.5	25
47	Mitochondrion-targeted PENTATRICOPEPTIDE REPEAT5 is required for cis-splicing of nad4 intron 3 and endosperm development in rice. Crop Journal, 2021, 9, 282-296.	2.3	7
48	EMP32 is required for the <i>cis</i> -splicing of <i>nad7</i> intron 2 and seed development in maize. RNA Biology, 2021, 18, 499-509.	1.5	8
49	Functioning of PPR Proteins in Organelle RNA Metabolism and Chloroplast Biogenesis. Frontiers in Plant Science, 2021, 12, 627501.	1.7	38
50	A RanBP2-type zinc finger protein functions in intron splicing in Arabidopsis mitochondria and is involved in the biogenesis of respiratory complex I. Nucleic Acids Research, 2021, 49, 3490-3506.	6.5	12
51	Rice FLOURY SHRUNKEN ENDOSPERM 5 Encodes a Putative Plant Organelle RNA Recognition Protein that Is Required for cis-Splicing of Mitochondrial nad4 Intron 1. Rice, 2021, 14, 29.	1.7	8
52	A Case of Gene Fragmentation in Plant Mitochondria Fixed by the Selection of a Compensatory Restorer of Fertility-Like PPR Gene. Molecular Biology and Evolution, 2021, 38, 3445-3458.	3.5	9
53	OsNBL3, a mitochondrionâ€localized pentatricopeptide repeat protein, is involved in splicing <i>nad5</i> intron 4 and its disruption causes lesion mimic phenotype with enhanced resistance to biotic and abiotic stresses. Plant Biotechnology Journal, 2021, 19, 2277-2290.	4.1	28
54	The pentatricopeptide repeat protein EMP603 is required for the splicing of mitochondrial <i>Nad1</i> intron 2 and seed development in maize. Journal of Experimental Botany, 2021, 72, 6933-6948.	2.4	12

CITATION REPORT

#	Article	IF	CITATIONS
55	OsPPR939, a nad5 splicing factor, is essential for plant growth and pollen development in rice. Theoretical and Applied Genetics, 2021, 134, 923-940.	1.8	10
56	Functions of PPR Proteins in Plant Growth and Development. International Journal of Molecular Sciences, 2021, 22, 11274.	1.8	26
57	Cotton Fiber Development Requires the Pentatricopeptide Repeat Protein GhIm for Splicing of Mitochondrial <i>nad7</i> mRNA. Genetics, 2021, 217, 1-17.	1.2	47
58	CFM6 is an Essential CRM Protein Required for the Splicing of <i>nad5</i> Transcript in Arabidopsis Mitochondria. Plant and Cell Physiology, 2022, 63, 217-233.	1.5	3
59	Identification and molecular mapping of a major quantitative trait locus underlying branch angle in soybean. Theoretical and Applied Genetics, 2022, 135, 777-784.	1.8	9
61	Evidence for thermosensitivity of the cotton (Gossypium hirsutum L.) immature fiber (im) mutant via hypersensitive stomatal activity. PLoS ONE, 2021, 16, e0259562.	1.1	3
64	The Arabidopsis Mitochondrial Pseudouridine Synthase Homolog FCS1 Plays Critical Roles in Plant Development. Plant and Cell Physiology, 2022, 63, 955-966.	1.5	5
66	Pentatricopeptide repeat protein MITOCHONDRIAL STABILITY FACTOR 3 ensures mitochondrial RNA stability and embryogenesis. Plant Physiology, 2022, 190, 669-681.	2.3	12
67	Transcription Factor AtOFP1 Involved in ABA-Mediated Seed Germination and Root Growth through Modulation of ROS Homeostasis in Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 7427.	1.8	2
68	Development of <scp>DNA</scp> methylationâ€based epigenetic age predictors in loblolly pine (<i>Pinus) Tj ETO</i>	2q1 1 0.78 2.2	34314 rgBT
69	The <scp>MITOCHONDRIAL TRANSCRIPT STABILITY FACTOR</scp> 4 (<scp>MTSF4</scp>) is essential for the accumulation of dicistronic <i>rpl5 ob</i> <scp>mRNAs</scp> in <i>Arabidopsis thaliana</i> . Plant Journal, 0, , .	2.8	1
70	Mitochondrial gene defects in Arabidopsis can broadly affect mitochondrial gene expression through copy number. Plant Physiology, 2023, 191, 2256-2275.	2.3	8
71	The biogenesis and regulation of the plant oxidative phosphorylation system. Plant Physiology, 2023, 192, 728-747.	2.3	6
73	TALE-based organellar genome editing and gene expression in plants. Plant Cell Reports, 2024, 43, .	2.8	0