APOBEC3A cytidine deaminase induces RNA editing in

Nature Communications 6, 6881

DOI: 10.1038/ncomms7881

Citation Report

#	Article	IF	CITATIONS
1	APOBEC3 Interference during Replication of Viral Genomes. Viruses, 2015, 7, 2999-3018.	3.3	34
2	Epigenetic Modulators of Monocytic Function: Implication for Steady State and Disease in the CNS. Frontiers in Immunology, 2016, 6, 661.	4.8	5
3	Extensive RNA editing and splicing increase immune self-representation diversity in medullary thymic epithelial cells. Genome Biology, 2016, 17, 219.	8.8	67
4	A Single Nucleotide Polymorphism in Human APOBEC3C Enhances Restriction of Lentiviruses. PLoS Pathogens, 2016, 12, e1005865.	4.7	50
5	Chemical <scp>RNA</scp> Editing for Genetic Restoration: The Relationship between the Structure and Deamination Efficiency of Carboxyvinyldeoxyuridine Oligodeoxynucleotides. Chemical Biology and Drug Design, 2016, 87, 583-593.	3.2	5
6	The double-domain cytidine deaminase APOBEC3G is a cellular site-specific RNA editing enzyme. Scientific Reports, 2016, 6, 39100.	3.3	71
7	Structural and functional assessment of APOBEC3G macromolecular complexes. Methods, 2016, 107, 10-22.	3.8	12
8	Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications. Journal of Cell Biology, 2016, 213, 15-22.	5.2	115
9	A chimeric human APOBEC3A protein with a three amino acid insertion confers differential HIV-1 and adeno-associated virus restriction. Virology, 2016, 498, 149-163.	2.4	2
10	Functions and Malfunctions of Mammalian DNA-Cytosine Deaminases. Chemical Reviews, 2016, 116, 12688-12710.	47.7	104
11	Cellular identity at the single-cell level. Molecular BioSystems, 2016, 12, 2965-2979.	2.9	17
12	RNA editing generates cellular subsets with diverse sequence within populations. Nature Communications, 2016, 7, 12145.	12.8	48
13	The APOBEC Protein Family: United by Structure, Divergent in Function. Trends in Biochemical Sciences, 2016, 41, 578-594.	7.5	296
14	Comparison of transcriptome analysis between silk gland of B. mori and B. mandarina using next generation sequencing. Genes and Genomics, 2016, 38, 251-262.	1.4	1
15	Functional requirements of AID's higher order structures and their interaction with RNA-binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1545-54.	7.1	38
16	DNA Editing by APOBECs: A Genomic Preserver and Transformer. Trends in Genetics, 2016, 32, 16-28.	6.7	64
17	Variants of ubiquitin-specific peptidase 24 play a crucial role in lung cancer malignancy. Oncogene, 2016, 35, 3669-3680.	5.9	18
18	Transient overexpression of exogenous APOBEC3A causes C-to-U RNA editing of thousands of genes. RNA Biology, 2017, 14, 603-610.	3.1	63

TION REI

#	Article	IF	CITATIONS
19	APOBEC1 complementation factor (A1CF) is dispensable for C-to-U RNA editing in vivo. Rna, 2017, 23, 457-465.	3.5	31
20	Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity. Nature Communications, 2017, 8, 15024.	12.8	130
21	Mitochondrial complex II regulates a distinct oxygen sensing mechanism in monocytes. Human Molecular Genetics, 2017, 26, 1328-1339.	2.9	14
22	DNA mutagenic activity and capacity for HIV-1 restriction of the cytidine deaminase APOBEC3G depend on whether DNA or RNA binds to tyrosine 315. Journal of Biological Chemistry, 2017, 292, 8642-8656.	3.4	9
23	Observation by Real-Time NMR and Interpretation of Length- and Location-Dependent Deamination Activity of APOBEC3B. ACS Chemical Biology, 2017, 12, 2704-2708.	3.4	5
24	Epitranscriptomic profiling across cell types reveals associations between APOBEC1-mediated RNA editing, gene expression outcomes, and cellular function. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13296-13301.	7.1	33
25	APOBEC3B, a molecular driver of mutagenesis in human cancers. Cell and Bioscience, 2017, 7, 29.	4.8	63
26	RNA Editing in Pathogenesis of Cancer. Cancer Research, 2017, 77, 3733-3739.	0.9	60
27	RNA binding to APOBEC deaminases; Not simply a substrate for C to U editing. RNA Biology, 2017, 14, 1153-1165.	3.1	43
28	Enzyme cycling contributes to efficient induction of genome mutagenesis by the cytidine deaminase APOBEC3B. Nucleic Acids Research, 2017, 45, 11925-11940.	14.5	44
29	Roles of APOBEC3A and APOBEC3B in Human Papillomavirus Infection and Disease Progression. Viruses, 2017, 9, 233.	3.3	79
30	C-to-U editing and site-directed RNA editing for the correction of genetic mutations. BioScience Trends, 2017, 11, 243-253.	3.4	15
31	A New Chapter in Genetic Medicine: RNA Editing and its Role in Disease Pathogenesis. Trends in Molecular Medicine, 2018, 24, 294-303.	6.7	35
32	Asymmetric Modification of Hepatitis B Virus (HBV) Genomes by an Endogenous Cytidine Deaminase inside HBV Cores Informs a Model of Reverse Transcription. Journal of Virology, 2018, 92, .	3.4	26
33	APOBEC3-mediated restriction of RNA virus replication. Scientific Reports, 2018, 8, 5960.	3.3	103
34	Generation of Hutat2:Fc Knockin Primary Human Monocytes Using CRISPR/Cas9. Molecular Therapy - Nucleic Acids, 2018, 11, 130-141.	5.1	4
35	Increased RNA Editing May Provide a Source for Autoantigens in Systemic Lupus Erythematosus. Cell Reports, 2018, 23, 50-57.	6.4	91
36	Post-transcriptional regulation of LINE-1 retrotransposition by AID/APOBEC and ADAR deaminases. Chromosome Research, 2018, 26, 45-59.	2.2	26

#	Article	IF	CITATIONS
37	Human C-to-U Coding RNA Editing Is Largely Nonadaptive. Molecular Biology and Evolution, 2018, 35, 963-969.	8.9	56
38	Understanding the regulation of APOBEC3 expression: Current evidence and much to learn. Journal of Leukocyte Biology, 2018, 103, 433-444.	3.3	30
39	Biochemical Basis of APOBEC3 Deoxycytidine Deaminase Activity on Diverse DNA Substrates. ACS Infectious Diseases, 2018, 4, 224-238.	3.8	38
40	When MicroRNAs Meet RNA Editing in Cancer: A Nucleotide Change Can Make a Difference. BioEssays, 2018, 40, 1700188.	2.5	35
41	The Antiviral and Cancer Genomic DNA Deaminase APOBEC3H Is Regulated by an RNA-Mediated Dimerization Mechanism. Molecular Cell, 2018, 69, 75-86.e9.	9.7	65
42	Treatment resistance in urothelial carcinoma: an evolutionary perspective. Nature Reviews Clinical Oncology, 2018, 15, 495-509.	27.6	37
43	RNA-Mediated Dimerization of the Human Deoxycytidine Deaminase APOBEC3H Influences Enzyme Activity and Interaction with Nucleic Acids. Journal of Molecular Biology, 2018, 430, 4891-4907.	4.2	16
44	The Role of RNA Editing in Cancer Development and Metabolic Disorders. Frontiers in Endocrinology, 2018, 9, 762.	3.5	70
45	APOBEC3G/3A Expression in Human Immunodeficiency Virus Type 1-Infected Individuals Following Initiation of Antiretroviral Therapy Containing Cenicriviroc or Efavirenz. Frontiers in Immunology, 2018, 9, 1839.	4.8	11
46	APOBEC3 Mediates Resistance to Oncolytic Viral Therapy. Molecular Therapy - Oncolytics, 2018, 11, 1-13.	4.4	14
47	Genetic and mechanistic basis for APOBEC3H alternative splicing, retrovirus restriction, and counteraction by HIV-1 protease. Nature Communications, 2018, 9, 4137.	12.8	28
48	APOBEC3H Subcellular Localization Determinants Define Zipcode for Targeting HIV-1 for Restriction. Molecular and Cellular Biology, 2018, 38, .	2.3	16
49	Substrate sequence selectivity of APOBEC3A implicates intra-DNA interactions. Scientific Reports, 2018, 8, 7511.	3.3	47
50	Modeling the Embrace of a Mutator: APOBEC Selection of Nucleic Acid Ligands. Trends in Biochemical Sciences, 2018, 43, 606-622.	7.5	54
51	Detection and Application of RNA Editing in Cancer. Advances in Experimental Medicine and Biology, 2018, 1068, 159-170.	1.6	7
52	Keratinocyte differentiation induces APOBEC3A, 3B, and mitochondrial DNA hypermutation. Scientific Reports, 2018, 8, 9745.	3.3	13
53	RNA variant identification discrepancy among splice-aware alignment algorithms. PLoS ONE, 2018, 13, e0201822.	2.5	7
54	Transcriptogenomics identification and characterization of RNA editing sites in human primary monocytes using high-depth next generation sequencing data. Genomics, 2019, 111, 899-905.	2.9	7

#	Article	IF	CITATIONS
55	APOBEC 3 regulates keratinocyte differentiation and expression of Notch3. Experimental Dermatology, 2019, 28, 1341-1347.	2.9	5
56	Inosine RNA modifications are enriched at the codon wobble position in mouse oocytes and eggsâ€. Biology of Reproduction, 2019, 101, 938-949.	2.7	8
57	Portrait of Tissue-Specific Coexpression Networks of Noncoding RNAs (miRNA and IncRNA) and mRNAs in Normal Tissues. Computational and Mathematical Methods in Medicine, 2019, 2019, 1-14.	1.3	22
58	Infectious vaccine-derived rubella viruses emerge, persist, and evolve in cutaneous granulomas of children with primary immunodeficiencies. PLoS Pathogens, 2019, 15, e1008080.	4.7	58
59	Zika virus noncoding sfRNAs sequester multiple host-derived RNA-binding proteins and modulate mRNA decay and splicing during infection. Journal of Biological Chemistry, 2019, 294, 16282-16296.	3.4	53
60	In vivo ways to unveil off-targets. Cell Research, 2019, 29, 339-340.	12.0	3
61	Mitochondrial hypoxic stress induces widespread RNA editing by APOBEC3G in natural killer cells. Genome Biology, 2019, 20, 37.	8.8	50
62	APOBEC3-Mediated RNA Editing in Breast Cancer is Associated with Heightened Immune Activity and Improved Survival. International Journal of Molecular Sciences, 2019, 20, 5621.	4.1	46
63	Deciphering miRNAs' Action through miRNA Editing. International Journal of Molecular Sciences, 2019, 20, 6249.	4.1	518
64	RNA Editors, Cofactors, and mRNA Targets: An Overview of the C-to-U RNA Editing Machinery and Its Implication in Human Disease. Genes, 2019, 10, 13.	2.4	47
65	Structural Analysis of the Active Site and DNA Binding of Human Cytidine Deaminase APOBEC3B. Journal of Chemical Theory and Computation, 2019, 15, 637-647.	5.3	16
66	Long-term context-dependent genetic adaptation of the viral genetic cloud. Bioinformatics, 2019, 35, 1907-1915.	4.1	7
67	Point mutation bias in SARS-CoV-2 variants results in increased ability to stimulate inflammatory responses. Scientific Reports, 2020, 10, 17766.	3.3	47
68	Viral CpG Deficiency Provides No Evidence That Dogs Were Intermediate Hosts for SARS-CoV-2. Molecular Biology and Evolution, 2020, 37, 2706-2710.	8.9	18
69	APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. Journal of Experimental Medicine, 2020, 217, .	8.5	87
70	Species-Specificity of Transcriptional Regulation and the Response to Lipopolysaccharide in Mammalian Macrophages. Frontiers in Cell and Developmental Biology, 2020, 8, 661.	3.7	29
71	Footprint of the host restriction factors APOBEC3 on the genome of human viruses. PLoS Pathogens, 2020, 16, e1008718.	4.7	56
72	Succinate Dehydrogenase and Ribonucleic Acid Networks in Cancer and Other Diseases. Cancers, 2020, 12, 3237.	3.7	27

#	Article	IF	CITATIONS
73	Repurposing Zileuton as a Depression Drug Using an AI and In Vitro Approach. Molecules, 2020, 25, 2155.	3.8	9
74	Integrative analyses of the RNA modification machinery reveal tissue- and cancer-specific signatures. Genome Biology, 2020, 21, 97.	8.8	57
75	RNA Editing Alters miRNA Function in Chronic Lymphocytic Leukemia. Cancers, 2020, 12, 1159.	3.7	11
76	Quantification of ongoing APOBEC3A activity in tumor cells by monitoring RNA editing at hotspots. Nature Communications, 2020, 11, 2971.	12.8	71
77	Transcriptomic profiling of different responder types in adults after a Priorix® vaccination. Vaccine, 2020, 38, 3218-3226.	3.8	1
78	Molecular origins of APOBEC-associated mutations in cancer. DNA Repair, 2020, 94, 102905.	2.8	48
79	Rampant C→U Hypermutation in the Genomes of SARS-CoV-2 and Other Coronaviruses: Causes and Consequences for Their Short- and Long-Term Evolutionary Trajectories. MSphere, 2020, 5, .	2.9	204
80	Neonatal Rhesus Macaques Have Distinct Immune Cell Transcriptional Profiles following HIV Envelope Immunization. Cell Reports, 2020, 30, 1553-1569.e6.	6.4	21
81	Extreme Genomic CpG Deficiency in SARS-CoV-2 and Evasion of Host Antiviral Defense. Molecular Biology and Evolution, 2020, 37, 2699-2705.	8.9	136
82	New Twists in Detecting mRNA Modification Dynamics. Trends in Biotechnology, 2021, 39, 72-89.	9.3	96
83	APOBEC: A molecular driver in cervical cancer pathogenesis. Cancer Letters, 2021, 496, 104-116.	7.2	79
84	Host-directed editing of the SARS-CoV-2 genome. Biochemical and Biophysical Research Communications, 2021, 538, 35-39.	2.1	80
85	Inflammation-driven deaminase deregulation fuels human pre-leukemia stem cell evolution. Cell Reports, 2021, 34, 108670.	6.4	22
86	HPV Meets APOBEC: New Players in Head and Neck Cancer. International Journal of Molecular Sciences, 2021, 22, 1402.	4.1	25
87	RNA editing enzyme APOBEC3A promotes pro-inflammatory M1 macrophage polarization. Communications Biology, 2021, 4, 102.	4.4	28
89	The effects of RNA editing in cancer tissue at different stages in carcinogenesis. RNA Biology, 2021, 18, 1-16.	3.1	15
92	Mutational signatures and heterogeneous host response revealed via large-scale characterization of SARS-CoV-2 genomic diversity. IScience, 2021, 24, 102116.	4.1	64
94	Insights into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions. Viruses, 2021, 13, 497.	3.3	11

#	Article	IF	CITATIONS
95	The Mutation Profile of SARS-CoV-2 Is Primarily Shaped by the Host Antiviral Defense. Viruses, 2021, 13, 394.	3.3	30
96	Potential APOBEC-mediated RNA editing of the genomes of SARS-CoV-2 and other coronaviruses and its impact on their longer term evolution. Virology, 2021, 556, 62-72.	2.4	74
97	Mutational Asymmetries in the SARS-CoV-2 Genome May Lead to Increased Hydrophobicity of Virus Proteins. Genes, 2021, 12, 826.	2.4	9
98	Creating RNA Specific C-to-U Editase from APOBEC3A by Separation of Its Activities on DNA and RNA Substrates. ACS Synthetic Biology, 2021, 10, 1106-1115.	3.8	14
99	Evolutionary Comparative Analyses of DNA-Editing Enzymes of the Immune System: From 5-Dimensional Description of Protein Structures to Immunological Insights and Applications to Protein Engineering. Frontiers in Immunology, 2021, 12, 642343.	4.8	6
101	APOBEC3G rescues cells from the deleterious effects of DNA damage. FEBS Journal, 2021, 288, 6063-6077.	4.7	6
102	Extensive C->U transition biases in the genomes of a wide range of mammalian RNA viruses; potential associations with transcriptional mutations, damage- or host-mediated editing of viral RNA. PLoS Pathogens, 2021, 17, e1009596.	4.7	32
103	SARS-CoV-2 variant evolution in the United States: High accumulation of viral mutations over time likely through serial Founder Events and mutational bursts. PLoS ONE, 2021, 16, e0255169.	2.5	28
104	Replication catastrophe induced by cyclic hypoxia leads to increased APOBEC3B activity. Nucleic Acids Research, 2021, 49, 7492-7506.	14.5	18
105	Integrated single-cell analysis unveils diverging immune features of COVID-19, influenza, and other community-acquired pneumonia. ELife, 2021, 10, .	6.0	12
106	Genotoxic stress and viral infection induce transient expression of APOBEC3A and pro-inflammatory genes through two distinct pathways. Nature Communications, 2021, 12, 4917.	12.8	28
107	APOBEC3C, a nucleolar protein induced by genotoxins, is excluded from DNA damage sites. FEBS Journal, 2022, 289, 808-831.	4.7	5
108	Evolutionary Signatures Governing the Codon Usage Bias in Coronaviruses and Their Implications for Viruses Infecting Various Bat Species. Viruses, 2021, 13, 1847.	3.3	15
109	The Role of RNA Editing in the Immune Response. Methods in Molecular Biology, 2021, 2181, 287-307.	0.9	8
110	Live-Cell Quantification of APOBEC1-Mediated RNA Editing: A Comparison of RNA Editing Assays. Methods in Molecular Biology, 2021, 2181, 69-81.	0.9	4
111	The structure of APOBEC1 and insights into its RNA and DNA substrate selectivity. NAR Cancer, 2020, 2, zcaa027.	3.1	16
112	The interesting relationship between APOBEC3 deoxycytidine deaminases and cancer: a long road ahead. Open Biology, 2020, 10, 200188.	3.6	27
113	Role of the single deaminase domain APOBEC3A in virus restriction, retrotransposition, DNA damage and cancer. Journal of General Virology, 2016, 97, 1-17.	2.9	24

ARTICLE IF CITATIONS # A mark of disease: how mRNA modifications shape genetic and acquired pathologies. Rna, 2021, 27, 122 3.5 24 367-389. RED: A Java-MySQL Software for Identifying and Visualizing RNA Editing Sites Using Rule-Based and 123 2.5 Statistical Filters. PLoS ONE, 2016, 11, e0150465. Similarity between mutation spectra in hypermutated genomes of rubella virus and in SARS-CoV-2 124 2.5 53 genomes accumulated during the COVID-19 pandemic. PLoS ONE, 2020, 15, e0237689. Coronavirus genomes carry the signatures of their habitats. PLoS ONE, 2020, 15, e0244025. The APOBEC3 genes and their role in cancer: insights from human papillomavirus. Journal of 126 2.5 33 Molecular Endocrinology, 2019, 62, R269-R287. APOBEC3G acts as a therapeutic target in mesenchymal gliomas by sensitizing cells to radiation-induced cell death. Oncotarget, 2017, 8, 54285-54296. 1.8 The Antiviral and Cancer Genomic DNA Deaminase APOBEC3H Is Regulated by a RNA-Mediated 128 0.4 1 Dimerization Mechanism. SSRN Electronic Journal, 0, , . Stem-loop structure preference for site-specific RNA editing by APOBEC3A and APOBEC3G. PeerJ, 2017, 5, 129 2.0 54 e4136. Single-stranded DNA binding proteins influence APOBEC3A substrate preference. Scientific Reports, 130 3.3 18 2021, 11, 21008. C-to-U RNA Editing: From Computational Detection to Experimental Validation. Methods in Molecular Biology, 2021, 2181, 51-67. Herpes Simplex Virus Type 1 Infection Disturbs the Mitochondrial Network, Leading to Type I Interferon 136 4.1 16 Production through the RNA Polymerase III/RIG-I Pathway. MBio, 2021, 12, e0255721. Evolution of the SARS-CoV-2 genome and emergence of variants of concern. Archives of Virology, 138 2.1 28 2022, 167, 293-305. Epitranscriptomics of cardiovascular diseases (Review). International Journal of Molecular Medicine, 139 4.0 9 2021, 49, . The optimal pH of AID is skewed from that of its catalytic pocket by DNA-binding residues and surface 140 3.7 charge. Biochemical Journal, 2022, 479, 39-55. Mutagenic Activity of AID/APOBEC Deaminases in Antiviral Defense and Carcinogenesis. Molecular 141 1.3 4 Biology, 2022, 56, 46-58. A digital PCR-based protocol to detect and quantify RNA editing events at hotspots. STAR Protocols, 142 1.2 2022, 3, 101148. A Systematic Review of Common and Brain-Disease-Specific RNA Editing Alterations Providing Novel 143 4.0 9 Insights into Neurological and Neurodegenerative Disease Manifestations. Biomolecules, 2022, 12, 465. The Base-Editing Enzyme APOBEC3A Catalyzes Cytosine Deamination in RNA with Low Proficiency and 144 High Selectivity. ACS Chemical Biology, 2022, 17, 629-636.

#	Article	IF	CITATIONS
146	Impact of the APOBEC3A/B deletion polymorphism on risk of ovarian cancer. Scientific Reports, 2021, 11, 23463.	3.3	5
162	APOBEC3A regulates transcription from interferon-stimulated response elements. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2011665119.	7.1	7
166	Clinical and Genetic Characteristics of Coronaviruses with Particular Emphasis on SARS-CoV-2 Virus. Polish Journal of Microbiology, 2022, 71, 141-159.	1.7	0
167	Cas-Based Systems for RNA Editing in Gene Therapy of Monogenic Diseases: In Vitro and in Vivo Application and Translational Potential. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	3
168	Succinate dehydrogenase inversely regulates red cell distribution width and healthy life span in chronically hypoxic mice. JCI Insight, 2022, 7, .	5.0	3
169	APOBEC3B: Future direction of liver cancer research. Frontiers in Oncology, 0, 12, .	2.8	Ο
170	C-to-U RNA Editing: A Site Directed RNA Editing Tool for Restoration of Genetic Code. Genes, 2022, 13, 1636.	2.4	3
171	The roles of APOBEC-mediated RNA editing in SARS-CoV-2 mutations, replication and fitness. Scientific Reports, 2022, 12, .	3.3	41
172	Replication-competent HIV-1 in human alveolar macrophages and monocytes despite nucleotide pools with elevated dUTP. Retrovirology, 2022, 19, .	2.0	2
173	Small-Angle X-ray Scattering (SAXS) Measurements of APOBEC3G Provide Structural Basis for Binding of Single-Stranded DNA and Processivity. Viruses, 2022, 14, 1974.	3.3	1
174	Prognostic value of an APOBEC3 deletion polymorphism for glioma patients in Taiwan. Journal of Neurosurgery, 2022, , 1-13.	1.6	2
175	Design, Synthesis, and Evaluation of a Cross-Linked Oligonucleotide as the First Nanomolar Inhibitor of APOBEC3A. Biochemistry, 2022, 61, 2568-2578.	2.5	5
176	<scp>APOBEC3G</scp> protects the genome of human cultured cells and mice from radiationâ€induced damage. FEBS Journal, 2023, 290, 1822-1839.	4.7	3
177	Competition for DNA binding between the genome protector replication protein A and the genome modifying APOBEC3 single-stranded DNA deaminases. Nucleic Acids Research, 2022, 50, 12039-12057.	14.5	8
178	ADAR RNA editing on antisense RNAs results in apparent U-to-C base changes on overlapping sense transcripts. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	0
179	Cellular APOBEC3A deaminase drives mutations in the SARS-CoV-2 genome. Nucleic Acids Research, 2023, 51, 783-795.	14.5	21
180	Lactobacillus for ribosome peptide editing cancer. Clinical and Translational Oncology, 0, , .	2.4	1
181	FOLR1-induced folate deficiency reduces viral replication via modulating APOBEC3 family expression.	3.0	4

\circ	P		_
		הטפי	DT
CITAT			

#	Article	IF	CITATIONS
182	The roles of nucleic acid editing in adaptation of zoonotic viruses to humans. Current Opinion in Virology, 2023, 60, 101326.	5.4	1
185	Pan-cancer investigation of C-to-U editing reveals its important role in cancer development and new targets for cancer treatment. Frontiers in Oncology, 0, 13, .	2.8	1
186	Clinical relevance of RNA editing profiles in lung adenocarcinoma. Frontiers in Genetics, 0, 14, .	2.3	0
187	The efficacy and safety of SARS-CoV-2 vaccines mRNA1273 and BNT162b2 might be complicated by rampant C-to-U RNA editing. Journal of Applied Genetics, 2023, 64, 361-365.	1.9	0
188	Genomic–transcriptomic evolution in lung cancer and metastasis. Nature, 2023, 616, 543-552.	27.8	44
189	DNA Deamination Is Required for Human APOBEC3A-Driven Hepatocellular Carcinoma In Vivo. International Journal of Molecular Sciences, 2023, 24, 9305.	4.1	1
190	Meta-Analysis of Keratoconus Transcriptomic Data Revealed Altered RNA Editing Levels Impacting Keratin Genomic Clusters. , 2023, 64, 12.		0
191	Molecular transition of SARS-CoV-2 from critical patients during the first year of the COVID-19 pandemic in Mexico City. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	0
192	APOBECs: Our fickle friends?. PLoS Pathogens, 2023, 19, e1011364.	4.7	2
193	Therapy-induced APOBEC3A drives evolution of persistent cancer cells. Nature, 2023, 620, 393-401.	27.8	23
194	Unraveling the Enzyme-Substrate Properties for APOBEC3A-Mediated RNA Editing. Journal of Molecular Biology, 2023, 435, 168198.	4.2	4
196	Enzymatic DNA repairing amplification-powered construction of an Au nanoparticle-based nanosensor for single-molecule monitoring of cytosine deaminase activity in cancer cells. Analytica Chimica Acta, 2023, 1281, 341895.	5.4	1
197	Structure-guided inhibition of the cancer DNA-mutating enzyme APOBEC3A. Nature Communications, 2023, 14, .	12.8	2
198	Precision RNA base editing with engineered and endogenous effectors. Nature Biotechnology, 2023, 41, 1526-1542.	17.5	6
199	Engineered deaminases as a key component of DNA and RNA editing tools. Molecular Therapy - Nucleic Acids, 2023, , 102062.	5.1	0
200	SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks― , 2024, 21, 171-183.		4
201	Acute expression of human APOBEC3B in mice results in RNA editing and lethality. Genome Biology, 2023, 24, .	8.8	2
202	APOBEC3G Is a p53-Dependent Restriction Factor in Respiratory Syncytial Virus Infection of Human Cells Included in the p53/Immune Axis. International Journal of Molecular Sciences, 2023, 24, 16793.	4.1	0

		CITATION R	EPORT	
#	ARTICLE		lF	CITATIONS
204	Improvement of Câ€toâ€U RNA editing using an artificial MS2â€APOBEC system. Biot	echnology Journal, 0, , .	3.5	0
205	Unraveling C-to-U RNA editing events from direct RNA sequencing. RNA Biology, 2024	. 21, 1-14.	3.1	0
206	APOBEC3 family proteins as drivers of virus evolution. Frontiers in Virology, 0, 3, .		1.4	0
207	Mutational impact of APOBEC3A and APOBEC3B in a human cell line and comparisons PLoS Genetics, 2023, 19, e1011043.	to breast cancer.	3.5	3
208	The Intricate Interplay between APOBEC3 Proteins and DNA Tumour Viruses. Pathoger	ıs, 2024, 13, 187.	2.8	0
209	Mesoscale DNA features impact APOBEC3A and APOBEC3B deaminase activity and sh mutational landscapes. Nature Communications, 2024, 15, .	ape tumor	12.8	0
210	Distinguishing preferences of human APOBEC3A and APOBEC3B for cytosines in hairp reflection of these preferences in APOBEC-signature cancer genome mutations. Nature Communications, 2024, 15, .	in loops, and 2	12.8	0