Unraveling incompatibility between wheat and the fung through apoplastic proteomics

BMC Genomics 16, 362 DOI: 10.1186/s12864-015-1549-6

Citation Report

#	Article	IF	CITATIONS
1	Dissecting the Molecular Interactions between Wheat and the Fungal Pathogen Zymoseptoria tritici. Frontiers in Plant Science, 2016, 7, 508.	1.7	45
2	Comprehensive proteomic analysis of the wheat pathogenic fungus <i>Zymoseptoria tritici</i> . Proteomics, 2016, 16, 98-101.	1.3	9
3	Comparative proteomic analysis of cucumber roots infected by Fusarium oxysporum f. sp. cucumerium Owen. Physiological and Molecular Plant Pathology, 2016, 96, 77-84.	1.3	17
4	Three <i>Fusarium oxysporum</i> mitogenâ€activated protein kinases (MAPKs) have distinct and complementary roles in stress adaptation and crossâ€kingdom pathogenicity. Molecular Plant Pathology, 2017, 18, 912-924.	2.0	77
5	Plant–Pathogen Interactions: A Proteomic Approach. , 2017, , 207-225.		5
6	Biological control of septoria leaf blotch and growth promotion in wheat by Paenibacillus sp. strain B2 and Curtobacterium plantarum strain EDS. Biological Control, 2017, 114, 87-96.	1.4	50
7	Different waves of effector genes with contrasted genomic location are expressed by <i>Leptosphaeria maculans</i> during cotyledon and stem colonization of oilseed rape. Molecular Plant Pathology, 2017, 18, 1113-1126.	2.0	46
8	Practical breeding strategies to improve resistance to Septoria tritici blotch of wheat. Euphytica, 2018, 214, 1.	0.6	14
9	The Apoplastic Secretome of Trichoderma virens During Interaction With Maize Roots Shows an Inhibition of Plant Defence and Scavenging Oxidative Stress Secreted Proteins. Frontiers in Plant Science, 2018, 9, 409.	1.7	122
10	A Review of the Interactions between Wheat and Wheat Pathogens: Zymoseptoria tritici, Fusarium spp. and Parastagonospora nodorum. International Journal of Molecular Sciences, 2018, 19, 1138.	1.8	35
11	What proteomic analysis of the apoplast tells us about plant–pathogen interactions. Plant Pathology, 2018, 67, 1647-1668.	1.2	19
12	A review of the known unknowns in the early stages of septoria tritici blotch disease of wheat. Plant Pathology, 2019, 68, 1427-1438.	1.2	22
13	A Plant Nutrient- and Microbial Protein-Based Resistance Inducer Elicits Wheat Cultivar-Dependent Resistance Against <i>Zymoseptoria tritici</i> . Phytopathology, 2019, 109, 2033-2045.	1.1	3
14	Rapid loss of virulence during submergence of Z. tritici asexual spores. Fungal Genetics and Biology, 2019, 128, 14-19.	0.9	2
15	Extracellular vesicles from the apoplastic fungal wheat pathogen Zymoseptoria tritici. Fungal Biology and Biotechnology, 2020, 7, 13.	2.5	32
16	Prohibitin 1 (PHB1) controls growth and development and regulates proliferation and apoptosis in <i>Schistosoma japonicum</i> . FASEB Journal, 2020, 34, 11030-11046.	0.2	5
17	Over-expression of Osmotin (OsmWS) gene of Withania somnifera in potato cultivar â€~Kufri Chipsona 1' imparts resistance to Alternaria solani. Plant Cell, Tissue and Organ Culture, 2020, 142, 131-142.	1.2	10
18	Wheat Encodes Small, Secreted Proteins That Contribute to Resistance to Septoria Tritici Blotch. Frontiers in Genetics, 2020, 11, 469.	1.1	11

#	Article	IF	CITATIONS
19	Proteome Analysis Reveals Syndecan 1 Regulates Porcine Sapelovirus Replication. International Journal of Molecular Sciences, 2020, 21, 4386.	1.8	1
20	Isolate-Specific Responses of the Nonhost Grass Brachypodium distachyon to the Fungal Pathogen Zymoseptoria tritici Compared with Wheat. Phytopathology, 2021, 111, 356-368.	1.1	1
21	1-Methyltryptophan Treatment Increases Defense-Related Proteins in the Apoplast of Tomato Plants. Journal of Proteome Research, 2021, 20, 433-443.	1.8	2
22	Conditional promoters to investigate gene function during wheat infection by Zymoseptoria tritici. Fungal Genetics and Biology, 2021, 146, 103487.	0.9	1
23	Asynchronous development of Zymoseptoria tritici infection in wheat. Fungal Genetics and Biology, 2021, 146, 103504.	0.9	22
24	Categorization of Orthologous Gene Clusters in 92 Ascomycota Genomes Reveals Functions Important for Phytopathogenicity. Journal of Fungi (Basel, Switzerland), 2021, 7, 337.	1.5	3
25	Transcription factor control of virulence in phytopathogenic fungi. Molecular Plant Pathology, 2021, 22, 858-881.	2.0	50
26	Characterization of Effector–Target Interactions in Necrotrophic Pathosystems Reveals Trends and Variation in Host Manipulation. Annual Review of Phytopathology, 2021, 59, 77-98.	3.5	26
27	Tolerance to oxidative stress is associated with both oxidative stress response and inherent growth in a fungal wheat pathogen. Genetics, 2021, 217, .	1.2	11
28	Physio-biochemical and proteomic mechanisms of coronatine induced potassium stress tolerance in xylem sap of cotton. Industrial Crops and Products, 2021, 173, 114094.	2.5	4
29	Endophytes Bacillus amyloliquefaciens AW3 (CGMCC1.16683) improves the growth of Populus davidiana × Populus bolleana (PdPap) and induces its resistance to wilt disease by Fusarium oxysporun Fox68 (CFCC86068). European Journal of Plant Pathology, 2022, 162, 1-17.	10.8	6
35	Blocked at the Stomatal Gate, a Key Step of Wheat Stb16q-Mediated Resistance to Zymoseptoria tritici. Frontiers in Plant Science, 0, 13, .	1.7	13

Extracci \tilde{A}^3 n y an \tilde{A}_i lisis de metabolitos fen \tilde{A}^3 licos apopl \tilde{A}_i sticos en ra $\tilde{A}z$ y tallo de clavel (Dianthus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 0.2