CITATION REPORT List of articles citing

Computer vision techniques for construction safety and health monitoring

DOI: 10.1016/j.aei.2015.02.001 Advanced Engineering Informatics, 2015, 29, 239-251.

Source: https://exaly.com/paper-pdf/61256474/citation-report.pdf

Version: 2024-04-27

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
288	Action Recognition Using a Wristband-Type Activity Tracker: Case Study of Masonry Work. 2016 ,		7
287	Data-driven scene parsing method for recognizing construction site objects in the whole image. <i>Automation in Construction</i> , 2016 , 71, 271-282	9.6	31
286	Visualization, Information Modeling, and Simulation: Grand Challenges in the Construction Industry. 2016 , 30, 04016035		72
285	Classifying construction site photos for roof detection. 2016 , 16, 368-389		4
284	Vision-based action recognition of construction workers using dense trajectories. <i>Advanced Engineering Informatics</i> , 2016 , 30, 327-336	7.4	72
283	The Role of Information Technologies to Address Data Handling in Construction Project Management. 2016 , 30, 04015064		45
282	Human-centered automation for resilient nuclear power plant outage control. <i>Automation in Construction</i> , 2017 , 82, 179-192	9.6	14
281	Joint Reasoning of Visual and Text Data for Safety Hazard Recognition. 2017,		6
280	Computing in Civil Engineering 2017. 2017 ,		
279	Adaptive Detector and Tracker on Construction Sites Using Functional Integration and Online Learning. 2017 , 31, 04017026		25
278	Semantic Annotation of Videos from Equipment-Intensive Construction Operations by Shot Recognition and Probabilistic Reasoning. 2017 , 31, 04017042		12
277	A Survey of Railyard Worker Protection Approaches and System Design Considerations. 2017,		
276	Simulation-Based Optimization of Surveillance Camera Types, Number, and Placement in Buildings Using BIM. 2017 , 31, 04017055		6
275	Vision-Based Activity Analysis Framework Considering Interactive Operation of Construction Equipment. 2017 ,		1
274	UAV-based automatic generation of high-resolution panorama at a construction site with a focus on preprocessing for image stitching. <i>Automation in Construction</i> , 2017 , 84, 70-80	9.6	50
273	Feasibility of a Drone-Based On-Site Proximity Detection in an Outdoor Construction Site. 2017,		7
272	Development of ergonomic posture recognition technique based on 2D ordinary camera for construction hazard prevention through view-invariant features in 2D skeleton motion. <i>Advanced Engineering Informatics</i> , 2017 , 34, 152-163	7.4	53

271	Robotic sensing and object recognition from thermal-mapped point clouds. 2017 , 1, 243-254		14
270	Visualization technology-based construction safety management: A review. <i>Automation in Construction</i> , 2017 , 73, 135-144	9.6	162
269	Wearable IMU-based real-time motion warning system for construction workers' musculoskeletal disorders prevention. <i>Automation in Construction</i> , 2017 , 74, 2-11	9.6	127
268	Computer vision for assistive technologies. 2017 , 154, 1-15		118
267	Safety Activity Analysis Framework to Evaluate Safety Performance in Construction. <i>Journal of Construction Engineering and Management - ASCE</i> , 2017 , 143, 05016022	4.2	25
266	Computing in Civil Engineering 2017. 2017 ,		2
265	Proximity Warning and Excavator Control System for Prevention of Collision Accidents. <i>Sustainability</i> , 2017 , 9, 1488	3.6	18
264	Construction Workers Activity Detection Using BOF. 2017,		1
263	Transfer learning and deep convolutional neural networks for safety guardrail detection in 2D images. <i>Automation in Construction</i> , 2018 , 89, 58-70	9.6	100
262	Falls from heights: A computer vision-based approach for safety harness detection. <i>Automation in</i>		
202	Construction, 2018 , 91, 53-61	9.6	150
261		9.6	1505
	Construction, 2018 , 91, 53-61	9.6	
261	Construction, 2018, 91, 53-61 Scaling Personalized Safety Training Using Automated Feedback Generation. 2018, Spatiotemporal Network-Based Model for Dynamic Risk Analysis on Struck-by-Equipment Hazard.	9.6	5
261 260	Construction, 2018, 91, 53-61 Scaling Personalized Safety Training Using Automated Feedback Generation. 2018, Spatiotemporal Network-Based Model for Dynamic Risk Analysis on Struck-by-Equipment Hazard. 2018, 32, 04017089 3D reconstruction of a concrete mixer truck for training object detectors. Automation in		5
261 260 259	Scaling Personalized Safety Training Using Automated Feedback Generation. 2018, Spatiotemporal Network-Based Model for Dynamic Risk Analysis on Struck-by-Equipment Hazard. 2018, 32, 04017089 3D reconstruction of a concrete mixer truck for training object detectors. Automation in Construction, 2018, 88, 23-30 A deep learning-based method for detecting non-certified work on construction sites. Advanced	9.6	5 6 22
261 260 259 258	Scaling Personalized Safety Training Using Automated Feedback Generation. 2018, Spatiotemporal Network-Based Model for Dynamic Risk Analysis on Struck-by-Equipment Hazard. 2018, 32, 04017089 3D reconstruction of a concrete mixer truck for training object detectors. Automation in Construction, 2018, 88, 23-30 A deep learning-based method for detecting non-certified work on construction sites. Advanced Engineering Informatics, 2018, 35, 56-68 Wearable technology for personalized construction safety monitoring and trending: Review of	9.6 7.4	5 6 22 73
261 260 259 258 257	Scaling Personalized Safety Training Using Automated Feedback Generation. 2018, Spatiotemporal Network-Based Model for Dynamic Risk Analysis on Struck-by-Equipment Hazard. 2018, 32, 04017089 3D reconstruction of a concrete mixer truck for training object detectors. Automation in Construction, 2018, 88, 23-30 A deep learning-based method for detecting non-certified work on construction sites. Advanced Engineering Informatics, 2018, 35, 56-68 Wearable technology for personalized construction safety monitoring and trending: Review of applicable devices. Automation in Construction, 2018, 85, 96-106 FPSWizard: A web-based CBR-RBR system for supporting the design of active fall protection	9.6 7·4 9.6	5 6 22 73 164

3D Visualization-Based Ergonomic Risk Assessment and Work Modification Framework and Its 253 Validation for a Lifting Task. Journal of Construction Engineering and Management - ASCE, 2018, 144, 040 17093 21 Real-time simulation of construction workers using combined human body and hand tracking for 252 9.6 30 robotic construction worker system. Automation in Construction, 2018, 86, 125-137 New Applications of 3D SLAM on Risk Management Using Unmanned Aerial Vehicles in the 251 1 Construction Industry. 2018, A Comparative Study of Machine Learning Classification for Color-based Safety Vest Detection on 250 15 Construction-Site Images. 2018, 22, 4254-4262 Safety Control of Automatic Excavator for Swing Collision Avoidance. 2018, 249 2 248 . 2018, 2 Computer vision aided inspection on falling prevention measures for steeplejacks in an aerial 9.6 61 247 environment. Automation in Construction, 2018, 93, 148-164 Automated detection of workers and heavy equipment on construction sites: A convolutional 246 7.4 129 neural network approach. Advanced Engineering Informatics, 2018, 37, 139-149 Automating and scaling personalized safety training using eye-tracking data. Automation in 9.6 245 49 Construction, 2018, 93, 63-77 Computer-Aided Optimization of Surveillance Cameras Placement on Construction Sites. 8.4 244 14 Computer-Aided Civil and Infrastructure Engineering, 2018, 33, 1110-1126 Towards efficient and objective work sampling: Recognizing workers' activities in site surveillance 243 9.6 53 videos with two-stream convolutional networks. Automation in Construction, 2018, 94, 360-370 A Supervised Machine Learning-Based Sound Identification for Construction Activity Monitoring 242 and Performance Evaluation. 2018, A Conversation Analysis Framework Using Speech Recognition and Nai ve Bayes Classification for 241 Construction Process Monitoring. 2018, Determination of Particle Size and Distribution through Image-Based Macroscopic Analysis of the 240 17 Structure of Biomass Briquettes. 2018, 11, 331 Convolutional neural networks: Computer vision-based workforce activity assessment in 9.6 76 239 construction. Automation in Construction, 2018, 94, 282-289 Does background really matter? Worker activity recognition in unconstrained construction 238 environment. 2018, Bibliometric Review of Artificial Intelligence (AI) in Construction Engineering and Management. 237 1 2018, A conceptual framework of ITSMCA for a building collapse accident. Engineering, Construction and 236 3.1 Architectural Management, 2018, 25, 721-737

235	3D Imaging in Construction and Infrastructure Management: Technological Assessment and Future Research Directions. 2018 , 37-60		4
234	The Viable Smart Product Model: Designing Products that Undergo Disruptive Transformations. 2019 , 50, 629-655		3
233	Onsite video mining for construction hazards identification with visual relationships. <i>Advanced Engineering Informatics</i> , 2019 , 42, 100966	7.4	18
232	. IEEE Access, 2019 , 7, 105710-105720	3.5	8
231	Position Tracking in 3D Space Based on a Data of a Single Camera. 2019 , 772-781		1
230	Mapping computer vision research in construction: Developments, knowledge gaps and implications for research. <i>Automation in Construction</i> , 2019 , 107, 102919	9.6	35
229	Times-series data augmentation and deep learning for construction equipment activity recognition. <i>Advanced Engineering Informatics</i> , 2019 , 42, 100944	7.4	108
228	Recognizing people identity in construction sites with computer vision: A spatial and temporal attention pooling network. <i>Advanced Engineering Informatics</i> , 2019 , 42, 100981	7.4	17
227	Improved safety checklist analysis approach using intelligent video surveillance in the construction industry: a case study. <i>International Journal of Occupational Safety and Ergonomics</i> , 2019 , 1-12	2.1	8
226	Crowdsourced reliable labeling of safety-rule violations on images of complex construction scenes for advanced vision-based workplace safety. <i>Advanced Engineering Informatics</i> , 2019 , 42, 101001	7.4	12
225	A scientometric analysis and critical review of computer vision applications for construction. <i>Automation in Construction</i> , 2019 , 107, 102947	9.6	51
224	Video-Based Activity Forecasting for Construction Safety Monitoring Use Cases. 2019,		5
223	Computer Vision Technologies and Machine Learning Algorithms for Construction Safety Management: A Critical Review. 2019 ,		
222	Computer vision for real-time extrusion quality monitoring and control in robotic construction. <i>Automation in Construction</i> , 2019 , 101, 92-98	9.6	38
221	Semantic trajectory insights for worker safety in dynamic environments. <i>Automation in Construction</i> , 2019 , 106, 102854	9.6	14
220	A real-time webcam-based method for assessing upper-body postures. 2019 , 30, 833-850		4
219	Safety Distance Identification for Crane Drivers Based on Mask R-CNN. 2019 , 19,		18
218	Real-Time Vision-Based Warning System for Prevention of Collisions between Workers and Heavy Equipment. 2019 , 33, 04019029		35

217	Estimating Worker-Centric 3D Spatial Crowdedness for Construction Safety Management Using a Single 2D Camera. 2019 , 33, 04019030		18	
216	Action recognition of earthmoving excavators based on sequential pattern analysis of visual features and operation cycles. <i>Automation in Construction</i> , 2019 , 104, 255-264	9.6	50	
215	A vision-based marker-less pose estimation system for articulated construction robots. <i>Automation in Construction</i> , 2019 , 104, 80-94	9.6	34	
214	Understanding complex blasting operations: A structural equation model combining Bayesian networks and latent class clustering. 2019 , 188, 195-204		8	
213	Collaborative information integration for construction safety monitoring. <i>Automation in Construction</i> , 2019 , 102, 120-134	9.6	25	
212	Robust Construction Safety System (RCSS) for Collision Accidents Prevention on Construction Sites. 2019 , 19,		5	
211	Preliminary Human Safety Assessment (PHSA) for the Improvement of the Behavioral Aspects of Safety Climate in the Construction Industry. <i>Buildings</i> , 2019 , 9, 69	3.2	25	
210	Automatic checks from 3D point cloud data for safety regulation compliance for scaffold work platforms. <i>Automation in Construction</i> , 2019 , 104, 38-51	9.6	16	
209	Barriers to adoption of RPAs on construction projects: a taskEechnology fit perspective. 2019 , 19, 149-	169	16	
208	Joint-Level Vision-Based Ergonomic Assessment Tool for Construction Workers. <i>Journal of Construction Engineering and Management - ASCE</i> , 2019 , 145, 04019025	4.2	33	
207	Vision-based nonintrusive context documentation for earthmoving productivity simulation. <i>Automation in Construction</i> , 2019 , 102, 135-147	9.6	24	
206	Systematic Camera Placement Framework for Operation-Level Visual Monitoring on Construction Jobsites. <i>Journal of Construction Engineering and Management - ASCE</i> , 2019 , 145, 04019019	4.2	20	
205	Krill herd-based optimal neural network for analysing safety and quality performance at construction site. 2019 , 8, 345		1	
204	A Framework of on-site Construction Safety Management Using Computer Vision and Real-Time Location System. 2019 ,		3	
203	Remote proximity monitoring between mobile construction resources using camera-mounted UAVs. <i>Automation in Construction</i> , 2019 , 99, 168-182	9.6	81	
202	Vision-Based Framework for Intelligent Monitoring of Hardhat Wearing on Construction Sites. 2019 , 33, 04018066		42	
201	Real-Time Alarming, Monitoring, and Locating for Non-Hard-Hat Use in Construction. <i>Journal of Construction Engineering and Management - ASCE</i> , 2019 , 145, 04019006	4.2	35	
200	A web mining-based case adaptation model for quality assurance of pharmaceutical warehouses. 2019 , 22, 325-348		6	

(2020-2019)

199	Automated Action Recognition Using an Accelerometer-Embedded Wristband-Type Activity Tracker. <i>Journal of Construction Engineering and Management - ASCE</i> , 2019 , 145, 04018114	4.2	48
198	Detection of construction workers under varying poses and changing background in image sequences via very deep residual networks. <i>Automation in Construction</i> , 2019 , 99, 27-38	9.6	57
197	Enhanced Machine Learning Classification Accuracy for Scaffolding Safety Using Increased Features. <i>Journal of Construction Engineering and Management - ASCE</i> , 2019 , 145, 04018133	4.2	14
196	Vision-based estimation of excavator manipulator pose for automated grading control. <i>Automation in Construction</i> , 2019 , 98, 122-131	9.6	12
195	Interactive mechanism of working environments and construction behaviors with cognitive work analysis: an elevator installation case study. <i>International Journal of Occupational Safety and Ergonomics</i> , 2019 , 25, 362-376	2.1	7
194	The structure and emerging trends of construction safety management research: a bibliometric review. <i>International Journal of Occupational Safety and Ergonomics</i> , 2020 , 26, 469-488	2.1	25
193	The effectiveness of an integrated BIM/UAV model in managing safety on construction sites. <i>International Journal of Occupational Safety and Ergonomics</i> , 2020 , 26, 829-844	2.1	43
192	Automated scaffolding safety analysis: strain feature investigation using support vector machines. 2020 , 47, 921-928		
191	Computer vision application programming for settlement monitoring in a drainage tunnel. <i>Automation in Construction</i> , 2020 , 110, 103011	9.6	5
190	Computer vision for behaviour-based safety in construction: A review and future directions. <i>Advanced Engineering Informatics</i> , 2020 , 43, 100980	7.4	62
189	Detecting Structural Components of Building Engineering Based on Deep-Learning Method. Journal of Construction Engineering and Management - ASCE, 2020 , 146, 04019097	4.2	15
188	Intelligent identification for working-cycle stages of excavator based on main pump pressure. <i>Automation in Construction</i> , 2020 , 109, 102991	9.6	9
187	Use Cases for Contractors. 2020 , 267-313		
186	On-demand monitoring of construction projects through a game-like hybrid application of BIM and machine learning. <i>Automation in Construction</i> , 2020 , 110, 103012	9.6	75
185	Towards database-free vision-based monitoring on construction sites: A deep active learning approach. <i>Automation in Construction</i> , 2020 , 120, 103376	9.6	20
184	Automated PPE-Tool pair check system for construction safety using smart IoT. <i>Journal of Building Engineering</i> , 2020 , 32, 101721	5.2	13
183	Health and productivity impact of semi-automated work systems in construction. <i>Automation in Construction</i> , 2020 , 120, 103396	9.6	6
182	Deep learning in the construction industry: A review of present status and future innovations. Journal of Building Engineering, 2020 , 32, 101827	5.2	53

181	Application of a Novel and Improved VGG-19 Network in the Detection of Workers Wearing Masks. 2020 , 1518, 012041		23
180	Dynamic safety prewarning mechanism of humanthachinellnvironment using computer vision. <i>Engineering, Construction and Architectural Management</i> , 2020 , 27, 1813-1833	3.1	9
179	The discrepancy in the construction industry of Malaysia: one of the most contributing industries in Malaysia economy and the highest contributor of the fatal accidents. 2020 , 788, 012034		1
178	Development of virtual reality and stereo-panoramic environments for construction safety training. <i>Engineering, Construction and Architectural Management</i> , 2020 , 27, 1853-1876	3.1	19
177	Video-Based Motion Trajectory Forecasting Method for Proactive Construction Safety Monitoring Systems. 2020 , 34, 04020041		5
176	Detection of Personal Protective Equipment (PPE) Compliance on Construction Site Using Computer Vision Based Deep Learning Techniques. <i>Frontiers in Built Environment</i> , 2020 , 6,	2.2	8
175	The Role of Digital Technologies that Could Be Applied for Prescreening in the Mining Industry During the COVID-19 Pandemic. 2020 , 5, 663-674		7
174	Construction with digital twin information systems. 2020 , 1,		52
173	Multi-Building Extraction and Alignment for As-Built Point Clouds: A Case Study With Crane Cameras. <i>Frontiers in Built Environment</i> , 2020 , 6,	2.2	1
172	Comparing Classical and Modern Machine Learning Techniques for Monitoring Pedestrian Workers in Top-View Construction Site Video Sequences. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 8466	2.6	1
171	Inference of Drawing Elements and Space Usage on Architectural Drawings Using Semantic Segmentation. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 7347	2.6	4
170	Development of an IoT-Based Construction Worker Physiological Data Monitoring Platform at High Temperatures. 2020 , 20,		6
169	Recognition of High-Risk Scenarios in Building Construction Based on Image Semantics. 2020 , 34, 0402	0019	10
168	Eye-Tracking Experimental Study Investigating the Influence Factors of Construction Safety Hazard Recognition. <i>Journal of Construction Engineering and Management - ASCE</i> , 2020 , 146, 04020091	4.2	11
167	IoT and cloud computing for building energy efficiency. 2020 , 235-265		7
166	Utilizing Computer Vision and Fuzzy Inference to Evaluate Level of Collision Safety for Workers and Equipment in a Dynamic Environment. <i>Journal of Construction Engineering and Management - ASCE</i> , 2020 , 146, 04020051	4.2	11
165	Critical safety factors influencing on the safety performance of construction projects in Mongolia. 2020 , 19, 600-612		8
164	Tracking multiple construction workers through deep learning and the gradient based method with re-matching based on multi-object tracking accuracy. <i>Automation in Construction</i> , 2020 , 119, 103308	9.6	17

(2021-2020)

163	Project Monitoring. 2020 , 34, 04020030		13	
162	Multi-camera vision-based productivity monitoring of earthmoving operations. <i>Automation in Construction</i> , 2020 , 112, 103121	9.6	26	
161	Image segmentation of underfloor scenes using a mask regions convolutional neural network with two-stage transfer learning. <i>Automation in Construction</i> , 2020 , 113, 103118	9.6	12	
160	A critical review of vision-based occupational health and safety monitoring of construction site workers. 2020 , 126, 104658		34	
159	Dense construction vehicle detection based on orientation-aware feature fusion convolutional neural network. <i>Automation in Construction</i> , 2020 , 112, 103124	9.6	23	
158	Sensor-based safety management. <i>Automation in Construction</i> , 2020 , 113, 103128	9.6	32	
157	Deep learning for site safety: Real-time detection of personal protective equipment. <i>Automation in Construction</i> , 2020 , 112, 103085	9.6	80	
156	Monocular Vision B ased Framework for Biomechanical Analysis or Ergonomic Posture Assessment in Modular Construction. 2020 , 34, 04020018		11	
155	Image augmentation to improve construction resource detection using generative adversarial networks, cut-and-paste, and image transformation techniques. <i>Automation in Construction</i> , 2020 , 115, 103198	9.6	18	
154	Real-time Safety Monitoring Vision System for Linemen in Buckets Using Spatio-temporal Inference. 2021 , 19, 505-520		3	
153	Can mixed reality enhance safety communication on construction sites? An industry perspective. 2021 , 133, 105009		13	
152	Computer Vision Techniques in Construction: A Critical Review. 2021 , 28, 3383-3397		72	
151	Analysis of the Limits of Automated Rule-Based Ergonomic Assessment in Bricklaying. <i>Journal of Construction Engineering and Management - ASCE</i> , 2021 , 147, 04020163	4.2	6	
150	Hazard differentiation embedded in the brain: A near-infrared spectroscopy-based study. <i>Automation in Construction</i> , 2021 , 122, 103473	9.6	7	
149	Activity classification using accelerometers and machine learning for complex construction worker activities. <i>Journal of Building Engineering</i> , 2021 , 35, 102001	5.2	10	
148	Roles of artificial intelligence in construction engineering and management: A critical review and future trends. <i>Automation in Construction</i> , 2021 , 122, 103517	9.6	114	
147	Safety Program Elements in the Construction Industry: The Case of Iraq. 2021, 18,		24	
146	Internet of Things for High Performance Net Zero Energy Buildings. 2021 , 217-230			

145	IPT: A Dataset for Identity Preserved Tracking in Closed Domains. 2021,		O
144	Surface crack detection using deep learning with shallow CNN architecture for enhanced computation. 2021 , 33, 9289-9305		26
143	Cloud-Edge Microservice Architecture for DNN-based Distributed Multimedia Event Processing. <i>Communications in Computer and Information Science</i> , 2021 , 65-72	0.3	0
142	Automatic Evaluation Mechanism for Comfort Level of Construction Workers Base on Multi-sensor and Deep Learning. 2021 , 2185-2198		
141	Systematic Tertiary Study for Consolidating further Implications of Unmanned Aircraft System Applications. 2021 , 37, 03120001		4
140	Automating pandemic mitigation. 2021 , 35, 572-589		8
139	3D fuzzy ergonomic analysis for rapid workplace design and modification in construction. <i>Automation in Construction</i> , 2021 , 123, 103521	9.6	4
138	Computer vision technologies for safety science and management in construction: A critical review and future research directions. 2021 , 135, 105130		21
137	Using existing site surveillance cameras to automatically measure the installation speed in prefabricated timber construction. <i>Engineering, Construction and Architectural Management</i> , 2021 , ahead-of-print,	3.1	О
136	Research Status and Challenges of Data-Driven Construction Project Management in the Big Data Context. <i>Advances in Civil Engineering</i> , 2021 , 2021, 1-19	1.3	О
135	Immersive technology-driven investigations on influence factors of cognitive load incurred in construction site hazard recognition, analysis and decision making. <i>Advanced Engineering Informatics</i> , 2021 , 48, 101298	7.4	5
134	A few-shot learning approach for database-free vision-based monitoring on construction sites. <i>Automation in Construction</i> , 2021 , 124, 103566	9.6	4
133	Exploring a comprehensive knowledge map for promoting safety management research in the construction industry. <i>Engineering, Construction and Architectural Management</i> , 2021 , ahead-of-print,	3.1	1
132	Image Processing and QR Code Application Method for Construction Safety Management. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 4400	2.6	1
131	Mapping Datafication in Construction-Worker Safety Research to Minimize Injury-Related Disputes. 2021 , 13, 04521009		3
130	Fast Personal Protective Equipment Detection for Real Construction Sites Using Deep Learning Approaches. 2021 , 21,		9
129	A vision-based approach for automatic progress tracking of floor paneling in offsite construction facilities. <i>Automation in Construction</i> , 2021 , 125, 103620	9.6	8
128	Technologies for safe and resilient earthmoving operations: A systematic literature review. <i>Automation in Construction</i> , 2021 , 125, 103632	9.6	4

127	Security Enhanced Blockchain based Unmanned Aerial Vehicle Health Monitoring System. 2021, 2, 121-	131	27
126	Pose Estimation of Excavator Manipulator Based on Monocular Vision Marker System. 2021 , 21,		2
125	TEXT MINING-BASED PATENT ANALYSIS OF BIM APPLICATION IN CONSTRUCTION. 2021 , 27, 303-315		1
124	Advancing Towards Automated Ergonomic Assessment: A Panel of Perspectives. 2022 , 585-591		
123	The equipment detection and localization of large-scale construction jobsite by far-field construction surveillance video based on improving YOLOv3 and grey wolf optimizer improving extreme learning machine. 2021 , 291, 123268		5
122	Detection and Tracking of Safety Helmet in Construction Site. 2021 , 218, 139-146		
121	Development of Sensing Algorithms for Object Tracking and Predictive Safety Evaluation of Autonomous Excavators. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 6366	2.6	1
120	YOLOv4 algorithm for the real-time detection of fire and personal protective equipments at construction sites. 1		O
119	Federated transfer learning enabled smart work packaging for preserving personal image information of construction worker. <i>Automation in Construction</i> , 2021 , 128, 103738	9.6	9
118	Influence of Building Information Modeling (BIM) Implementation in High-Rise Buildings towards Sustainability. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 7626	2.6	4
117	Utilizing safety rule correlation for mobile scaffolds monitoring leveraging deep convolution neural networks. 2021 , 129, 103448		9
116	Optimization and Trajectory Analysis of Drone® Flying and Environmental Variables for 3D Modelling the Construction Progress Monitoring. 1		1
115	Hard-hat Detection using YOLOv4. 2021 ,		O
114	A Scientometric Review of Smart Construction Site in Construction Engineering and Management: Analysis and Visualization. <i>Sustainability</i> , 2021 , 13, 8860	3.6	5
113	Temporal Visual Patterns of Construction Hazard Recognition Strategies. 2021, 18,		1
112	Multi-level feature driven storage management of surveillance videos. 2021 , 76, 101441		
111	Deep Belief Network based audio classification for construction sites monitoring. 2021 , 177, 114839		8
110	Safety enablers using emerging technologies in construction projects: empirical study in Malaysia. <i>Journal of Engineering, Design and Technology</i> , 2021 , ahead-of-print,	1.5	2

109	Applications of Computer Vision in Monitoring the Unsafe Behavior of Construction Workers: Current Status and Challenges. <i>Buildings</i> , 2021 , 11, 409	3.2	7
108	Combining computer vision with semantic reasoning for on-site safety management in construction. <i>Journal of Building Engineering</i> , 2021 , 42, 103036	5.2	12
107	Real-time extrusion quality monitoring techniques for construction 3D printing. 2021 , 303, 124520		7
106	Working stage identification of excavators based on control signals of operating handles. <i>Automation in Construction</i> , 2021 , 130, 103873	9.6	1
105	Machine Learning-Based Risk Analysis for Construction Worker Safety from Ubiquitous Site Photos and Videos. 2021 , 35, 04021020		2
104	Object Detectors for Construction Resources Using Unmanned Aerial Vehicles. 2021 , 26, 04021035		1
103	Sensor-based computational approach to preventing back injuries in construction workers. <i>Automation in Construction</i> , 2021 , 131, 103920	9.6	1
102	Dynamic Fall Risk Assessment Framework for Construction Workers Based on Dynamic Bayesian Network and Computer Vision. <i>Journal of Construction Engineering and Management - ASCE</i> , 2021 , 147,	4.2	4
101	Classification of construction hazard-related perceptions using: Wearable electroencephalogram and virtual reality. <i>Automation in Construction</i> , 2021 , 132, 103975	9.6	8
100	Computer vision applications in construction: Current state, opportunities & challenges. <i>Automation in Construction</i> , 2021 , 132, 103940	9.6	8
99	. IEEE Access, 2021 , 9, 103110-103119	3.5	О
98	Detecting Falls-from-Height with Wearable Sensors and Reducing Consequences of Occupational Fall Accidents Leveraging IoT. 2019 , 207-214		6
97	Safety Is the New Black: The Increasing Role of Wearables in Occupational Health and Safety in Construction. 2019 , 526-537		4
96	A Deep Learning-Based Approach to Enable Action Recognition for Construction Equipment. <i>Advances in Civil Engineering</i> , 2020 , 2020, 1-14	1.3	4
95	Visual Analytics for Operation-Level Construction Monitoring and Documentation: State-of-the-Art Technologies, Research Challenges, and Future Directions. <i>Frontiers in Built Environment</i> , 2020 , 6,	2.2	5
94	Enhancing action recognition of construction workers using data-driven scene parsing. 2018 , 24, 568-5	80	5
93	Deep-Learning-Based Segmentation of Fresh or Young Concrete Sections from Images of Construction Sites. 2021 , 14,		O
92	Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. <i>Journal of Building Engineering</i> , 2021 , 44, 103299	5.2	24

91	Automatic Imagery Data Analysis for Diagnosing Human Factors in the Outage of a Nuclear Plant. 2016 , 604-615		1
90	Modeling the In-home Lifestyle of Chronic Anorectal Patients via a Sensing Home. 2016 , 188-199		1
89	A Scientometric Analysis and a Review on Current Literature of Computer Vision Applications. 2020 , 104-117		
88	Bibliometric review of visual computing in the construction industry. <i>Visual Computing for Industry, Biomedicine, and Art</i> , 2020 , 3, 14	2.9	O
87	Predicted Safety Algorithms for Autonomous Excavators Using a 3D LiDAR Sensor. 2020,		1
86	A Real-Time Computer Vision System for Workers IPPE and Posture Detection in Actual Construction Site Environment. <i>Lecture Notes in Civil Engineering</i> , 2021 , 2169-2181	0.3	O
85	AI-Enabled High-Level Layer for Posture Recognition Using The Azure Kinect in Unity3D. 2020 ,		3
84	Implementation experiments on convolutional neural network training using synthetic images for 3D pose estimation of an excavator on real images. <i>Automation in Construction</i> , 2022 , 133, 103996	9.6	3
83	Action recognition of construction workers under occlusion. <i>Journal of Building Engineering</i> , 2022 , 45, 103352	5.2	1
82	. IEEE Access, 2021 , 1-1	3.5	4
82	. <i>IEEE Access</i> , 2021 , 1-1 References. 2020 , 221-228	3.5	4
		3.5	4
81	References. 2020 , 221-228 Using Qualitative Methods to Understand Risk-Reward Balance and Its Impact on Safety Risk Taking	3.5	4
81 80	References. 2020, 221-228 Using Qualitative Methods to Understand Risk-Reward Balance and Its Impact on Safety Risk Taking by Construction Workers. 2020,		
81 80 79	References. 2020, 221-228 Using Qualitative Methods to Understand Risk-Reward Balance and Its Impact on Safety Risk Taking by Construction Workers. 2020, Risk Perception of Construction Personnel: A Social Construct Outlook. 2020, Factors affecting the intrusiveness and selection of real-site data collection methods in hot and		
81 80 79 78	References. 2020, 221-228 Using Qualitative Methods to Understand Risk-Reward Balance and Its Impact on Safety Risk Taking by Construction Workers. 2020, Risk Perception of Construction Personnel: A Social Construct Outlook. 2020, Factors affecting the intrusiveness and selection of real-site data collection methods in hot and humid climates: critical review. Engineering, Construction and Architectural Management, 2021, 28, 2306		
81 80 79 78 77	References. 2020, 221-228 Using Qualitative Methods to Understand Risk-Reward Balance and Its Impact on Safety Risk Taking by Construction Workers. 2020, Risk Perception of Construction Personnel: A Social Construct Outlook. 2020, Factors affecting the intrusiveness and selection of real-site data collection methods in hot and humid climates: critical review. Engineering, Construction and Architectural Management, 2021, 28, 2300 Impact of Computer Vision With Deep Learning Approach in Medical Imaging Diagnosis. 2021, A Novel YOLO Based Safety Helmet Detection in Intelligent Construction Platform.)-2 ³ 3 ³ 36	

73	Generative planning for construction safety surveillance camera installation in 4D BIM environment. <i>Automation in Construction</i> , 2022 , 134, 104103	9.6	3
72	A Safety Helmet and Protective Clothing Detection Method based on Improved-Yolo V 3. 2020 ,		О
71	A Deep Learning Model Development to Predict Safety Accidents for Sustainable Construction: A Case Study of Fall Accidents in South Korea. <i>Sustainability</i> , 2022 , 14, 1583	3.6	
7º	Detect Safety Net on the Construction Site Based on YOLO-v4. <i>Lecture Notes in Electrical Engineering</i> , 2022 , 33-42	0.2	1
69	What Drives Construction Practitioners (Acceptance of Intelligent Surveillance Systems? An Extended Technology Acceptance Model. <i>Buildings</i> , 2022 , 12, 104	3.2	1
68	Intelligent manufacturing execution systems: A systematic review. <i>Journal of Manufacturing Systems</i> , 2022 , 62, 503-522	9.1	5
67	A Review of Monitoring Construction Equipment in Support of Construction Project Management. <i>Frontiers in Built Environment</i> , 2022 , 7,	2.2	2
66	A computer vision-based deep learning model to detect wrong-way driving using pan li lt l oom traffic cameras. <i>Computer-Aided Civil and Infrastructure Engineering</i> ,	8.4	O
65	Intelligence Monitoring Method for Tamping Times during Dynamic Compaction Construction using Machine Vision and Pattern Recognition. <i>Measurement: Journal of the International Measurement Confederation</i> , 2022 , 110835	4.6	1
64	Tag and IoT based safety hook monitoring for prevention of falls from height. <i>Automation in Construction</i> , 2022 , 136, 104153	9.6	4
63	Fall Prevention from Ladders Utilizing a Deep Learning-based Height Assessment Method. <i>IEEE Access</i> , 2022 , 1-1	3.5	0
62	Application of Computer Vision Tools to Create a System for Monitoring the Work of Ground Equipment in Open Pits of Gold Mining Enterprises. <i>Studies in Systems, Decision and Control</i> , 2022 , 203-2	18 ⁸	
61	Ergonomic Design of a Workplace Using Virtual Reality and a Motion Capture Suit. <i>Applied Sciences (Switzerland)</i> , 2022 , 12, 2150	2.6	5
60	Worker Safety and Health Activity Monitoring in Construction Using Unmanned Aerial Vehicles and Deep Learning. 2022 ,		
59	Providing a model to choose the most appropriate agile method in construction projects. Proceedings of Institution of Civil Engineers: Management, Procurement and Law, 1-14	0.5	О
58	Occupational health and safety practice in infrastructure projects <i>International Journal of Occupational Safety and Ergonomics</i> , 2021 , 1-14	2.1	1
57	Current Status and Future Directions of Deep Learning Applications for Safety Management in Construction. <i>Sustainability</i> , 2021 , 13, 13579	3.6	2
56	Practitioners perceptions of the potential impact of Industry 4.0 on construction health and safety. Journal of Engineering, Design and Technology, 2022, ahead-of-print,	1.5	

55	A roadmap for quality control of hardening and hardened printed concrete. <i>Cement and Concrete Research</i> , 2022 , 157, 106800	10.3	3
54	Exploring Recent Trends in Computer Vision. 2022 , 1, 33-39		О
53	Fall Prevention from Scaffolding Using Computer Vision and IoT-Based Monitoring. <i>Journal of Construction Engineering and Management - ASCE</i> , 2022 , 148,	4.2	О
52	Training a Visual Scene Understanding Model Only with Synthetic Construction Images. 2022,		O
51	A method in modeling interactive pedestrian crossing and driver yielding decisions during their interactions at intersections. <i>Transportation Research Part F: Traffic Psychology and Behaviour</i> , 2022 , 88, 37-53	4.5	2
50	Fibre-based wearable electronic technology for personal protective clothing. 2022, 511-547		
49	Imperative Role of Technology Intervention and Implementation for Automation in the Construction Industry. <i>Advances in Civil Engineering</i> , 2022 , 2022, 1-19	1.3	1
48	Vision-based estimation of the number of occupants using video cameras. <i>Advanced Engineering Informatics</i> , 2022 , 53, 101662	7.4	Ο
47	Excavator joint node-based pose estimation using lightweight fully convolutional network. <i>Automation in Construction</i> , 2022 , 141, 104435	9.6	
46	A Construction Accident Prevention System Based on the Internet of Things (lot). SSRN Electronic Journal,	1	
45	Information Technologies for Occupational Health and Safety. 32-41		
44	Application of Artificial Neural Networks in Construction Management: A Scientometric Review. <i>Buildings</i> , 2022 , 12, 952	3.2	Ο
43	Graph neural network-based propagation effects modeling for detecting visual relationships among construction resources. <i>Automation in Construction</i> , 2022 , 141, 104443	9.6	0
42	Incident Analysis and Prediction of Safety Performance on Construction Sites. <i>CivilEng</i> , 2022 , 3, 669-680	51.7	
41	Computer Vision Process Development regarding Worker Safety Harness and Hook to Prevent Fall Accidents: Focused on System Scaffolds in South Korea. 2022 , 2022, 1-12		
40	What Drives the Intelligent Construction Development in China?. 2022, 12, 1250		1
39	Vision-based method for semantic information extraction in construction by integrating deep learning object detection and image captioning. 2022 , 53, 101699		1
38	A deep learning fusion approach to retrieve images of People's unsafe behavior from construction sites. 2022 , 100085		

37	SODA: A large-scale open site object detection dataset for deep learning in construction. 2022 , 142, 104499	3
36	Digital technology for quality management in construction: A review and future research directions. 2022 , 12, 100087	1
35	Autonomous Reading of Gauges in Unstructured Environments. 2022 , 22, 6681	O
34	Affordable Multiagent Robotic System for Same-Level Fall Hazard Detection in Indoor Construction Environments. 2023 , 37,	O
33	Active Pedestrian Detection for Excavator Robots based on Multi-Sensor Fusion. 2022,	О
32	Application of computer vision for construction progress monitoring: a qualitative investigation.	O
31	Scanning electron microscopy (SEM) image segmentation for microstructure analysis of concrete using U-net convolutional neural network. 2022 , 144, 104602	2
30	New Progress of Bridge Crack Detection Based on Fiber Optic Sensor. 2022 , 10, 560-565	O
29	Pose estimation method for construction machine based on improved AlphaPose model.	О
28	Applications of Artificial Intelligence Enhanced Drones in Distress Pavement, Pothole Detection, and Healthcare Monitoring with Service Delivery. 2022 , 2022, 1-16	O
27	Anchor-free arbitrary-oriented construction vehicle detection with orientation-aware Gaussian heatmap.	O
26	Ergonomic Characteristics of Expert Masons. 2023 , 149,	O
25	Enhanced Safety Implementation in 5S+1 via Object Detection Algorithms.	О
24	Monitoring and Identification of Road Construction Safety Factors via UAV. 2022 , 22, 8797	1
23	A construction accident prevention system based on the Internet of Things (IoT). 2023, 159, 106012	О
22	PREDICTORS TO INCREASE SAFETY TECHNOLOGY ADOPTION IN CONSTRUCTION: AN EXPLORATORY FACTOR ANALYSIS FOR MALAYSIA. 2022, 1-14	O
21	Generating Image Captions Using Bahdanau Attention Mechanism and Transfer Learning. 2022, 14, 2681	0
20	Enclosing contour tracking of highway construction equipment based on orientation-aware bounding box using UAV. 2023 , 4,	O

19	Small Tool Image Database and Object Detection Approach for Indoor Construction Site Safety.	1
18	A Remote-Vision-Based Safety Helmet and Harness Monitoring System Based on Attribute Knowledge Modeling. 2023 , 15, 347	O
17	Detection and Recognition Algorithm of Arbitrary-Oriented Oil Replenishment Target in Remote Sensing Image. 2023 , 23, 767	1
16	Construction Site Safety Management: A Computer Vision and Deep Learning Approach. 2023 , 23, 944	2
15	Automated detection of construction work at heights and deployment of safety hooks using IMU with a barometer. 2023 , 147, 104714	0
14	Construction inspection & monitoring with quadruped robots in future human-robot teaming: A preliminary study. 2023 , 65, 105814	2
13	Improved Discriminative Object Localization Algorithm for Safety Management of Indoor Construction. 2023 , 23, 3870	0
12	Deep-Learning-Based Sound Classification Model for Concrete Pouring Work Monitoring at a Construction Site. 2023 , 13, 4789	O
11	Semi-supervised domain adaptation for segmentation models on different monitoring settings. 2023 , 149, 104773	O
10	Small and overlapping worker detection at construction sites. 2023 , 151, 104856	O
9	Enhanced safety implementation in 5S + 1 via object detection algorithms. 2023 , 125, 3701-3721	0
8	Improved detection network model based on YOLOv5 for warning safety in construction sites. 1-11	O
7	Construction Worker Safety Prediction and Active Warning Based on Computer Vision and the Gray Absolute Decision Analysis Method. 2023 , 149,	0
6	Robots in Inspection and Monitoring of Buildings and Infrastructure: A Systematic Review. 2023 , 13, 2304	O
5	Action Recognition Based on 3D Skeleton and LSTM for the Monitoring of Construction Workers Safety Harness Usage. 2023 , 149,	0
4	Determination of workers' compliance to safety regulations using a spatio-temporal graph convolution network. 2023 , 56, 101942	O
3	Advances in the Use of Artificial Intelligence and Sensor Technologies for Managing Industrial Workplace Safety. 2023 , 1-28	0
2	Bridging the gap between health and safety performance and owners satisfaction in construction projects adopting pro-environmental construction practices: role of economic performance.	О

Knowledge Graph Improved Dynamic Risk Analysis Method for Behavior-Based Safety Management on a Construction Site. **2023**, 39,

О