Hydrogen storage: Materials, methods and perspectives

Renewable and Sustainable Energy Reviews 50, 457-469

DOI: 10.1016/j.rser.2015.05.011

Citation Report

#	Article	IF	CITATIONS
1	Metal hydride–hydrazine borane: Towards hydrazinidoboranes or composites as hydrogen carriers. International Journal of Hydrogen Energy, 2015, 40, 14875-14884.	3.8	12
2	Density functional theory guide to structure and thermodynamics of metal hydrides – Case study of (Ti, Zr, Hf)Ni intermetallic compounds. International Journal of Hydrogen Energy, 2015, 40, 13029-13038.	3.8	9
3	Adsorption-Driven Heat Pumps: The Potential of Metal–Organic Frameworks. Chemical Reviews, 2015, 115, 12205-12250.	23.0	410
4	Metal–Organic Frameworks in Adsorption-Driven Heat Pumps: The Potential of Alcohols as Working Fluids. Langmuir, 2015, 31, 12783-12796.	1.6	123
5	Mg-based Nanocomposites for Hydrogen Storage Containing Ti-Cr-V Alloys as Additives. Materials Research, 2016, 19, 80-85.	0.6	19
6	Grapheneâ€Based Nanocomposites for Energy Storage. Advanced Energy Materials, 2016, 6, 1502159.	10.2	306
7	The H60Si6C54 heterofullerene as high-capacity hydrogen storage medium. AIP Advances, 2016, 6, 075321.	0.6	4
8	Microwave-assisted hydrogen releasing from liquid organic hydride over Pt/CNT catalyst: Effects of oxidation treatment of CNTs. Catalysis Today, 2016, 276, 121-127.	2.2	16
10	Mass production of LiAl alloys by the step-controlled casting process. Materials and Design, 2016, 99, 102-106.	3.3	1
11	Hydrogen diffusion kinetics and structural integrity of superhigh pressure Mg-5Âwt%Ni alloys with dendrite interface. Journal of Power Sources, 2016, 320, 212-221.	4.0	49
12	Simulation and experimental study of CVD process for low temperature nanocrystalline silicon carbide coating. Nuclear Engineering and Design, 2016, 303, 122-131.	0.8	11
13	Kinetics of â^'CH ₂ CH ₂ â€" Hydrogen Release from a BN-cyclohexene Derivative. Organometallics, 2016, 35, 2425-2428.	1.1	5
14	An investigation on hydrogen storage thermodynamics and kinetics of Prâ€"Mgâ€"Ni-based PrMg12-type alloys synthesized by mechanical milling. Journal of Alloys and Compounds, 2016, 688, 585-593.	2.8	20
15	Boron and nitrogen co-doped carbon dots as a metal-free catalyst for hydrogen generation from sodium borohydride. New Journal of Chemistry, 2016, 40, 8823-8828.	1.4	36
16	Development of an Iridiumâ€Based Catalyst for Highâ€Pressure Evolution of Hydrogen from Formic Acid. ChemSusChem, 2016, 9, 2749-2753.	3.6	73
17	Size Dependence Adsorption of Hydrogen on Cobalt Clusters: A DFT Study. Journal of Nano Research, 2016, 42, 100-111.	0.8	7
18	Synthesis, structure and properties of new bimetallic sodium and potassium lanthanum borohydrides. Dalton Transactions, 2016, 45, 19002-19011.	1.6	22
19	Thermal effect and flow-through cooling of an adsorptive hydrogen delivery tank. International Journal of Hydrogen Energy, 2016, 41, 16094-16100.	3.8	8

#	Article	IF	Citations
20	An investigation on hydrogen storage thermodynamics and kinetics of Nd–Mg–Ni-based alloys synthesized by mechanical milling. International Journal of Hydrogen Energy, 2016, 41, 12205-12213.	3.8	14
21	Understanding the dehydrogenation process of MgH2 from the recombination of hydrogen atoms. International Journal of Hydrogen Energy, 2016, 41, 5716-5724.	3.8	13
22	Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 2016, 40, 1-15.	2.9	861
23	A new method for the characterization of hydrides hydrogen tanks dedicated to automotive applications. International Journal of Hydrogen Energy, 2016, 41, 11682-11691.	3.8	17
24	Evolution of the phase structure and hydrogen storage thermodynamics and kinetics of Mg 88 Y 12 binary alloy. International Journal of Hydrogen Energy, 2016, 41, 2689-2699.	3.8	84
25	On the nature of the trimer, tetramer, and pentamer of ammonia borane. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	12
26	The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy, Ecology and Environment, 2016, 1, 10-29.	1.9	324
27	Effect of elemental substitution on the structure and hydrogen storage properties of LaMgNi4 alloy. Materials and Design, 2016, 93, 46-52.	3.3	43
28	Accurate prediction of hydrogen storage capacity of small boron nitride nanocages by dispersion corrected semi-empirical PM6-DH2 method. International Journal of Hydrogen Energy, 2016, 41, 392-400.	3.8	12
29	Montmorilloniteâ€Supported Iron Oxide for Hydrogen Storage by Chemical Looping. Energy Technology, 2017, 5, 1399-1406.	1.8	8
30	Formation and mechanism of nanocrystalline AZ91 powders during HDDR processing. Materials Characterization, 2017, 125, 134-141.	1.9	4
31	A hierarchical porous microstructure for improving long-term stability of Ni1-xCux/SDC anode-supported IT-SOFCs fueled with dry methane. Journal of Alloys and Compounds, 2017, 702, 186-192.	2.8	13
32	Li-decorated porous graphene as a high-performance hydrogen storage material: A first-principles study. International Journal of Hydrogen Energy, 2017, 42, 10099-10108.	3.8	77
33	In-situ biogas upgrading with pulse H 2 additions: The relevance of methanogen adaption and inorganic carbon level. Bioresource Technology, 2017, 233, 256-263.	4.8	146
34	Investigation of graphene-based systems for hydrogen storage. Renewable and Sustainable Energy Reviews, 2017, 74, 104-109.	8.2	119
35	On enhanced hydrogen adsorption on alkali (cesium) doped C60 and effects of the quantum nature of the H2 molecule on physisorption energies. International Journal of Hydrogen Energy, 2017, 42, 3078-3086.	3.8	33
36	A survey on modeling, biofuels, control and supervision systems applied in internal combustion engines. Renewable and Sustainable Energy Reviews, 2017, 73, 1070-1085.	8.2	53
37	Elastic properties of perovskite-type hydrides LiBeH3 and NaBeH3 for hydrogen storage. International Journal of Hydrogen Energy, 2017, 42, 10038-10046.	3.8	45

#	ARTICLE	IF	CITATIONS
38	Nanoconfined lithium aluminium hydride (LiAlH4) and hydrogen reversibility. International Journal of Hydrogen Energy, 2017, 42, 14144-14153.	3.8	58
39	lonic conduction in bimetallic borohydride borate, LiCa3(BH4)(BO3)2. Solid State Ionics, 2017, 305, 16-22.	1.3	9
40	Seasonal storage and alternative carriers: A flexible hydrogen supply chain model. Applied Energy, 2017, 200, 290-302.	5.1	423
41	An interdisciplinary review of energy storage for communities: Challenges and perspectives. Renewable and Sustainable Energy Reviews, 2017, 79, 730-749.	8.2	209
42	Hydrogen Production from Oxygenated Hydrocarbons: Review of Catalyst Development, Reaction Mechanism and Reactor Modeling. , 2017, , 1-76.		2
43	Palladium nanoparticle and decorated carbon nanotube for electrochemical hydrogen storage. International Journal of Hydrogen Energy, 2017, 42, 11528-11533.	3.8	64
44	Nb-H system at high pressures and temperatures. Physical Review B, 2017, 95, .	1.1	32
45	Air-stable MgH 2 â^' CeO 2 composite with facilitated de/hydrogenation kinetics synthesized by high energy ball milling. Materials Characterization, 2017, 133, 94-101.	1.9	32
46	Chitosan-Fe3O4 anchored palladium nanoparticles: An efficiently magnetic catalyst for hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2017, 42, 28425-28433.	3.8	30
47	Hydrogen Chemisorption on Singly Vanadiumâ€Doped Aluminum Clusters. Chemistry - A European Journal, 2017, 23, 15638-15643.	1.7	24
48	Production, storage, fuel stations of hydrogen and its utilization in automotive applications-a review. International Journal of Hydrogen Energy, 2017, 42, 24597-24611.	3.8	300
49	Theoretical study of stability and superconductivity of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi> ScH < /mml:mi > <mml:mi> n < /mml:mi at high pressure. Physical Review B. 2017, 96</mml:mi></mml:mi></mml:msub></mml:math>	i> <u>{</u> mml:n	nsub>
50	Fuel cell propulsion in small fixed-wing unmanned aerial vehicles: Current status and research needs. International Journal of Hydrogen Energy, 2017, 42, 21311-21333.	3.8	150
51	Low temperature rolling of AZ91 alloy for hydrogen storage. International Journal of Hydrogen Energy, 2017, 42, 29394-29405.	3.8	19
52	De/hydrogenation kinetics against air exposure and microstructure evolution during hydrogen absorption/desorption of Mg-Ni-Ce alloys. Renewable Energy, 2017, 113, 1399-1407.	4.3	40
53	Alternative fuels for internal combustion engines. Proceedings of the Combustion Institute, 2017, 36, 3389-3413.	2.4	372
54	Classification and assessment of energy storage systems. Renewable and Sustainable Energy Reviews, 2017, 75, 1187-1197.	8.2	504
55	Polymer nanocomposites for hydrogen storage. AIP Conference Proceedings, 2017, , .	0.3	1

#	Article	IF	Citations
56	Viability and Impacts of Hydrogen Economy in Mobility- A Review. , 0, , .		0
57	Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways. Energies, 2017, 10, 1089.	1.6	106
58	Self-assembly of hydrogen storage materials based multi-walled carbon nanotubes (MWCNTs) and Dy3Fe5O12 (DFO) nanoparticles. Journal of Alloys and Compounds, 2018, 745, 789-797.	2.8	157
59	Effects of molybdenum content on the discharging performances of the La1.7Mg1.3(Ni1-xMox)7.75MnCo0.2Al0.05 alloys. Journal of Alloys and Compounds, 2018, 741, 895-899.	2.8	7
60	Modelling of aluminum-fuelled power plant with steam-hydrogen enthalpy utilization. International Journal of Hydrogen Energy, 2018, 43, 4623-4631.	3.8	25
61	Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management, 2018, 165, 602-627.	4.4	957
62	7-ethylindole: A new efficient liquid organic hydrogen carrier with fast kinetics. International Journal of Hydrogen Energy, 2018, 43, 12688-12696.	3.8	34
63	Microstructure and absorption/desorption kinetics evolutions of Mg Ni Ce alloys during hydrogenation and dehydrogenation cycles. International Journal of Hydrogen Energy, 2018, 43, 8404-8414.	3.8	19
64	Simultaneous neutron powder diffraction and microwave dielectric studies of ammonia absorption in metal–organic framework systems. Physical Chemistry Chemical Physics, 2018, 20, 10460-10469.	1.3	7
65	Zeolite-templated carbons $\hat{a} \in \text{``three-dimensional microporous graphene frameworks. Chemical Communications, 2018, 54, 5648-5673.}$	2.2	172
66	Study of hydrogenation and dehydrogenation of 1-methylindole for reversible onboard hydrogen storage application. International Journal of Hydrogen Energy, 2018, 43, 8868-8876.	3.8	56
67	First principles study on elastic and electronic properties of bialkali alanates M2M′AlH6. International Journal of Hydrogen Energy, 2018, 43, 3862-3870.	3.8	15
68	Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Biotechnology Advances, 2018, 36, 707-720.	6.0	194
69	Fast hydrogen generation from solid NH3BH3 under moderate heating and supplying a limited quantity of CoCl2 or NiCl2 solution. Renewable Energy, 2018, 121, 722-729.	4.3	16
70	Tuning hydrogen dissociation behavior of magnesium borohydride (100) surface by transition metal and nonmetal co-substitution. Materials Today Communications, 2018, 15, 245-253.	0.9	0
71	Liquid metal activated aluminum-water reaction for direct hydrogen generation at room temperature. Renewable and Sustainable Energy Reviews, 2018, 92, 17-37.	8.2	88
72	Dy3Fe5O12 and DyFeO3 nanostructures: Green and facial auto-combustion synthesis, characterization and comparative study on electrochemical hydrogen storage. International Journal of Hydrogen Energy, 2018, 43, 9713-9721.	3.8	45
73	Recent progress in hydrogen production from formic acid decomposition. International Journal of Hydrogen Energy, 2018, 43, 7055-7071.	3.8	155

#	Article	IF	Citations
74	Chitosan supported palladium nanoparticles: The novel catalysts for hydrogen generation from hydrolysis of ammonia borane. Materials Research Bulletin, 2018, 103, 89-95.	2.7	40
7 5	Non-precious molybdenum-based catalyst derived from biomass: CO-free hydrogen production from formic acid at low temperature. Energy Conversion and Management, 2018, 164, 122-131.	4.4	31
76	Identification of Intermediates during the Hydration of Na ₈ [AlSiO ₄] ₆ (BH ₄) ₂ : A Combined Theoretical and Experimental Approach. Journal of Physical Chemistry A, 2018, 122, 3293-3300.	1.1	1
77	Analysis of hydrogen desorption from linear heating experiments: Accuracy of activation energyÂdeterminations. International Journal of Hydrogen Energy, 2018, 43, 6632-6641.	3.8	13
78	A review of transition-metal boride/phosphide-based materials for catalytic hydrogen generation from hydrolysis of boron-hydrides. Inorganic Chemistry Frontiers, 2018, 5, 760-772.	3.0	103
79	The role of hydrogen in low carbon energy futures–A review of existing perspectives. Renewable and Sustainable Energy Reviews, 2018, 82, 3027-3045.	8.2	424
80	Development of Catalystâ€Enhanced Sodium Alanate as an Advanced Hydrogenâ€Storage Material for Mobile Applications. Energy Technology, 2018, 6, 487-500.	1.8	70
81	Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chemical Reviews, 2018, 118, 372-433.	23.0	805
82	Hydrogenation Kinetics of <i>N</i> â€Ethylindole on a Supported Ru Catalyst. Energy Technology, 2018, 6, 558-562.	1.8	24
83	Electrochemical hydrogen storage properties of NiAl2O4/NiO nanostructures using TiO2, SiO2 and graphene by auto-combustion method using green tea extract. Renewable Energy, 2018, 115, 199-207.	4.3	63
84	Activation mechanism and dehydrogenation behavior in bulk hypo/hyper-eutectic Mg-Ni alloy. Journal of Power Sources, 2018, 374, 158-165.	4.0	34
85	Investigation of the textural and adsorption properties of activated carbon from HTC and pyrolysis carbonizates. Biomass Conversion and Biorefinery, 2018, 8, 317-328.	2.9	25
86	Palladium Supported on Carbon Nanotubes as a High-Performance Catalyst for the Dehydrogenation of Dodecahydro-N-ethylcarbazole. Catalysts, 2018, 8, 638.	1.6	29
87	Aluminum-Based Fuel for Future. SSRN Electronic Journal, 0, , .	0.4	0
89	Novel Ni-IRMOF-74 Postsynthetically Functionalized for H ₂ Storage Applications. Journal of Physical Chemistry C, 2018, 122, 28123-28132.	1.5	18
90	Study of hydrogen storage performance of ZnO–CeO2 ceramic nanocomposite and the effect of various parameters to reach the optimum product. International Journal of Hydrogen Energy, 2018, 43, 22955-22965.	3.8	14
91	A technical and economical assessment of hydrogen production potential from solar energy in Morocco. International Journal of Hydrogen Energy, 2018, 43, 22777-22796.	3.8	103
92	Plasmaâ€assisted ammonia decomposition over Fe–Ni alloy catalysts for CO _{<i>x</i>} â€Free hydrogen. AICHE Journal, 2019, 65, 691-701.	1.8	49

#	Article	IF	CITATIONS
93	Borohydride in ionic liquids for tailored hydrogen release. International Journal of Hydrogen Energy, 2018, 43, 20772-20782.	3.8	9
94	Magnetic graphene oxide-ionic liquid grafted chitosan composites anchored Pd(0) nanoparticles: A robust heterogeneous catalyst with enhanced activity and superior reusability for hydrogen generation from ammonia borane. International Journal of Hydrogen Energy, 2018, 43, 19939-19946.	3.8	20
95	Dehydrogenation of Formic Acid Promoted by a Trihydride-Hydroxo-Osmium(IV) Complex: Kinetics and Mechanism. ACS Catalysis, 2018, 8, 11314-11323.	5.5	40
96	Investigation, using density function theory, of coverage of the kaolinite (001) surface during hydrogen adsorption. Clay Minerals, 2018, 53, 393-402.	0.2	2
97	Progress Towards Direct Hydrogen Peroxide Fuel Cells (DHPFCs) as an Energy Storage Concept. Australian Journal of Chemistry, 2018, 71, 781.	0.5	33
98	Sequential hydrogen production system from formic acid and H ₂ /CO ₂ separation under high-pressure conditions. Sustainable Energy and Fuels, 2018, 2, 1719-1725.	2.5	21
99	Cu/Ni nanoparticles supported on TiO ₂ (B) nanotubes as hydrogen generation photocatalysts <i>via</i> hydrolysis of ammonia borane. Inorganic Chemistry Frontiers, 2018, 5, 2038-2044.	3.0	39
100	Ultrafine palladium nanoparticles anchoring graphene oxide-ionic liquid grafted chitosan self-assembled materials: The novel organic-inorganic hybrid catalysts for hydrogen generation in hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2018, 43, 12081-12090.	3.8	33
104	Size Dependent H ₂ Adsorption on Al _{<i>n</i>} Rh ⁺ (<i>n</i> > = 1 â \in "12) Clusters. Journal of Physical Chemistry C, 2018, 122, 18247-18255.	1.5	26
105	New interatomic potential for simulation of pure magnesium and magnesium hydrides. Computational Materials Science, 2018, 154, 295-302.	1.4	17
106	Review of Energy Storage System Technologies in Microgrid Applications: Issues and Challenges. IEEE Access, 2018, 6, 35143-35164.	2.6	434
107	A Bird's Eye view on process and engineering aspects of hydrogen storage. Renewable and Sustainable Energy Reviews, 2018, 91, 838-860.	8.2	91
109	Recent advances, unsolved deficiencies, and future perspectives of hydrogen fuel cells in transportation and portable sectors. International Journal of Energy Research, 2019, 43, 8931-8955.	2.2	87
111	First principle investigation on hydrogen solid storage in Zr1-xNbxNiH3 (x = 0 and 0.1). International Journal of Hydrogen Energy, 2019, 44, 23188-23195.	3.8	23
112	Phase transformation relevant to the hydrogenation properties in the YNi3â^'xCrx. Chemical Physics Letters, 2019, 736, 136823.	1.2	2
113	Effect of high zirconium content on hydrogenation properties and anti-poisoning ability of air-exposed TiFe alloy. Journal of Materials Research and Technology, 2019, 8, 5972-5983.	2.6	17
114	ENERGY STORAGE DEVELOPMENT USING HYDROGEN AND ITS POTENTIAL APPLICATION IN COLOMBIA. International Journal of Energy Economics and Policy, 2019, 9, 254-268.	0.5	5
115	Auto-combustion synthesis, structural analysis, and electrochemical solid-state hydrogen storage performance of strontium cobalt oxide nanostructures. International Journal of Hydrogen Energy, 2019, 44, 31183-31191.	3.8	18

#	Article	IF	Citations
116	Revisiting Formic Acid Decomposition by a Graph-Theoretical Approach. Journal of Physical Chemistry A, 2019, 123, 9579-9586.	1.1	7
117	Computational Investigation into the Ni(SeNHC2(CN)2)2 and Ni(SNHC2(CN)2)2 Complexes as Potential Catalysts for Hydrogen Production. Journal of Physical Chemistry A, 2019, 123, 7822-7827.	1.1	2
118	Hierarchically Porous Carbon Derived from <i>Neolamarckia cadamba</i> for Electrochemical Capacitance and Hydrogen Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 15385-15393.	3.2	44
119	Significant effect of TiF3 on the performance of 2NaAlH4+Ca(BH4)2 hydrogen storage properties. International Journal of Hydrogen Energy, 2019, 44, 21979-21987.	3.8	16
120	Molecular and dissociated adsorption of hydrogen on TiC6H6. International Journal of Hydrogen Energy, 2019, 44, 25800-25808.	3.8	8
121	Improved hydrogen storage properties of TiFe alloy by doping (Zr+2V) additive and using mechanical deformation. International Journal of Hydrogen Energy, 2019, 44, 27843-27852.	3.8	23
122	Sustainable visible light assisted <i>in situ</i> hydrogenation <i>via</i> a magnesium–water system catalyzed by a Pd-g-C ₃ N ₄ photocatalyst. Green Chemistry, 2019, 21, 261-268.	4.6	41
123	Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks. Molecular Systems Design and Engineering, 2019, 4, 162-174.	1.7	179
124	Mixed-Solvothermal Synthesis of MIL-101(Cr) and Its Water Adsorption/Desorption Performance. Industrial & Description Performance. 1019, 58, 2983-2990.	1.8	33
125	Study on reversible hydrogen uptake and release of 1,2-dimethylindole as a new liquid organic hydrogen carrier. International Journal of Hydrogen Energy, 2019, 44, 4919-4929.	3.8	32
126	Review and evaluation of hydrogen production options for better environment. Journal of Cleaner Production, 2019, 218, 835-849.	4.6	570
127	Template-free synthesis of carbon hollow spheres and reduced graphene oxide from spent lithium-ion batteries towards efficient gas storage. Journal of Materials Chemistry A, 2019, 7, 3244-3252.	5.2	83
128	Performance assessment of a solar towerâ€based multigeneration system with thermal energy storage. Energy Storage, 2019, 1, e71.	2.3	7
129	Transitionâ€Metalâ€Based Multidecker Complexes as Hydrogen Storage Materials: A Theoretical Study. ChemistrySelect, 2019, 4, 5961-5967.	0.7	2
130	Solvent effects on high-pressure hydrogen gas generation by dehydrogenation of formic acid using ruthenium complexes. International Journal of Hydrogen Energy, 2019, 44, 28507-28513.	3.8	11
131	Optoelectronic and thermal properties of LiXH3(X =Ba, Sr and Cs) for hydrogen storage materials: A first principle study. Solid State Communications, 2019, 299, 113659.	0.9	42
132	Static and dynamic studies of hydrogen adsorption on nanoporous carbon gels. International Journal of Hydrogen Energy, 2019, 44, 18169-18178.	3.8	36
133	Effects of yttrium substitution for magnesium on the electrochemical performances of La2Mg1â^'Y Ni8.8Co0.2 hydrogen storage alloys. Journal of Materials Research and Technology, 2019, 8, 3382-3387.	2.6	6

#	ARTICLE	IF	CITATIONS
134	Metal organic framework derived nitrogen-doped carbon anchored palladium nanoparticles for ambient temperature formic acid decomposition. International Journal of Hydrogen Energy, 2019, 44, 28402-28408.	3.8	38
135	Incorporating Three Chiral Channels into an In-MOF for Excellent Gas Absorption and Preliminary Cu ²⁺ Ion Detection. Crystal Growth and Design, 2019, 19, 3860-3868.	1.4	26
136	Co/Ni mixed-metal expanded IRMOF-74 series and their hydrogen adsorption properties. International Journal of Hydrogen Energy, 2019, 44, 18205-18213.	3.8	9
137	Structure and hydrogen storage properties of La1-Pr MgNi3.6Co0.4 (x = 0–0.4) alloys prepared by melt spinning. International Journal of Hydrogen Energy, 2019, 44, 29590-29596.	3.8	3
138	Integration of reversible solid oxide cells with methane synthesis (ReSOC-MS) in grid stabilization: A dynamic investigation. Applied Energy, 2019, 250, 558-567.	5.1	17
139	A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany. Applied Energy, 2019, 247, 438-453.	5.1	148
140	Hydrogen energy, economy and storage: Review and recommendation. International Journal of Hydrogen Energy, 2019, 44, 15072-15086.	3.8	1,804
141	Investigation of structural, electronic and lattice dynamical properties of XNiH (XÂ=ÂLi, Na and K) perovskite type hydrides and their hydrogen storage applications. International Journal of Hydrogen Energy, 2019, 44, 15173-15182.	3.8	56
142	Dry Gel Conversion Synthesis of Hierarchical Porous MIL-100(Fe) and Its Water Vapor Adsorption/Desorption Performance. Industrial & Engineering Chemistry Research, 2019, 58, 7801-7807.	1.8	24
143	Effect of addition of hydrogen and TiO2 in gasoline engine in various exhaust gas recirculation ratio. International Journal of Hydrogen Energy, 2019, 44, 11205-11218.	3.8	51
144	Ligand Effect on the Stability of Waterâ€Soluble Iridium Catalysts for Highâ€Pressure Hydrogen Gas Production by Dehydrogenation of Formic Acid. ChemPhysChem, 2019, 20, 1296-1300.	1.0	16
145	Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. International Journal of Hydrogen Energy, 2019, 44, 12254-12269.	3.8	684
146	Pdâ€Ni/Cd loaded PPy/Ti composite electrode: Synthesis, characterization, and application for hydrogen storage. International Journal of Energy Research, 2019, 43, 3284-3294.	2.2	15
147	Molecular modelling and machine learning for high-throughput screening of metal-organic frameworks for hydrogen storage. Molecular Simulation, 2019, 45, 1069-1081.	0.9	62
148	Offshore renewable energy resources and their potential in a green hydrogen supply chain through power-to-gas. Sustainable Energy and Fuels, 2019, 3, 1468-1489.	2.5	31
149	Synthesis and characterization of microporous hybrid nanocomposite membrane as potential hydrogen storage medium towards fuel cell applications. Ionics, 2019, 25, 3561-3575.	1,2	9
150	Effects of doping with yttrium on the hydrogen storage performances of the La2Mg17 alloy surface. Journal of Power Sources, 2019, 417, 76-82.	4.0	14
151	Metalâ€Organic Frameworks for Hydrogen Energy Applications: Advances and Challenges. ChemPhysChem, 2019, 20, 1177-1215.	1.0	56

#	Article	IF	Citations
152	Methanation of CO2 over nanostructured nickel-4f block element bimetallic oxides. International Journal of Hydrogen Energy, 2019, 44, 6505-6513.	3.8	27
153	Synthesis and functionalization of graphite oxide: structural, morphological and thermal properties for hydrogen storage. Journal of Materials Science: Materials in Electronics, 2019, 30, 5044-5051.	1.1	3
154	Review of hydrogen economy in Malaysia and its way forward. International Journal of Hydrogen Energy, 2019, 44, 5661-5675.	3.8	101
155	First-principles rational design of M-doped LiBH4(010) surface for hydrogen release: Role of strain and dopants (M=Na, K, Al, F, or Cl). International Journal of Hydrogen Energy, 2019, 44, 6065-6073.	3.8	7
156	Modifying the hydrogen storage performances of NaBH4 by catalyzing with MgFe2O4 synthesized via hydrothermal method. International Journal of Hydrogen Energy, 2019, 44, 6720-6727.	3.8	18
157	Fuelling the hydrogen economy: Scale-up of an integrated formic acid-to-power system. International Journal of Hydrogen Energy, 2019, 44, 28533-28541.	3.8	78
158	Influence of mechanical milling on the hydrogen absorption properties of TiCrV – based alloys. Journal of Physics: Conference Series, 2019, 1386, 012052.	0.3	2
159	Potential hydrogen storage materials from metal decorated 2D-C ₂ N: an <i>ab initio</i> study. Physical Chemistry Chemical Physics, 2019, 21, 25311-25322.	1.3	53
160	Effect of Hydrogen Doping to MgTiH ₃ Perovskite Type Hydride to Enhance Hydrogen Storage Properties., 2019,,.		1
161	DFT study for the mechanical and electronic properties of Mg3BHx ($x=1,4,7$) compounds for hydrogen storage applications. AIP Conference Proceedings, 2019, , .	0.3	0
162	Building the hydrogen economy through niche experimentation and digitalisation. Journal of Manufacturing Technology Management, 2019, 30, 1179-1195.	3.3	4
163	Defining contribution of micropore size to hydrogen physisorption behaviors: A new approach based on DFT pore volumes. Carbon, 2019, 143, 288-293.	5.4	31
164	Synergic improvement on thermal dehydrogenation of the LaH3-MgH2-KBH4 system. Chemical Physics Letters, 2019, 714, 111-113.	1.2	3
165	Hydrogen storage in MIL-88 series. Journal of Materials Science, 2019, 54, 3994-4010.	1.7	27
166	Structure and electrochemical performances of as-milled LaMg12-type alloy–Ni composites. Journal of Iron and Steel Research International, 2019, 26, 59-68.	1.4	1
167	High-Pressure Hydrogen Adsorption on a Porous Electron-Rich Covalent Organonitridic Framework. ACS Omega, 2019, 4, 444-448.	1.6	12
168	Surface doping of the LaMg3 alloy with nano-cobalt particles for promoting the hydrogenation properties through magnetron sputtering. Applied Surface Science, 2019, 466, 673-678.	3.1	3
169	Structural characterization and electrochemical hydrogen sorption performances of the polycrystalline Ba2Co9O14 nanostructures. Journal of Alloys and Compounds, 2019, 777, 252-258.	2.8	34

#	Article	IF	CITATIONS
170	A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. Renewable and Sustainable Energy Reviews, 2019, 101, 279-294.	8.2	378
171	Hydrogen uptake of manganese oxide-multiwalled carbon nanotube composites. International Journal of Hydrogen Energy, 2019, 44, 325-331.	3.8	23
172	Metal hydride hydrogen storage tank for fuel cell utility vehicles. International Journal of Hydrogen Energy, 2020, 45, 7958-7967.	3.8	84
173	Energy Efficiency in Mobility Systems. , 2020, , .		2
174	Synthesis of low-cost catalyst NiO(111) for CO2 hydrogenation into short-chain carboxylic acids. International Journal of Hydrogen Energy, 2020, 45, 22281-22290.	3.8	11
175	Enhancement of hydrogen storage properties of Ca ₃ CH antiperovskite compound with hydrogen doping. International Journal of Energy Research, 2020, 44, 567-573.	2.2	12
176	Surface modification of the La1.7Mg1.3Ni9 alloy with trace Y2O3 related to the electrochemical hydrogen storage properties. Renewable Energy, 2020, 145, 1572-1577.	4.3	10
177	Crystal structure evolution of complex metal aluminum hydrides upon hydrogen release. Journal of Energy Chemistry, 2020, 42, 133-143.	7.1	20
178	A scientometric review of research in hydrogen storage materials. International Journal of Hydrogen Energy, 2020, 45, 5356-5366.	3.8	72
179	Functionalized graphene materials for hydrogen storage. Journal of Materials Science, 2020, 55, 1865-1903.	1.7	135
180	Thermodynamic optimization of composite insulation system with cold shield for liquid hydrogen zero-boil-off storage. Renewable Energy, 2020, 147, 824-832.	4.3	18
181	Metal–organic framework gels and monoliths. Chemical Science, 2020, 11, 310-323.	3.7	173
182	High pressure phase transitions and physical properties of Li2MgH4; implications for hydrogen storage. International Journal of Hydrogen Energy, 2020, 45, 4720-4730.	3.8	27
183	A landscape of hydride compounds for off-board refilling of transport vehicles. International Journal of Hydrogen Energy, 2020, 45, 2954-2966.	3.8	7
184	Mechanical Synthesis and Hydrogen Storage Characterization of MgVCr and MgVTiCrFe Highâ€Entropy Alloy. Advanced Engineering Materials, 2020, 22, 1901079.	1.6	54
185	Hydrogen energy storage method selection using fuzzy axiomatic design and analytic hierarchy process. International Journal of Hydrogen Energy, 2020, 45, 16227-16238.	3.8	33
186	Preparation, characterization and hydrogen storage studies of carbon nanotubes and their composites: A review. International Journal of Hydrogen Energy, 2020, 45, 4653-4672.	3.8	114
187	An energy-dense, flowable suspension of hollow carbon nanoshell-hosted sulfur as an electroactive material for flow batteries. Journal of Power Sources, 2020, 478, 228750.	4.0	7

#	Article	IF	CITATIONS
188	Influence of Chiral Compounds on the Oxygen Evolution Reaction (OER) in the Water Splitting Process. Molecules, 2020, 25, 3988.	1.7	8
189	Molecular dynamics study on magnesium hydride nanoclusters with machine-learning interatomic potential. Physical Review B, 2020, 102, .	1.1	5
190	A high-efficiency liquid hydrogen storage system cooled by a fuel-cell-driven refrigerator for hydrogen combustion heat recovery. Energy Conversion and Management, 2020, 226, 113496.	4.4	25
191	Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank. Applied Energy, 2020, 278, 115682.	5.1	58
192	Cooperative physisorption and chemisorption of hydrogen on vanadium-decorated benzene. RSC Advances, 2020, 10, 37770-37778.	1.7	11
193	Robust design optimization and stochastic performance analysis of a grid-connected photovoltaic system with battery storage and hydrogen storage. Energy, 2020, 213, 118798.	4.5	56
194	Hydrogen and methane storage in nanoporous materials. , 2020, , 327-350.		4
195	Recent Advances in Noble Metal Catalysts for Hydrogen Production from Ammonia Borane. Catalysts, 2020, 10, 788.	1.6	47
196	Theoretical modelling of porous silicon decorated with metal atoms for hydrogen storage. International Journal of Hydrogen Energy, 2020, 45, 26321-26333.	3.8	14
197	Optimizing the conditions of multi-walled carbon nanotubes surface activation and loading metal nanoparticles for enhanced hydrogen storage. International Journal of Hydrogen Energy, 2020, 45, 23112-23121.	3.8	17
198	Modeling of Hydrogen Storage Utilizing Silsesquioxane Cages: Adsorption and Quasi-Dynamic Simulations of Encapsulation of H2 Molecule into Silsesquioxane Cages. Journal of Physical Chemistry A, 2020, 124, 6344-6351.	1.1	3
199	Theoretical analysis of design of filament wound type 3 composite cylinder for the storage of compressed hydrogen gas. International Journal of Hydrogen Energy, 2020, 45, 25386-25397.	3.8	37
200	A Risk-Averse Hybrid Approach for Optimal Participation of Power-to-Hydrogen Technology-Based Multi-Energy Microgrid in Multi-Energy Markets. Sustainable Cities and Society, 2020, 63, 102421.	5.1	80
201	Development of hydrogen storage reactor using composite of metal hydride materials with ENG. International Journal of Hydrogen Energy, 2020, 45, 27434-27442.	3.8	23
202	Thermodynamic modeling of hydrogen-water system for high-pressure storage and mobility applications. Journal of Natural Gas Science and Engineering, 2020, 81, 103463.	2.1	14
203	Promising functional two-dimensional lamellar metal thiophosphates: synthesis strategies, properties and applications. Materials Horizons, 2020, 7, 3131-3160.	6.4	26
204	Hydrogen Direct Adsorptive Separation: Development Status and Trends. Energy & Samp; Fuels, 2020, 34, 15126-15140.	2.5	12
205	Synthesis, Structural Features, and Hydrogen Adsorption Properties of Three New Flexible Sulfur-Containing Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 6707-6714.	1.4	6

#	Article	IF	CITATIONS
206	Pd Nanoparticles Supported on N- and P-Co-doped Carbon as Catalysts for Reversible Formate-Based Chemical Hydrogen Storage. ACS Applied Nano Materials, 2020, 3, 9209-9217.	2.4	19
207	Highly improved hydrogen storage dynamics of nanocrystalline and amorphous NdMg12-type alloys by mechanical milling. Journal of Iron and Steel Research International, 2020, 27, 1236-1246.	1.4	1
208	Adsorption and dissociation of molecular hydrogen on Na3Al5 and Na5Al5 clusters. Chemical Physics Letters, 2020, 758, 137922.	1.2	3
209	Comprehensive review of integrating fuel cells to other energy systems for enhanced performance and enabling polygeneration. Renewable and Sustainable Energy Reviews, 2020, 128, 109897.	8.2	34
210	Functionalized Graphitic Carbon Nitride Decorated with Palladium: an Efficient Heterogeneous Catalyst for Hydrogenation Reactions Using KHCO ₂ as a Mild and Noncorrosive Source of Hydrogen. ACS Omega, 2020, 5, 12302-12312.	1.6	14
211	Production, activation, and applications of biochar in recent times. Biochar, 2020, 2, 253-285.	6.2	211
212	Activating the Pd-Based catalysts via tailoring reaction interface towards formic acid dehydrogenation. International Journal of Hydrogen Energy, 2020, 45, 17575-17582.	3.8	20
213	Effects of nano-molybdenum coatings on the hydrogen storage properties of La–Mg–Ni based alloys. Renewable Energy, 2020, 157, 1053-1060.	4.3	5
214	Mechanistic Insights into Hydrogen Evolution by Photocatalytic Reforming of Naphthalene. ACS Catalysis, 2020, 10, 7398-7412.	5.5	29
215	Feasibility analysis of utilising underground hydrogen storage facilities in integrated energy system: Case studies in China. Applied Energy, 2020, 269, 115140.	5.1	61
216	Lithium metal hydrides (Li2CaH4 and Li2SrH4) for hydrogen storage; mechanical, electronic and optical properties. International Journal of Hydrogen Energy, 2020, 45, 18782-18788.	3.8	39
217	Secondary Alcohols as Rechargeable Electrofuels: Electrooxidation of Isopropyl Alcohol at Pt Electrodes. ACS Catalysis, 2020, 10, 6831-6842.	5.5	32
218	Thermal characterization of an alkaline electrolysis cell for hydrogen production at atmospheric pressure. Fuel, 2020, 276, 117910.	3.4	27
219	Metal carbonates-induced solution-free dehydrogenation of alkaline earth metal hydrides at room temperature. Journal of Solid State Chemistry, 2020, 289, 121485.	1.4	1
220	Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization. Energies, 2020, 13, 3062.	1.6	279
221	Oxidation of coarse aluminum in pressured water steam for energy applications. International Journal of Energy Research, 2020, 44, 8689-8715.	2.2	12
222	High capacity, low pressure hydrogen storage based on magnesium hydride and thermochemical heat storage: Experimental proof of concept. Applied Energy, 2020, 271, 115226.	5.1	21
223	From coal ashes to solid sorbents for hydrogen storage. Journal of Cleaner Production, 2020, 270, 122355.	4.6	25

#	Article	IF	CITATIONS
224	Enhancing hydrogen storage by metal substitution in MIL-88A metal-organic framework. Adsorption, 2020, 26, 509-519.	1.4	15
225	Two-dimensional hydrogen hydrates: structure and stability. Physical Chemistry Chemical Physics, 2020, 22, 5774-5784.	1.3	8
226	Electron microscope investigation on hydrogen storage materials: A review. International Journal of Hydrogen Energy, 2020, 45, 12048-12070.	3.8	40
227	Thermally rearranged polymer membranes containing highly rigid biphenyl ortho-hydroxyl diamine for hydrogen separation. Journal of Membrane Science, 2020, 604, 118053.	4.1	33
228	What Does It Take to Go Net-Zero-CO2? A Life Cycle Assessment on Long-Term Storage of Intermittent Renewables With Chemical Energy Carriers. Frontiers in Energy Research, 2020, 8, .	1.2	13
229	Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems. Applied Energy, 2020, 274, 115197.	5.1	114
230	Pinecone-Derived Activated Carbons as an Effective Medium for Hydrogen Storage. Energies, 2020, 13, 2237.	1.6	21
231	Complete Dehydrogenation of Hydrazine Borane on Manganese Oxide Nanorod-Supported Ni@Ir Core–Shell Nanoparticles. Inorganic Chemistry, 2020, 59, 9728-9738.	1.9	13
232	Chromium based metal–organic framework MIL-101 decorated palladium nanoparticles for the methanolysis of ammonia-borane. New Journal of Chemistry, 2020, 44, 12435-12439.	1.4	6
233	Carbonâ€based nanocomposites in solidâ€state hydrogen storage technology: An overview. International Journal of Energy Research, 2020, 44, 11044-11058.	2.2	41
234	Ag(0) nanocatalyst stabilized with networks of p(SPA-co-AMPS) for the hydrogen generation process from ethylenediamine bisborane hydrolysis. International Journal of Hydrogen Energy, 2020, 45, 17649-17661.	3.8	18
235	High volume hydrogen evolution from KBH4 hydrolysis with palladium complex catalyst. Renewable Energy, 2020, 161, 257-264.	4.3	23
236	Adsorption and Diffusion of Hydrogen in Carbon Honeycomb. Nanomaterials, 2020, 10, 344.	1.9	11
237	Low-temperature hydrogen release through LiAlH4 and NH4F react in Et2O. International Journal of Hydrogen Energy, 2020, 45, 8774-8782.	3.8	4
238	Challenges towards hydrogen economy in China. International Journal of Hydrogen Energy, 2020, 45, 34326-34345.	3.8	133
239	Compositional dependence of hydrogenation performance of Ti-Zr-Hf-Mo-Nb high-entropy alloys for hydrogen/tritium storage. Journal of Materials Science and Technology, 2020, 55, 116-125.	5.6	66
240	Metal–organic frameworks as a platform for clean energy applications. EnergyChem, 2020, 2, 100027.	10.1	530
241	Electrochemical reforming of methane using SrZr0.5Ce0.4Y0.1O3-δ proton-conductor cell combined with paper-structured catalyst. International Journal of Hydrogen Energy, 2020, 45, 4026-4034.	3.8	8

#	Article	IF	CITATIONS
242	Chemical looping hydrogen storage and production: use of binary ferrite-spinel as oxygen carrier materials. Sustainable Energy and Fuels, 2020, 4, 1665-1673.	2.5	9
243	Palladium nanoparticles encapsulated in carboxylic acid functionalized periodic mesoporous organosilicas as efficient and reusable heterogeneous catalysts for hydrogen generation from ammonia borane. Materials Research Bulletin, 2020, 125, 110786.	2.7	17
244	Enhancement of dehydrogenation properties in LiAlH4 catalysed by BaFe12O19. Journal of Alloys and Compounds, 2020, 835, 155183.	2.8	26
245	Dynamically Operated Fischer-Tropsch Synthesis in PtL-Part 1: System Response on Intermittent Feed. ChemEngineering, 2020, 4, 21.	1.0	9
246	The topology impact on hydrogen storage capacity of Sc-decorated ever-increasing porous graphene. Journal of Molecular Modeling, 2020, 26, 96.	0.8	3
247	Overview on recent developments on hydrogen energy: Production, catalysis, and sustainability., 2020, , 3-32.		5
248	Borophene and Boron Fullerene Materials in Hydrogen Storage: Opportunities and Challenges. ChemSusChem, 2020, 13, 3754-3765.	3.6	62
249	Techno-economics of novel refueling stations based on ammonia-to-hydrogen route and SOFC technology. International Journal of Hydrogen Energy, 2021, 46, 10059-10071.	3.8	38
250	An improved hybrid nanocomposites of rice husk derived graphene (GRHA)/Zeolitic imidazolate framework-8 for hydrogen adsorption. International Journal of Hydrogen Energy, 2021, 46, 24864-24876.	3.8	11
251	Hydrogen storage capacities of alkali and alkaline-earth metal atoms on SiC monolayer: A first-principles study. International Journal of Hydrogen Energy, 2021, 46, 20266-20279.	3.8	39
252	Alkali and transition metal atom-functionalized germanene for hydrogen storage: A DFT investigation. International Journal of Hydrogen Energy, 2021, 46, 20245-20256.	3.8	57
253	Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications. Frontiers of Chemical Science and Engineering, 2021, 15, 18-34.	2.3	25
254	Rhodium(0), Ruthenium(0) and Palladium(0) nanoparticles supported on carbon-coated iron: Magnetically isolable and reusable catalysts for hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2021, 46, 13548-13560.	3.8	37
255	Impact of refueling parameters on storage density of compressed hydrogen storage Tank. International Journal of Hydrogen Energy, 2021, 46, 16685-16692.	3.8	17
256	Structural and thermochemical studies of pyrrolidine borane and piperidine borane by gas electron diffraction and quantum chemical calculations. Structural Chemistry, 2021, 32, 205-213.	1.0	1
257	Degradation of biomass components to prepare porous carbon for exceptional hydrogen storage capacity. International Journal of Hydrogen Energy, 2021, 46, 5418-5426.	3.8	22
258	Hierarchically porous CoP@CNR nanorod derived from metal-organic frameworks as noble-metal-free catalyst for dehydrogenization of ammonia-borane. International Journal of Hydrogen Energy, 2021, 46, 5345-5354.	3.8	9
259	Analyzing the levelized cost of hydrogen in refueling stations with on-site hydrogen production via water electrolysis in the Italian scenario. International Journal of Hydrogen Energy, 2021, 46, 13667-13677.	3.8	103

#	Article	IF	CITATIONS
260	The status of hydrogen technologies in the UK: A multi-disciplinary review. Sustainable Energy Technologies and Assessments, 2021, 43, 100901.	1.7	29
261	Modification of NaAlH4 properties using catalysts for solid-state hydrogen storage: A review. International Journal of Hydrogen Energy, 2021, 46, 766-782.	3.8	67
262	Thermal behavior of lithiumâ€ion battery in microgrid application: Impact and management system. International Journal of Energy Research, 2021, 45, 4967-5005.	2.2	6
263	Understanding the Deactivation Pathways of Iridium(III) Pyridineâ€Carboxiamide Catalysts for Formic Acid Dehydrogenation. Chemistry - A European Journal, 2021, 27, 2050-2064.	1.7	16
264	Review on effective parameters in electrochemical hydrogen storage. International Journal of Hydrogen Energy, 2021, 46, 783-795.	3.8	54
265	Forecasting hydrogen production potential in islamabad from solar energy using water electrolysis. International Journal of Hydrogen Energy, 2021, 46, 1671-1681.	3.8	43
266	Cost-effective mechanochemical synthesis of highly dispersed supported transition metal catalysts for hydrogen storage. Nano Energy, 2021, 80, 105535.	8.2	85
267	Using OBR for pressure monitoring and BVID detection in type IV composite overwrapped pressure vessels. Journal of Composite Materials, 2021, 55, 423-436.	1.2	11
268	Technical and Theoretical Analysis of the Future Energy Network Modernization from Various Aspects. Power Systems, 2021, , 61-116.	0.3	0
269	A Theoretical Review of Rotating Detonation Engines. , 0, , .		2
270	Reduction and oxidation kinetics of NiWO ₄ as an oxygen carrier for hydrogen storage by a chemical looping process. RSC Advances, 2021, 11, 29453-29465.	1.7	5
271	Effect of monovacancy on stability and hydrogen storage property of Sc/Ti/V-decorated graphene. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 218802.	0.2	1
272	The effects of addition of carbon dioxide and water vapor on the dynamic behavior of spherically expanding hydrogen/air premixed flames. Journal of Thermal Science and Technology, 2021, 16, JTST0026-JTST0026.	0.6	7
273	Production of Low-Cost TiNbFe Alloys from the Elemental Powders of NbFe Pre-Alloy and Their Hydrogenation Features. Materials Transactions, 2021, 62, 27-33.	0.4	0
274	Investigations on Ethanol as the Raw Material for Hydrogen Production, Storage, and Applications. Lecture Notes in Mechanical Engineering, 2021, , 317-326.	0.3	0
275	Current and Future Perspectives on Hydrogen and Fuelcells for Its Potential Application in Portable; Stationary and Transportation Sectors., 2021,,.		1
276	Biopolymer-based (nano)materials for hydrogen storage. , 2021, , 673-701.		0
277	Absorption and desorption of hydrogen in Ti _{1.02} Cr _{1.1} Mn _{0.3} Fe _{0.6} RE _{0.03} : experiments, characterization and analytical interpretation using statistical physics treatment. RSC Advances, 2021, 11. 15905-15920.	1.7	5

#	Article	IF	CITATIONS
278	Preparation methods of hydrogen storage materials and nanomaterials., 2021,, 1-16.		0
279	Dynamically Stable Active Sites from Surface Evolution of Perovskite Materials during the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2021, 143, 2741-2750.	6.6	156
280	High-Pressure Torsion of Non-Equilibrium Hydrogen Storage Materials: A Review. Energies, 2021, 14, 819.	1.6	19
281	In Silico Screening of Zeolites for High-Pressure Hydrogen Drying. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8383-8394.	4.0	7
282	Recent Advances in Applications of Co-B Catalysts in NaBH4-Based Portable Hydrogen Generators. Catalysts, 2021, 11, 268.	1.6	24
283	A review on potential of biohydrogen generation through waste decomposition technologies. Biomass Conversion and Biorefinery, 2023, 13, 8549-8574.	2.9	14
284	Selective electrooxidation of 2-propanol on Pt nanoparticles supported on Co ₃ O ₄ : an in-situ study on atomically defined model systems. Journal Physics D: Applied Physics, 2021, 54, 164002.	1.3	11
285	Recent advances in catalyst-enhanced LiAlH4 for solid-state hydrogen storage: A review. International Journal of Hydrogen Energy, 2021, 46, 9123-9141.	3.8	68
286	Efficient Thermal Processes Using Alternating Electromagnetic Field for Methodical and Selective Release of Hydrogen Isotopes. Energy & Energy & Selective Release of Hydrogen Isotopes. Energy & Selective Release of Hydrogen Isotopes.	2.5	8
287	DFT based first principles study of novel combinations of perovskite-type hydrides XGaH3 (X = Rb, Cs,) Tj ETQq1	1 0.78431 0.6	4 rgBT /Ove
288	A Review of High Density Solid Hydrogen Storage Materials by Pyrolysis for Promising Mobile Applications. Industrial & Engineering Chemistry Research, 2021, 60, 2737-2771.	1.8	52
290	A first principle study of hydrogen storage in titanium-doped small carbon clusters (C2nTin, n = 2–6). Structural Chemistry, 2021, 32, 1673-1683.	1.0	8
291	Superior Hydrogen Sorption Kinetics of Ti0.20Zr0.20Hf0.20Nb0.40 High-Entropy Alloy. Metals, 2021, 11, 470.	1.0	11
292	Exploring the capability of mayenite (12CaO·7Al2O3) as hydrogen storage material. Scientific Reports, 2021, 11, 6278.	1.6	4
293	Fuel Cell Fractional-Order Model via Electrochemical Impedance Spectroscopy. Fractal and Fractional, 2021, 5, 21.	1.6	7
294	A hybrid robustâ€stochastic approach for optimal scheduling ofÂinterconnected hydrogenâ€based energy hubs. IET Smart Grid, 2021, 4, 241-254.	1.5	18
295	Ultrasonic-assisted synthesis of NiCo2O4/TiO2 ceramic as an efficient and novel hydrogen storage material. Journal of the Iranian Chemical Society, 2021, 18, 2613-2623.	1.2	2
296	Sensing advancement towards safety assessment of hydrogen fuel cell vehicles. Journal of Power Sources, 2021, 489, 229450.	4.0	80

#	Article	IF	CITATIONS
297	The Deltah Lab, a New Multidisciplinary European Facility to Support the H2 Distribution & Storage Economy. Applied Sciences (Switzerland), 2021, 11, 3272.	1.3	3
298	Hydrogen adsorption properties of carbide-derived carbons at ambient temperature and high pressure. International Journal of Hydrogen Energy, 2021, 46, 15761-15772.	3.8	14
299	Large-scale compressed hydrogen storage as part of renewable electricity storage systems. International Journal of Hydrogen Energy, 2021, 46, 15671-15690.	3.8	200
300	Hydrogen adsorption on Ge52â^', Ge92â^' and Sn92â^' Zintl clusters: A DFT study. Computational and Theoretical Chemistry, 2021, 1199, 113191.	1.1	10
301	Exploring the world of metal nitrides as hydrogen storage materials: a DFT study. Chemical Papers, 2021, 75, 4831.	1.0	3
302	Hydrogenated graphene: Important material properties regarding its application for hydrogen storage. Journal of Power Sources, 2021, 494, 229734.	4.0	25
303	Facile synthesis of a Ni3S2@C composite using cation exchange resin as an efficient catalyst to improve the kinetic properties of MgH2. Journal of Magnesium and Alloys, 2022, 10, 3628-3640.	5.5	25
304	Enhancement of heat and mass transfer characteristics of metal hydride reactor for hydrogen storage using various nanofluids. International Journal of Hydrogen Energy, 2021, 46, 19486-19497.	3.8	24
305	Strategy of thermodynamic and kinetic improvements for Mg hydride nanostructured by immiscible transition metals. Journal of Power Sources, 2021, 494, 229742.	4.0	17
306	Synergistic effects of La2Mg17/Ni/H system on hydrogen storage. Materials Letters, 2021, 291, 129548.	1.3	12
307	Sorption of molecular hydrogen on the graphene-like matrix doped by N- and B-atoms. Himia, Fizika Ta Tehnologia Poverhni, 2021, 12, 112-123.	0.2	0
308	Ground simulation of fuel cell/battery hybrid propulsion system for small unmanned air vehicles. Aircraft Engineering and Aerospace Technology, 2021, 93, 783-793.	0.7	0
309	Dynamical stabilization and H-vacancy diffusion kinetics of lightweight complex hydrides: Ab initio study for hydrogen storage improvement. International Journal of Hydrogen Energy, 2021, 46, 22591-22598.	3.8	11
310	Application of Electrochemical Impedance Spectroscopy for prediction of Fuel Cell degradation by LSTM neural networks., 2021,,.		8
311	C7N6 monolayer as high capacity and reversible hydrogen storage media: A DFT study. International Journal of Hydrogen Energy, 2021, 46, 21994-22003.	3.8	62
312	Thermal Efficiency and Economics of a Boil-Off Hydrogen Re-Liquefaction System Considering the Energy Efficiency Design Index for Liquid Hydrogen Carriers. Energies, 2021, 14, 4566.	1.6	9
313	AlH3 as a hydrogen storage material: recent advances, prospects and challenges. Rare Metals, 2021, 40, 3337-3356.	3.6	40
314	Adsorption-Based Hydrogen Storage in Activated Carbons and Model Carbon Structures. Reactions, 2021, 2, 209-226.	0.9	22

#	Article	IF	CITATIONS
315	Power Quality in Renewable Energy Microgrids Applications with Energy Storage Technologies: Issues, Challenges and Mitigations. , 0 , , .		1
316	Preparing ultra-stable Ru nanocatalysts supported on partially graphitized biochar via carbothermal reduction for hydrogen storage of N-ethylcarbazole. International Journal of Hydrogen Energy, 2021, 46, 25543-25554.	3.8	14
317	Electrochemical activation of Ru catalyst with alkaline ion conductors for the catalytic decomposition of ammonia. Molecular Catalysis, 2021, 511, 111721.	1.0	11
318	Hydrogen supply chain and challenges in large-scale LH2 storage and transportation. International Journal of Hydrogen Energy, 2021, 46, 24149-24168.	3.8	158
319	Study of the Hydrogen Storage Properties and Catalytic Mechanism of a MgH ₂ â€"Na ₃ AlH ₆ System Incorporating FeCl ₃ . ACS Omega, 2021, 6, 18948-18956.	1.6	8
320	Zeolite addition to improve biohydrogen production from dark fermentation of C5/C6-sugars and Sargassum sp. biomass. Scientific Reports, 2021, 11, 16350.	1.6	14
321	Review of Energy Storage and Energy Management System Control Strategies in Microgrids. Energies, 2021, 14, 4929.	1.6	56
322	Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies. Energies, 2021, 14, 4897.	1.6	22
323	The Hydrogenâ€Storage Challenge: Nanoparticles for Metalâ€Catalyzed Ammonia Borane Dehydrogenation. Small, 2021, 17, e2102759.	5.2	60
324	Including Heat Balance When Designing the Energy System of Fuel Cell-Powered AUVs. Energies, 2021, 14, 4920.	1.6	0
325	Computational insights of alkali metal (Li / Na / K) atom decorated buckled bismuthene for hydrogen storage. International Journal of Hydrogen Energy, 2021, 46, 28700-28708.	3.8	16
326	Hydrogen storage on Li-decorated B ₄ N: a first-principle calculation insight. Journal Physics D: Applied Physics, 2021, 54, 445501.	1.3	15
327	Hydrogen Economy and Role of Hythane as a Bridging Solution: A Perspective Review. Energy & Energy & Fuels, 2021, 35, 15424-15454.	2.5	33
328	Carbon deposition mechanism and structural changes for zeolite-templated carbons. Microporous and Mesoporous Materials, 2021, 324, 111311.	2.2	14
329	Li-decorated B2O as potential candidates for hydrogen storage: A DFT simulations study. International Journal of Hydrogen Energy, 2021, 46, 33486-33495.	3.8	35
330	Sustainable hydrogen roadmap: A holistic review and decision-making methodology for production, utilisation and exportation using Qatar as a case study. International Journal of Hydrogen Energy, 2021, 46, 35525-35549.	3.8	60
331	Review of hydrogen safety during storage, transmission, and applications processes. Journal of Loss Prevention in the Process Industries, 2021, 72, 104569.	1.7	153
332	An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials. International Journal of Hydrogen Energy, 2021, 46, 31674-31698.	3.8	74

#	Article	IF	CITATIONS
333	Techno-economic assessment of alternative marine fuels for inland shipping in Croatia. Renewable and Sustainable Energy Reviews, 2021, 148, 111363.	8.2	61
334	The storage performance of metal hydride hydrogen storage tanks with reaction heat recovery by phase change materials. Applied Energy, 2021, 299, 117255.	5.1	30
335	Review on the utilisation of sensing materials for intrinsic optical NH3 gas sensors. Synthetic Metals, 2021, 280, 116860.	2.1	14
336	Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany. Renewable Energy, 2021, 177, 915-931.	4.3	137
337	Numerical and experimental analysis of jet release and jet flame length for qualitative risk analysis at hydrogen refueling station. Chemical Engineering Research and Design, 2021, 155, 145-154.	2.7	41
338	An efficient process for sustainable and scalable hydrogen production from green ammonia. Renewable and Sustainable Energy Reviews, 2021, 152, 111562.	8.2	38
339	Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials. Renewable Energy, 2021, 180, 734-743.	4.3	33
340	Hydrogenation of N-ethylcarbazole over Ni-Ru alloy nanoparticles loaded on graphitized carbon prepared by carbothermal reduction. Fuel, 2022, 307, 121921.	3.4	19
341	The impacts of nitrogen doping on the electrochemical hydrogen storage in a carbon. International Journal of Energy Research, 2021, 45, 9326-9339.	2.2	20
342	Large-scale biogas upgrading plants: future prospective and technical challenges. , 2021, , 467-491.		1
343	Economic analysis of energy storage systems in multicarrier microgrids., 2021,, 173-190.		3
344	Photocatalytic H2 Production from Naphthalene by Various TiO2 Photocatalysts: Impact of Pt Loading and Formation of Intermediates. Catalysts, 2021, 11, 107.	1.6	19
345	Peculiarities of high-pressure hydrogen adsorption on Pt catalyzed Cu-BTC metal–organic framework. Physical Chemistry Chemical Physics, 2021, 23, 4277-4286.	1.3	5
346	Polymer-based nanomaterials to use in hydrogen acquisition and hydrogen energy storage. , 2021, , 153-186.		3
347	Plasma-Catalytic Decomposition of Ammonia for Hydrogen Energy. Springer Series on Atomic, Optical, and Plasma Physics, 2019, , 181-230.	0.1	1
348	Recent advances in nanomaterial-based solid-state hydrogen storage. Materials Today Advances, 2020, 6, 100022.	2.5	123
349	In Situ X-ray Diffraction Studies on the De/rehydrogenation Processes of the K ₂ [Zn(NH ₂) ₄]-8LiH System. Journal of Physical Chemistry C, 2017, 121, 1546-1551.	1.5	10
350	Biochar Production, Activation and Application as a Promising Catalyst. RSC Green Chemistry, 2018, , 340-366.	0.0	3

#	Article	IF	CITATIONS
351	Hydrogen Storage Using Liquid Organic Carriers. Russian Journal of Applied Chemistry, 2020, 93, 1815-1830.	0.1	28
352	Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption on Porous Adsorbents. Chemistry and Chemical Technology, 2019, 13, 129-135.	0.2	13
353	Hydrogen storage kinetics of nanocrystalline and amorphous NdMg12-type alloy–Ni composites synthesized by mechanical milling. International Journal of Materials Research, 2016, 107, 605-614.	0.1	3
354	Comparing of Hydrogen On-Board Storage by the Largest Car Companies, Relevance to Prospects for More Efficient Technologies. Open Journal of Energy Efficiency, 2017, 06, 73-79.	0.6	7
355	Future Perspective on Hydrogen and Fuel Cells. , 2021, , .		0
356	Improved H-Storage Performance of Novel Mg-Based Nanocomposites Prepared by High-Energy Ball Milling: A Review. Energies, 2021, 14, 6400.	1.6	19
357	In-situ nitrogen and Cr2O3 co-doped MOF-derived porous carbon supported palladium nanoparticles: A highly effective catalyst towards formic acid dehydrogenation. International Journal of Hydrogen Energy, 2021, 46, 39768-39777.	3.8	11
358	Design and Electrochemical Study of Three-Dimensional Expanded Graphite and Reduced Graphene Oxide Nanocomposites Decorated with Pd Nanoparticles for Hydrogen Storage. Journal of Physical Chemistry C, 2021, 125, 22970-22981.	1.5	8
359	Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. International Journal of Hydrogen Energy, 2021, 46, 38612-38635.	3.8	278
360	Graphene 3D Architectures., 2016,, 495-588.		0
361	Alternative energy sources for mobile systems. , 2018, , 59-61.	0.2	0
362	Self-Assembled Sr3Al2O6-CuPc Nanocomposites: A Potential Electrochemical Hydrogen Storage Material. International Journal of Materials Science and Engineering, 2018, 6, 10-17.	0.1	2
363	Influence of atoms of nitrogen and boron atoms inserted into graphene-like matrix on molecular hydrogen adsorption. Surface, 2018, 10(25), 19-36.	0.4	0
364	Hydrogen Fuel Cell in Vehicle Propulsion: Performance, Efficiency, and Challenge. , 2020, , 9-26.		0
365	Recent Studies of Fuels Used in Wankel Rotary Engines. Journal of Energy Resources Technology, Transactions of the ASME, 2021, 143, .	1.4	8
366	Technical-economic and socio-political assessment of hydrogen production from solar energy. Journal of Energy Storage, 2021, 44, 103448.	3.9	28
367	Solid-State Hydrogen Storage Materials. SpringerBriefs in Applied Sciences and Technology, 2020, , 41-67.	0.2	0
368	Methane and Hydrogen Storage in Metal Organic Frameworks: A Mini Review. Journal of Environmental & Earth Sciences, 2020, 2, .	0.4	1

#	Article	IF	CITATIONS
369	Thermal management of metal hydride hydrogen storage using phase change materials for standalone solar hydrogen systems: An energy/exergy investigation. International Journal of Hydrogen Energy, 2022, 47, 1735-1751.	3.8	29
370	Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chemical Reviews, 2022, 122, 385-441.	23.0	223
371	Structural and hydrogen storage characterization of nanocrystalline magnesium synthesized by ECAP and catalyzed by different nanotube additives. Reviews on Advanced Materials Science, 2021, 60, 884-893.	1.4	3
372	Review on the production and utilization of green ammonia as an alternate fuel in dual-fuel compression ignition engines. Energy Conversion and Management, 2022, 251, 114990.	4.4	153
373	Biochar and its twin benefits: Crop residue management and climate change mitigation in India. Renewable and Sustainable Energy Reviews, 2022, 156, 111959.	8.2	41
374	Applying design principles to improve hydrogen storage capacity in nanoporous materials. Brazilian Journal of Chemical Engineering, 2022, 39, 919-931.	0.7	3
375	Boosting the H2 Production Efficiency via Photocatalytic Organic Reforming: The Role of Additional Hole Scavenging System. Catalysts, 2021, 11, 1423.	1.6	16
376	Ti atom doped single vacancy silicene for hydrogen energy storage: <scp>DFT</scp> study. Journal of the Chinese Chemical Society, 2021, 68, 2243-2253.	0.8	10
377	An Electrochemical Ethylamine/Acetonitrile Redox Method for Ambient Hydrogen Storage. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55292-55298.	4.0	8
378	Hydrogen-Based Energy Storage Systems for Large-Scale Data Center Applications. Sustainability, 2021, 13, 12654.	1.6	2
379	Ultrasound-excited hydrogen radical from NiFe layered double hydroxide for preparation of ultrafine supported Ru nanocatalysts in hydrogen storage of N-ethylcarbazole. Ultrasonics Sonochemistry, 2021, 81, 105840.	3.8	16
380	Power-to-hydrogen pathway in the transport sector: How to assure the economic sustainability of solar powered refueling stations. Energy Conversion and Management, 2022, 252, 115067.	4.4	14
381	Application of fuel cells with zero-carbon fuels in short-sea shipping. Applied Energy, 2022, 309, 118463.	5.1	56
382	Synthesis and characterization of carbon sphere-supported sand-rose like N-GQDs/NiCo2S4 structures with synergetic effect for development of hydrogen storage capacity. Fuel, 2022, 312, 122956.	3.4	13
383	Recent progress on enhancing the hydrogen storage properties of Mg-based materials via fabricating nanostructures: A critical review. Journal of Alloys and Compounds, 2022, 897, 163137.	2.8	38
384	Catalyst development for viability of electrochemical hydrogen purifier and compressor (EHPC) technology. International Journal of Hydrogen Energy, 2022, 47, 19619-19632.	3.8	4
385	The curious saga of dehydrogenation/hydrogenation for chemical hydrogen storage: a mechanistic perspective. Chemical Communications, 2022, 58, 1672-1684.	2.2	7
386	Hydrogen Energy Demand Growth Prediction and Assessment (2021–2050) Using a System Thinking and System Dynamics Approach. Applied Sciences (Switzerland), 2022, 12, 781.	1.3	52

#	Article	IF	Citations
387	An Overview of the Recent Advances of Additive-Improved Mg(BH4)2 for Solid-State Hydrogen Storage Material. Energies, 2022, 15, 862.	1.6	13
388	Catalyzed LiBH ₄ Hydrogen Storage System with <i>In Situ</i> Introduced Li ₃ BO ₃ and V for Enhanced Dehydrogenation and Hydrogenation Kinetics as Well as High Cycling Stability. ACS Applied Energy Materials, 2022, 5, 1226-1234.	2.5	6
389	Tin carbide monolayers decorated with alkali metal atoms for hydrogen storage. International Journal of Hydrogen Energy, 2022, 47, 41329-41335.	3.8	13
390	Application of pincer metal complexes in catalytic transformations. , 2022, , 1-68.		0
391	A review of storage mechanisms for Hydrogen Economy. , 2022, , .		1
392	Electrofuels as emerging new green alternative fuel: A review of recent literature. Energy Conversion and Management, 2022, 254, 115213.	4.4	23
393	A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation. Membranes, 2022, 12, 173.	1.4	113
394	Development of cobalt catalyst supported on MgO–Ln2O3 (Ln = La, Nd, Eu) mixed oxide systems for ammonia synthesis. International Journal of Hydrogen Energy, 2022, 47, 6666-6678.	3.8	16
395	Quantum states of a confined hydrogen atom calculated in a basis of explicitly correlated Gaussians. Chemical Physics Letters, 2022, 790, 139358.	1.2	1
396	Optimisation-based system designs for deep offshore wind farms including power to gas technologies. Applied Energy, 2022, 310, 118540.	5.1	12
397	The characteristics of flame propagation in hydrogen/oxygen mixtures. International Journal of Hydrogen Energy, 2022, 47, 10069-10082.	3.8	10
398	in-situ formed Pt nano-clusters serving as destabilization-catalysis bi-functional additive for MgH2. Chemical Engineering Journal, 2022, 435, 135050.	6.6	31
399	Challenges and doubts of electrochemical energy conversion and storage. Hemijska Industrija, 2022, 76, 43-54.	0.3	0
400	Magnetically recyclable Co ₂ P nanosheets as highly efficient catalysts for hydrogen generation from hydrolysis of sodium borohydride. New Journal of Chemistry, 2022, 46, 8256-8262.	1.4	4
401	N-doped graphitized carbon supported Co@Ru core–shell bimetallic catalyst for hydrogen storage of <i>N</i> -ethylcarbazole. Catalysis Science and Technology, 2022, 12, 2829-2836.	2.1	5
402	Experimental analysis on micro diffusion flames formed by oxygen combustion of H ₂ -CO ₂ mixture using counterflow burners. Journal of Thermal Science and Technology, 2022, 17, 22-00012-22-00012.	0.6	2
403	Revealing the true origin of size-dependent Pd/C catalytic behavior towards formic acid decomposition. Chinese Chemical Letters, 2023, 34, 107221.	4.8	3
404	Research progress of TiFe-based hydrogen storage alloys. Journal of Iron and Steel Research International, 2022, 29, 537-551.	1.4	21

#	Article	IF	CITATIONS
405	Ce-Doped TiZrCrMn Alloys for Enhanced Hydrogen Storage. Energy & E	2.5	10
406	Hydrogen storage based micro-grid: A comprehensive review on technology, energy management and planning techniques. International Journal of Green Energy, 2023, 20, 445-463.	2.1	18
407	Superior Dehydrogenation Performance of î±â€AlH ₃ Catalyzed by Li ₃ N: Realizing 8.0Âwt.% Capacity at 100 °C. Small, 2022, 18, e2107983.	5 . 2	6
408	<scp>Transitionâ€metalâ€based</scp> pentalene complexes as hydrogen storage materials—a theoretical view. International Journal of Energy Research, 0, , .	2.2	1
409	Effect of hydrogen ion dose and sample temperature on hydrogenation of Mg oxides using microwave excited hydrogen plasma. Japanese Journal of Applied Physics, 0 , , .	0.8	0
410	Efficient and Long-term Photoelectrochemical Hydrogen Liberation from Hydrazine Hydrate on CdS Nanorod Arrays. Journal of Electronic Materials, 0, , 1.	1.0	2
411	Graphene based electrodes for hydrogen fuel cells: A comprehensive review. International Journal of Hydrogen Energy, 2022, 47, 41848-41877.	3.8	12
412	Trendbericht Technische Chemie 2022. Nachrichten Aus Der Chemie, 2022, 70, 56-64.	0.0	2
413	How can renewable hydrogen compete with diesel in public transport? Robust design optimization of a hydrogen refueling station under techno-economic and environmental uncertainty. Applied Energy, 2022, 312, 118694.	5.1	17
414	Understanding the importance of Nâ^'doping for CNT-supported Ni catalysts for CO2 methanation. Carbon, 2022, 195, 35-43.	5.4	15
415	Hydrogen sorption behaviour of Mg-5wt.%La alloys after the initial hydrogen absorption process. International Journal of Hydrogen Energy, 2022, 47, 16132-16143.	3.8	7
416	Carbonâ€Based Sorbents for Hydrogen Storage: Challenges and Sustainability at Operating Conditions for Renewable Energy. ChemSusChem, 2022, 15, .	3.6	29
417	Recent Advances on Mg–Li–Al Systems for Solid-State Hydrogen Storage: A Review. Frontiers in Energy Research, 2022, 10, .	1.2	13
418	Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies. Energy Conversion and Management, 2022, 258, 115499.	4.4	87
419	Manganese oxide octahedral molecular sieves stabilized Rh nanoparticles for the hydrogen production from the ethylenediamine-bisborane hydrolysis. International Journal of Hydrogen Energy, 2022, 47, 16494-16506.	3.8	6
420	Rapid dehydrogenation of metallic materials under external electric field. Materials Today Communications, 2022, 31, 103350.	0.9	0
421	Study on high hydrogen yield for large-scale hydrogen fuel storage and transportation based on liquid organic hydrogen carrier reactor. Fuel, 2022, 321, 124095.	3.4	12
422	Beyond powders: Monoliths on the basis of metal-organic frameworks (MOFs). Chemical Engineering Journal, 2022, 441, 135953.	6.6	25

#	ARTICLE	IF	CITATIONS
423	Enhanced Hydrogen Generation Performance of Al-Rich Alloys by a Melting-Mechanical Crushing-Ball Milling Method. Materials, 2021, 14, 7889.	1.3	15
424	Nickel as a Promising Electrocatalytic Material for Electrooxidation of Hydrogen and Borohydride: State-of-the-Art and Future Challenges. Kinetics and Catalysis, 2022, 63, 12-26.	0.3	2
425	Graph- <i>Q</i> ⟩⟨ <i>C</i> , a Graph-Based Quantum/Classical Algorithm for Efficient Electronic Structure on Hybrid Quantum/Classical Hardware Systems: Improved Quantum Circuit Depth Performance. Journal of Chemical Theory and Computation, 2022, 18, 2885-2899.	2.3	11
426	The binding of atomic hydrogen on graphene from density functional theory and diffusion Monte Carlo calculations. Journal of Chemical Physics, 2022, 156, 144702.	1.2	3
429	Thermodynamic Analysis for a Novel Chemical Precooling Turbojet Engine Based on a Multi-Stage Precooling-Compression Cycle. SSRN Electronic Journal, 0, , .	0.4	0
430	Grid Integration Challenges and Solution Strategies for Solar PV Systems: A Review. IEEE Access, 2022, 10, 52233-52257.	2.6	96
431	MgH ₂ /single-atom heterojunctions: effective hydrogen storage materials with facile dehydrogenation. Journal of Materials Chemistry A, 2022, 10, 19839-19851.	5.2	23
432	Insights on Hydrogen Production by Thermochemical and Biological Techniques. Advances in Science, Technology and Innovation, 2022, , 321-331.	0.2	1
433	Heteroatom-Doped Graphenes as Actively Interacting 2D Encapsulation Media for Mg-Based Hydrogen Storage. ACS Applied Materials & Storage. ACS	4.0	19
434	Decarbonizing Vehicle Transportation with Hydrogen from Biomass Gasification: An Assessment in the Nigerian Urban Environment. Energies, 2022, 15, 3200.	1.6	3
435	Superior anti-impurity gas poisoning ability and hydrogen storage properties of Ti–Cr alloy by introducing zirconium as additive. International Journal of Hydrogen Energy, 2022, 47, 18772-18785.	3.8	4
436	A composite coating based on metal–organic framework MIL-101(Cr) synthesised by L-malic acid as mineralising agent for thermal management. Advanced Composites and Hybrid Materials, 2022, 5, 2896-2905.	9.9	15
437	Self-combustion Ni and Co-based perovskites as catalyst precursors for ammonia decomposition. Effect of Ce and Mg doping. Fuel, 2022, 323, 124384.	3.4	19
438	Performance improvement of metal hydride hydrogen storage tanks by using phase change materials. Applied Energy, 2022, 320, 119290.	5.1	13
439	Recent development of heat and power generation using renewable fuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 2022, 165, 112578.	8.2	17
440	Balancing CO chemisorption with hydrogen electrochemical adsorption on Pt alloy catalyst for improving direct CO reduction to formaldehyde. Chemical Engineering Journal, 2022, 446, 137131.	6.6	0
441	Powering Aquaculture Operations at Sea: Can Hydrogen Be a Sustainable Solution?. SSRN Electronic Journal, 0, , .	0.4	2
442	Strategies for the Improvement of Hydrogen Physisorption in Metal-Organic Frameworks and Advantages of Flexibility for the Enhancement. Journal of Molecular and Engineering Materials, 2022, 10, .	0.9	2

#	Article	IF	CITATIONS
443	Manipulating Coordination Structures of Mixed-Valence Copper Single Atoms on 1T-MoS ₂ for Efficient Hydrogen Evolution. ACS Catalysis, 2022, 12, 7687-7695.	5.5	26
444	The power of multifunctional metal hydrides: A key enabler beyond hydrogen storage. Journal of Alloys and Compounds, 2022, 920, 165936.	2.8	14
445	Non-classical hydrogen storage mechanisms other than chemisorption and physisorption. Applied Physics Reviews, 2022, 9, .	5.5	16
446	Efficient Heat Exchange Configuration for Sub-Cooling Cycle of Hydrogen Liquefaction Process. Energies, 2022, 15, 4560.	1.6	8
447	A review on worldwide underground hydrogen storage operating and potential fields. International Journal of Hydrogen Energy, 2022, 47, 22840-22880.	3.8	96
448	Applications of Energy Storage Methods in Smart Grids. , 2022, , .		0
449	Experimental and numerical investigation of change in boil-off gas and thermodynamic characteristics according to filling ratio in a C-type cryogenic liquid fuel tank. Energy, 2022, 255, 124530.	4.5	8
450	Multifunctional materials for photo-electrochemical water splitting. Journal of Materials Chemistry A, 2022, 10, 15906-15931.	5.2	27
451	Structural, electronics, magnetic, optical, mechanical and hydrogen storage properties of <scp>Gaâ€based hydrideâ€perovskites</scp> <i>X</i> <scp> GaH ₃ </scp> (<i>X</i> Â=ÂK, Li). International Journal of Energy Research, 2022, 46, 15617-15626.	2.2	34
452	Hydrogen evolution reaction on VS2-NiS2 hybrid nanostructured electrocatalyst in acidic media: a binder-free electrode. Journal of the Iranian Chemical Society, 0, , .	1.2	2
453	Single-Site Iridium Picolinamide Catalyst Immobilized onto Silica for the Hydrogenation of CO ₂ and the Dehydrogenation of Formic Acid. Inorganic Chemistry, 2022, 61, 10575-10586.	1.9	19
454	Hydrogen in the Portuguese Navy: A case study. International Journal of Hydrogen Energy, 2022, 47, 28684-28698.	3.8	2
455	Chemically modified surface of silicon nanostructures to enhance hydrogen uptake capabilities. International Journal of Hydrogen Energy, 2023, 48, 37819-37833.	3.8	13
456	A comprehensive review of the prospects for future hydrogen storage in materialsâ€application and outstanding issues. International Journal of Energy Research, 2022, 46, 16150-16177.	2.2	29
457	Electrospinning of functional ceramic nanofibers. Open Ceramics, 2022, 11, 100291.	1.0	12
458	Hydrogen storage methods: Review and current status. Renewable and Sustainable Energy Reviews, 2022, 167, 112743.	8.2	223
459	Ammonia Decomposition in the Process Chain for a Renewable Hydrogen Supply. Chemie-Ingenieur-Technik, 2022, 94, 1413-1425.	0.4	22
460	Electricity Consumption Optimization Using Thermal and Battery Energy Storage Systems in Buildings. IEEE Transactions on Smart Grid, 2023, 14, 251-265.	6.2	12

#	Article	IF	CITATIONS
461	Permeation barriers for hydrogen embrittlement prevention in metals – A review on mechanisms, materials suitability and efficiency. International Journal of Hydrogen Energy, 2022, 47, 32707-32731.	3.8	49
462	A new multi-mode fault-tolerant operation control strategy of multiphase stacked interleaved Buck converter for green hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 30359-30370.	3.8	14
463	Structural Analysis of Electrochemical Hydrogen Compressor End-Plates for High-Pressure Applications. Energies, 2022, 15, 5823.	1.6	2
464	Enhanced carbon dioxide biomethanation with hydrogen using anaerobic granular sludge and metal–organic frameworks: Microbial community response and energy metabolism analysis. Bioresource Technology, 2022, 362, 127822.	4.8	6
465	Geometric improvement of hydrolysis reactor structure to enhance the sustainable production of hydrogen from MgH2. International Journal of Hydrogen Energy, 2022, 47, 32990-32999.	3.8	3
466	Hydrogen economy in India: A status review. Wiley Interdisciplinary Reviews: Energy and Environment, 2023, 12, .	1.9	9
467	Assessment of thermodynamic performance and CO2 emission reduction for a supersonic precooled turbine engine cycle fueled with a new green fuel of ammonia. Energy, 2022, 261, 125272.	4.5	17
468	A comprehensive review on hydrogen production and utilization in North America: Prospects and challenges. Energy Conversion and Management, 2022, 269, 115927.	4.4	64
469	Research progress of additives in photobiological hydrogen production system to enhance biohydrogen. Bioresource Technology, 2022, 362, 127787.	4.8	7
470	A holistic overview of underground hydrogen storage: Influencing factors, current understanding, and outlook. Fuel, 2022, 330, 125636.	3.4	84
471	A first-order estimation of underground hydrogen storage potential in Indian sedimentary basins. Geological Society Special Publication, 2023, 528, .	0.8	3
472	Current trends in hydrogen production, storage and applications in India: A review. Sustainable Energy Technologies and Assessments, 2022, 53, 102677.	1.7	21
473	Effect of oxygen on the hydrogen storage properties of TiFe alloys. Journal of Energy Storage, 2022, 55, 105543.	3.9	12
474	Computational simulation study on adsorption and separation of CH4/H2 in five higher-valency covalent organic frameworks. Materials Today Communications, 2022, 33, 104374.	0.9	3
475	Recent progress in Pt-based electrocatalysts for ammonia oxidation reaction. Applied Materials Today, 2022, 29, 101640.	2.3	11
476	Adoption of triply periodic minimal surface structure for effective metal hydride-based hydrogen storage. Energy, 2023, 262, 125399.	4.5	29
477	Effects of various metal doping on the structure and catalytic activity of CoB catalyst in hydrogen production from NaBH4 hydrolysis. Fuel, 2023, 331, 125733.	3.4	18
478	Thermodynamic analysis for a novel chemical precooling turbojet engine based on a multi-stage precooling-compression cycle. Energy, 2023, 262, 125352.	4. 5	9

#	Article	IF	CITATIONS
479	Visible-light-enhanced hydrogen evolution from catalytic hydrolysis of ammonia borane using Ru nanoparticles supported on CdS-modified graphitic carbon nitride. New Journal of Chemistry, 2022, 46, 19731-19739.	1.4	5
480	Measurement and the improvement of effective thermal conductivity for a metal hydride bed – a review. RSC Advances, 2022, 12, 25722-25743.	1.7	2
481	Transition to Low-Carbon Hydrogen Energy System in the UAE: Sector Efficiency and Hydrogen Energy Production Efficiency Analysis. Energies, 2022, 15, 6663.	1.6	8
482	Investigate of electrochemical hydrogen storage and coulombic efficiency of NiAl2O4/NiO synthesized by cationic, anionic and polymeric surfactants: Green synthesis and characterization. International Journal of Hydrogen Energy, 2022, 47, 34994-35002.	3 . 8	3
483	Mechanism and properties of emerging nanostructured hydrogen storage materials. , 2022, 1, .		11
484	The future of hydrogen energy: Bio-hydrogen production technology. International Journal of Hydrogen Energy, 2022, 47, 33677-33698.	3.8	108
485	Structural characterization, phase analysis and electrochemical hydrogen storage studies on new pyrochlore SmRETi2O7 (RE = Dy, Ho, and Yb) microstructures. Ceramics International, 2023, 49, 253-263.	2.3	55
486	Density Functional Study of Size-Dependent Hydrogen Adsorption on Ag _{<i>n</i>} Cr (<i>n</i> = 1â€"12) Clusters. ACS Omega, 2022, 7, 37379-37387.	1.6	2
487	Silicon nanostructures for solid-state hydrogen storage: A review. International Journal of Hydrogen Energy, 2023, 48, 1401-1439.	3.8	27
488	Challenges to developing materials for the transport and storage of hydrogen. Nature Chemistry, 2022, 14, 1214-1223.	6.6	79
489	Experiment, simulation, optimization design, and damage detection of composite shell of hydrogen storage vessel-A review. Journal of Reinforced Plastics and Composites, 0, , 073168442211327.	1.6	2
490	Strategy to reduce carbon emissions by adopting ammonia–Algal biodiesel in RCCI engine and optimize the fuel concoction using RSM methodology. International Journal of Hydrogen Energy, 2022, 47, 39701-39718.	3.8	12
491	Surface-Modified Carbon Nanotubes for Hydrogen Storage. ACS Symposium Series, 0, , 151-173.	0.5	0
492	Flexible Perfluoropolyethers-Functionalized CNTs-Based UHMWPE Composites: A Study on Hydrogen Evolution, Conductivity and Thermal Stability. Materials, 2022, 15, 6883.	1.3	1
493	Blue and green hydrogen energy to meet European Union decarbonisation objectives. An overview of perspectives and the current state of affairs. International Journal of Hydrogen Energy, 2023, 48, 1304-1322.	3.8	62
494	The mechanism and sorption kinetic analysis of hydrogen storage at room temperature using acid functionalized carbon nanotubes. International Journal of Hydrogen Energy, 2023, 48, 1930-1942.	3.8	21
495	Recent Insights into Low-Surface-Area Catalysts for Hydrogen Production from Ammonia. Energies, 2022, 15, 8143.	1.6	5
496	Photo-thermal synergic enhancement of Co FeAl-LDHs for hydrogen generation from hydrolysis of NaBH4. Applied Surface Science, 2023, 610, 155325.	3.1	10

#	Article	IF	CITATIONS
497	Underground hydrogen storage in Australia: A review on the feasibility of geological sites. International Journal of Hydrogen Energy, 2023, 48, 4300-4328.	3.8	28
498	Achieving both high hydrogen capacity and low decomposition temperature of the metastable AlH3 by proper ball milling with TiB2. International Journal of Hydrogen Energy, 2023, 48, 3541-3551.	3.8	12
499	Performance improvement of adsorptive hydrogen storage on activated carbon: Effects of phase change material and inconstant mass flow rate. Journal of Energy Storage, 2022, 56, 105930.	3.9	8
500	Insights into N dopants during dehydrogenation of formic acid over Pd/N-doped carbon catalysts. Journal of the Energy Institute, 2022, 105, 433-441.	2.7	5
501	The role of storage systems in hydrogen economy: A review. Journal of Natural Gas Science and Engineering, 2022, 108, 104843.	2.1	42
502	A review of hydrogen/rock/brine interaction: Implications for Hydrogen Geo-storage. Progress in Energy and Combustion Science, 2023, 95, 101066.	15.8	65
503	Formate/bicarbonate interconversion for safe hydrogen storage: A review. Renewable and Sustainable Energy Reviews, 2023, 173, 113102.	8.2	11
504	Feasibility of efficiency improvement in a fuel cell system powered by a metal hydride tank., 2022,,.		1
506	Kaolinit kilinin hidrojen depolama amaçlı kullanımı için modifikasyonu ve karakterizasyonu. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2023, 25, 186-202.	0.2	0
507	Geometric Optimization of Hydrolysis Reactors to Enhance MgH ₂ Hydrolysis Performance. Energy & Energ	2.5	4
508	Hydrogen storage using novel graphene-carbon nanotube hybrid. Materials Today: Proceedings, 2023, 76, 406-411.	0.9	3
509	Estimating hydrogen absorption energy on different metal hydrides using Gaussian process regression approach. Scientific Reports, 2022, 12, .	1.6	4
510	Bonding states of hydrogen for supported Ti clusters on pristine and defective graphene. International Journal of Hydrogen Energy, 2023, , .	3.8	1
511	Toward Site-Specific Interactions of <i>n</i> H ₂ (<i>n</i> = 1â€"4) with Ga ₁₂ As ₁₂ Nanostructured for Hydrogen Storage Applications. Energy &	2.5	12
512	Computer-aided design of high-connectivity covalent organic frameworks as CH4/H2 adsorption and separation media. International Journal of Hydrogen Energy, 2023, 48, 12753-12766.	3.8	0
513	Graphene-Based Derivatives Heterostructured Catalytic Systems for Sustainable Hydrogen Energy via Overall Water Splitting. Catalysts, 2023, 13, 109.	1.6	11
514	Pore-scale modelling on hydrogen transport in porous media: Implications for hydrogen storage in saline aquifers. International Journal of Hydrogen Energy, 2023, 48, 13922-13933.	3.8	22
515	Blasingame decline theory for hydrogen storage capacity estimation in shale gas reservoirs. International Journal of Hydrogen Energy, 2023, 48, 13189-13201.	3.8	3

#	Article	IF	CITATIONS
516	Theoretical and experimental research of hydrogen storage properties of Mg and Mg-Al hydrides. Journal of Alloys and Compounds, 2023, 938, 168618.	2.8	2
517	A Computational Study of the Adsorptive Separation of Methane and Hydrogen in Zeolite Templated Carbons. Gazi University Journal of Science Part A:engineering and Innovation, 2022, 9, 545-553.	0.2	O
518	Design and operation of hydrogen supply chains: A review on technology integration and system optimization., 2023,, 115-164.		0
519	Reinforce the dehydrogenation process of LiAlH4 by accumulating porous activated carbon. International Journal of Hydrogen Energy, 2023, 48, 16381-16391.	3.8	5
520	Methanation of CO/CO2 for power to methane process: Fundamentals, status, and perspectives. Journal of Energy Chemistry, 2023, 80, 182-206.	7.1	13
521	Progress on nano-scaled alloys and mixed metal oxides in solid-state hydrogen storage; an overview. Journal of Energy Storage, 2023, 61, 106722.	3.9	22
522	Effect of Ni-Doping on the Hydrogen Storage Properties of Nanoscale MgH2. Russian Journal of Physical Chemistry A, 2022, 96, 3220-3231.	0.1	0
523	The Effect of Severe Plastic Deformation on the Hydrogen Storage Properties of Metal Hydrides. Materials Transactions, 2023, 64, 1387-1400.	0.4	0
524	Deposition of Ultrathin MgB ₂ Films from a Suspension Using Cosolvent Marangoni Flow. Langmuir, 2023, 39, 3853-3861.	1.6	0
525	Integration of the PEMFC with a hydrogen production device adopting sodium borohydride and metal cobalt catalyst. International Journal of Hydrogen Energy, 2024, 52, 905-916.	3.8	0
526	Adaptive maximum power point tracking based on Kalman filter for hydrogen fuel cell in hybrid unmanned aerial vehicle applications. International Journal of Hydrogen Energy, 2023, 48, 25939-25957.	3.8	4
527	Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coordination Chemistry Reviews, 2023, 482, 215058.	9.5	44
528	Thermally constructed stable Zn-doped NiCoOx-z alloy structures on stainless steel mesh for efficient hydrogen production via overall hydrazine splitting in alkaline electrolyte. Journal of Colloid and Interface Science, 2023, 640, 737-749.	5.0	5
529	The study of electrochemical hydrogen storage behavior of the UiO-66 framework on the metal/reduced graphene oxide substrate. Fuel, 2023, 341, 127624.	3.4	6
530	Modification of a commercial activated carbon with nitrogen and boron: Hydrogen storage application. Journal of Energy Storage, 2023, 64, 107193.	3.9	7
531	Energy, Exergy, Economic and Environmental (4E) analysis of integrated direct air capture and CO <mml:math altimg="si96.svg" display="inline" id="d1e968" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow mml:mrow=""></mml:mrow></mml:msub>2</mml:math> methanation under	3.4	7
532	Designing, sizing and economic feasibility of a green hydrogen supply chain for maritime transportation. Energy Conversion and Management, 2023, 278, 116702.	4.4	17
533	ZIF-8 Pellets as a Robust Material for Hydrogen Cryo-Adsorption Tanks. ACS Applied Energy Materials, 2023, 6, 9145-9152.	2.5	3

#	Article	IF	CITATIONS
534	Hydrogen molecule adsorption and sensing on lanthanide (La) doped/decorated carbon nanotube and graphene structures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2023, 41, .	0.9	1
535	Challenges associated with hydrogen storage systems due to the hydrogen embrittlement of high strength steels. International Journal of Hydrogen Energy, 2023, 48, 17894-17913.	3.8	29
536	Recent advancements in hydrogen storage - Comparative review on methods, operating conditions and challenges. International Journal of Hydrogen Energy, 2024, 52, 352-370.	3.8	11
537	Design of a multi-inlet solar thermochemical reactor for steam methane reforming with improved performance. Energy Storage and Saving, 2023, 2, 403-414.	3.0	7
538	Molecular Dynamic Simulation of Ni–Al Alloy–H ₂ O Reactions Using the ReaxFF Reactive Force Field. ACS Omega, 2023, 8, 9807-9814.	1.6	0
539	A systemic review of hydrogen supply chain in energy transition. Frontiers in Energy, 2023, 17, 102-122.	1.2	15
540	A Prompt Decarbonization Pathway for Shipping: Green Hydrogen, Ammonia, and Methanol Production and Utilization in Marine Engines. Atmosphere, 2023, 14, 584.	1.0	36
541	Research on Temperature Rise of Type IV Composite Hydrogen Storage Cylinders in Hydrogen Fast-Filling Process. Energies, 2023, 16, 2918.	1.6	3
542	Hydrogen Dissociation Reaction on First-Row Transition Metal Doped Nanobelts. Materials, 2023, 16, 2792.	1.3	5
543	First-principles quantum computations to investigate prospects of Mg2FeH6 for optoelectronics and hydrogen-storage applications. International Journal of Hydrogen Energy, 2023, 48, 23930-23942.	3.8	4
544	Structures and hydrogen storage properties of AeVH3 (Ae = Be, Mg, Ca, Sr) perovskite hydrides by DFT calculations. International Journal of Hydrogen Energy, 2023, 48, 24401-24411.	3.8	24
545	Co-doped amorphous MoSx for efficient hydrogen evolution reaction in acid condition. Carbon Letters, 2023, 33, 1367-1380.	3.3	1
546	Role of Pore Structure Parameters of Clay and Modified Clay Minerals on Their Hydrogen Adsorption at Low- and High-Pressure Conditions. Energy & Samp; Fuels, 2023, 37, 6757-6769.	2.5	3
547	Hydrogen electrolyser technologies and their modelling for sustainable energy production: A comprehensive review and suggestions. International Journal of Hydrogen Energy, 2023, 48, 27841-27871.	3.8	8
548	Experimental and theoretical studies of natural mineral attapulgite supported iron-based oxygen carriers in chemical looping hydrogen production. Fuel, 2023, 347, 128439.	3.4	2
553	Approach toward economical hydrogen storage. , 2023, , 435-462.		О
558	An Artificial Intelligence-Based Technique to Optimize Hybrid Vehicle Using Renewable Energy Sources. Lecture Notes in Electrical Engineering, 2023, , 81-92.	0.3	0
577	Biochar: a sustainable solution for organic waste management a way forward towards circular economy., 2023,, 215-230.		О

#	Article	IF	CITATIONS
582	Non-noble metal catalysts for preventing chlorine evolution reaction in electrolytic seawater splitting. Sustainable Energy and Fuels, 0 , , .	2.5	0
586	Hydrogen storage and delivery challenges. , 2023, , 237-254.		0
589	A Classification of Existing and Emerging Hydrogen Storage Technologies. , 2023, , .		0
592	Hydrogen storage technology. , 2024, , 165-184.		0
598	Sustainable hydrogen generation and storage – a review. RSC Advances, 2023, 13, 25253-25275.	1.7	5
602	Quantum Algorithms for the Study of Electronic Structure and Molecular Dynamics: Novel Computational Protocols., 2024,, 228-251.		0
614	Hydrogen Storage., 2023,, 565-612.		0
618	Large-scale hydrogen storage using underground hydrogen storage, metal hydride storage, and other emerging technologies., 2024,, 315-391.		0
619	Microalgal liquid, solid, and gaseous biofuels: Cultivation and production strategies for biofuel accumulation., 2024, , 113-144.		0
620	Hydrogen energy storage and transportation challenges. , 2024, , 255-287.		1
629	Photo-enhanced dehydrogenation of formic acid on Pd-based hybrid plasmonic nanostructures. Nanoscale Advances, 2023, 5, 6819-6829.	2.2	1
655	Hydrogen technology and prospective development. , 2024, , 559-585.		O