Characteristics and kinetic study on pyrolysis of five lig thermogravimetric analysis

Bioresource Technology 192, 441-450

DOI: 10.1016/j.biortech.2015.05.062

Citation Report

#	Article	IF	Citations
2	Development of a modified independent parallel reactions kinetic model and comparison with the distributed activation energy model for the pyrolysis of a wide variety of biomass fuels. Bioresource Technology, 2015, 197, 434-442.	4.8	42
3	Kinetics of Thermal Degradation of Cellulose: Analysis Based on Isothermal and Linear Heating Data. BioResources, $2016, 11, \ldots$	0.5	7
4	Thermal Study of Gels Obtained From Resol Type Phenolic Resins Modified With Lignin. Macromolecular Symposia, 2016, 370, 7-16.	0.4	2
5	Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method. Energy Conversion and Management, 2016, 118, 1-11.	4.4	232
6	Effect of biodegradation on thermogravimetric and chemical characteristics of hardwood and softwood by brown-rot fungus. Bioresource Technology, 2016, 211, 443-450.	4.8	23
7	Influence of HSAPO-34, HZSM-5, and NaY on pyrolysis of corn straw fermentation residue via Py-GC/MS. Journal of Analytical and Applied Pyrolysis, 2016, 122, 183-190.	2.6	22
8	Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics. Bioresource Technology, 2016, 219, 510-520.	4.8	145
9	The effect of carbonization temperature on the morphology and adsorption of pine-shoot biomorphic porous carbon. Journal of Porous Materials, 2016, 23, 1169-1179.	1.3	5
10	Kinetics of co-pyrolysis of sawdust, coal and tar. Bioresource Technology, 2016, 205, 222-229.	4.8	49
11	Thermo-chemical behavior and product formation during pyrolysis of mango seed shell. Industrial Crops and Products, 2016, 85, 174-180.	2.5	46
12	Thermal properties and thermal degradation kinetics of phenolic and wood flour-reinforced phenolic foams. Journal of Composite Materials, 2017, 51, 125-138.	1.2	8
13	Nonisothermal drying kinetics of biomass fuels by thermogravimetric analysis under oxidative and inert atmosphere. Drying Technology, 2017, 35, 163-172.	1.7	21
14	Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 2017, 129, 1201-1213.	2.0	77
15	Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods. Renewable Energy, 2017, 107, 489-496.	4.3	300
16	The investigation of co-combustion of sewage sludge and oil shale using thermogravimetric analysis. Thermochimica Acta, 2017, 653, 71-78.	1.2	60
17	Fast pyrolysis kinetics of alkali lignin: Evaluation of apparent rate parameters and product time evolution. Bioresource Technology, 2017, 241, 142-151.	4.8	60
18	Kinetic Analysis of Tropical Lignocellulosic Agrowaste Pyrolysis. Bioenergy Research, 2017, 10, 832-845.	2.2	50
19	Evaluation of agricultural residues pyrolysis under non-isothermal conditions: Thermal behaviors, kinetics, and thermodynamics. Bioresource Technology, 2017, 241, 340-348.	4.8	96

#	Article	IF	Citations
20	Pyrolysis-gas chromatography–mass spectrometry Kováts retention index of pyrolysis products of lignocellulosic materials. Journal of Analytical and Applied Pyrolysis, 2017, 126, 332-336.	2.6	11
21	Comparative evaluation of thermal oxidative decomposition for oil-plant residues via thermogravimetric analysis: Thermal conversion characteristics, kinetics, and thermodynamics. Bioresource Technology, 2017, 243, 37-46.	4.8	60
22	Thermal decomposition and kinetics of residual rubber seed cake and shell. Journal of Thermal Analysis and Calorimetry, 2017, 129, 577-592.	2.0	8
23	Catalytic pyrolysis of corn straw fermentation residue for producing alkyl phenols. Renewable Energy, 2017, 109, 287-294.	4.3	9
24	Mechanically enhanced electrically conductive films from polymerization of 3,4â \in ethylenedioxythiophene with wood microfibers. Journal of Applied Polymer Science, 2017, 134, .	1.3	6
25	Biochar potential evaluation of palm oil wastes through slow pyrolysis: Thermochemical characterization and pyrolytic kinetic studies. Bioresource Technology, 2017, 236, 155-163.	4.8	156
26	Study of thermal decomposition process and the reaction mechanism of the eucalyptus wood. Wood Science and Technology, 2017, 51, 1081-1094.	1.4	19
27	Thermogravimetry Study of the Pyrolytic Characteristics and Kinetics of Fast-Growing <i>Eucalyptus</i> Residue. Energy &	2.5	8
28	Thermogravimetric pyrolysis kinetics of bamboo waste via Asymmetric Double Sigmoidal (Asym2sig) function deconvolution. Bioresource Technology, 2017, 225, 48-57.	4.8	70
29	Cellulose Nanocrystals (CNCs) from Corn Stalk: Activation Energy Analysis. Materials, 2017, 10, 80.	1.3	53
30	Thermal Degradation Kinetics of Sugarcane Bagasse and Soft Wood Cellulose. Materials, 2017, 10, 1246.	1.3	39
31	Hydrogen-Rich Syngas Production from Gasification and Pyrolysis of Solar Dried Sewage Sludge: Experimental and Modeling Investigations. BioMed Research International, 2017, 2017, 1-14.	0.9	25
32	Physicochemical Characterization of Representative Firewood Species Used for Cooking in Some Colombian Regions. International Journal of Chemical Engineering, 2017, 2017, 1-13.	1.4	22
33	Critical Links Governing Performance of Self-binding and Natural Binders for Hot-pressed Reconstituted Lignocellulosic Board without Added Formaldehyde: A Review. BioResources, 2017, 13, .	0.5	24
34	Evaluating the bioenergy potential of Chinese Liquor-industry waste through pyrolysis, thermogravimetric, kinetics and evolved gas analyses. Energy Conversion and Management, 2018, 163, 13-21.	4.4	62
35	Modeling of the co-pyrolysis of rubber residual and HDPE waste using the distributed activation energy model (DAEM). Applied Thermal Engineering, 2018, 138, 336-345.	3.0	40
36	Physical-energy characterization of microalgae Scenedesmus and experimental pellets. Fuel, 2018, 226, 121-126.	3.4	37
37	Removal of aqueous Cr(VI) by a magnetic biochar derived from Melia azedarach wood. Bioresource Technology, 2018, 256, 1-10.	4.8	189

#	ARTICLE	IF	CITATIONS
38	Characteristics and kinetics analyses of different genus biomass pyrolysis. Korean Journal of Chemical Engineering, 2018, 35, 511-517.	1.2	25
39	Kinetic analysis of cattle manure pyrolysis process with a novel twoâ€step method: Pseudoâ€component model coupled with multipeak gaussian fitting. Environmental Progress and Sustainable Energy, 2018, 37, 1618-1625.	1.3	5
40	Characterization and product formation during the catalytic and non-catalytic pyrolysis of the green microalgae Chlamydomonas reinhardtii. Renewable Energy, 2018, 119, 731-740.	4.3	93
41	Assessing thermal behaviors and kinetics of (co-)combustion of textile dyeing sludge and sugarcane bagasse. Applied Thermal Engineering, 2018, 131, 874-883.	3.0	50
42	Thermogravimetric study and evolved gas analysis of new microalga using TGA-GC-MS. Biomass Conversion and Biorefinery, 2018, 8, 669-678.	2.9	7
43	A green and sustainable approach on statistical optimization of laccase mediated delignification of sugarcane tops for enhanced saccharification. Journal of Environmental Management, 2018, 217, 700-709.	3.8	41
44	Enhanced hydrogen production in catalytic pyrolysis of sewage sludge by red mud: Thermogravimetric kinetic analysis and pyrolysis characteristics. International Journal of Hydrogen Energy, 2018, 43, 7795-7807.	3.8	65
45	Thermo-chemical conversion of waste rubber seed shell to produce fuel and value-added chemicals. Journal of the Energy Institute, 2018, 91, 940-950.	2.7	21
46	Multi-scale modelling of wood degradation using thermally thin wood plates. Journal of Physics: Conference Series, 2018, 1107, 052001.	0.3	0
47	Preliminary study on decanoic/palmitic eutectic mixture modified silica fume geopolymer-based coating for flame retardant plywood. Construction and Building Materials, 2018, 189, 1-7.	3.2	36
48	Pyrolysis of brewer's spent grain: Kinetic study and products identification. Industrial Crops and Products, 2018, 121, 388-395.	2.5	57
49	Life cycle assessment of oil palm empty fruit bunch delignification using natural malic acid-based low-transition-temperature mixtures: a gate-to-gate case study. Clean Technologies and Environmental Policy, 2018, 20, 1917-1928.	2.1	6
50	Pyrolysis behavior and kinetics of corn residue pellets and eucalyptus wood chips in a macro thermogravimetric analyzer. Case Studies in Thermal Engineering, 2018, 12, 546-556.	2.8	60
51	Pyrolysis of tobacco factory waste biomass. Journal of Thermal Analysis and Calorimetry, 2019, 136, 783-794.	2.0	24
52	Ecological Ammonium Thiocyanate-Modified Geopolymeric Coating for Flame-Retarding Plywood. Coatings, 2019, 9, 479.	1.2	4
53	Investigations on <i>Cunninghamia Lanceolate</i> Cedar Wood Pyrolysis by Thermogravimetric-Fourier Transform Infrared Analysis and a Modified Discrete Distributed Activation Energy Model Kinetic Method. Energy & Fuels, 2019, 33, 12499-12507.	2.5	9
54	Catalytic Fast Pyrolysis of Forestry Wood Waste for Bio-Energy Recovery Using Nano-Catalysts. Energies, 2019, 12, 3972.	1.6	6
55	Characterization and thermal decomposition of demineralized wastewater algae biomass. Algal Research, 2019, 38, 101399.	2.4	23

#	ARTICLE	IF	CITATIONS
56	Kinetic analysis of Wood residues and Gorse (Ulex europaeus) pyrolysis under non-isothermal conditions: A case of study in $Bogot\tilde{A}_i$, Colombia. E3S Web of Conferences, 2019, 103, 02004.	0.2	1
57	Characterization and Analysis of Malaysian Macroalgae Biomass as Potential Feedstock for Bio-Oil Production. Energies, 2019, 12, 3509.	1.6	16
58	DAEM kinetics analysis and finite element simulation of thermal debinding process for a gelcast SiAlON green body. Ceramics International, 2019, 45, 8166-8174.	2.3	5
59	Non-isothermal kinetics of pseudo-components of waste biomass. Fuel, 2019, 253, 1149-1161.	3.4	71
60	Multi-scale modeling of the degradation of thermally thin wood plates. Fire Safety Journal, 2019, 108, 102823.	1.4	4
61	Acacia Holosericea: An Invasive Species for Bio-char, Bio-oil, and Biogas Production. Bioengineering, 2019, 6, 33.	1.6	57
62	Detailed study of pyrolysis kinetics of biomass using thermogravimetric analysis. AIP Conference Proceedings, 2019, , .	0.3	8
63	Experimental Analysis of Brewers' Spent Grains Steam Gasification in an Allothermal Batch Reactor. Energies, 2019, 12, 912.	1.6	33
64	Comparative Evaluation of Hydrothermal Carbonization and Low Temperature Pyrolysis of Eucommia ulmoides Oliver for the Production of Solid Biofuel. Scientific Reports, 2019, 9, 5535.	1.6	47
65	Solid Waste as a Renewable Source of Energy: A Comparative Study on Thermal and Kinetic Behavior of Three Organic Solid Wastes. Energy & Samp; Fuels, 2019, 33, 4378-4388.	2.5	21
66	Effect of volatiles interaction during pyrolysis of cellulose, hemicellulose, and lignin at different temperatures. Fuel, 2019, 248, 1-7.	3.4	69
67	Pyrolysis kinetics and thermodynamic parameters of the hydrochars derived from co-hydrothermal carbonization of sawdust and sewage sludge using thermogravimetric analysis. Bioresource Technology, 2019, 282, 133-141.	4.8	75
68	Catalytic performance of potassium in lignocellulosic biomass pyrolysis based on an optimized three-parallel distributed activation energy model. Bioresource Technology, 2019, 281, 412-420.	4.8	31
69	Thermal debinding behavior of a low-toxic DMAA polymer for gelcast ceramic parts based on TG-FTIR and kinetic modeling. RSC Advances, 2019, 9, 8415-8425.	1.7	10
70	Thermal and co-pyrolysis of rubber seed cake with waste polystyrene for bio-oil production. Journal of Analytical and Applied Pyrolysis, 2019, 139, 333-343.	2.6	33
71	The influence of temperature on the physicochemical properties of products of pyrolysis of leather-tannery waste. Waste Management, 2019, 88, 248-256.	3.7	28
72	Synthesis, Characterization and Thermal Behavior Study of New 1,2,3-Triazole Derivatives Containing 1,3,4-Oxadiazole Ring. Oriental Journal of Chemistry, 2019, 35, 416-422.	0.1	3
73	Thermogravimetric and kinetic studies of metal (Ru/Fe) impregnated banana pseudo-stem (Musa) Tj ETQq1 1 0.7	784314 rg 	BT <u>{</u> Qverloc

5

#	ARTICLE	IF	Citations
74	Bulk features of catalytic co-pyrolysis of sugarcane bagasse and a hydrogen-rich waste: The case of waste heavy paraffin. Renewable Energy, 2019, 140, 970-982.	4.3	11
75	Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 2019, 107, 20-36.	8.2	186
76	Influence of kinetic parameters on <i>Calotropis procera</i> by TGA under pyrolytic conditions. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2023, 45, 8257-8270.	1.2	10
77	Distribution of Cycle Times in Sawdust Conical Spouted Bed Equipped with Fountain Confiner and Draft Tube. Industrial & Draft Tube.	1.8	9
78	Thermogravimetric analysis of Pakistani biomasses using nitrogen and oxygen as a carrier gas. Chemical Papers, 2019, 73, 601-609.	1.0	4
79	Thermal Characteristics and Kinetic Analysis of Woody Biomass Pyrolysis in the Presence of Bifunctional Alkali Metal Ceramics. ACS Sustainable Chemistry and Engineering, 2019, 7, 238-248.	3.2	31
80	Effects of fuel content and density on the smoldering characteristics of cellulose and hemicellulose. Proceedings of the Combustion Institute, 2019, 37, 4107-4116.	2.4	13
81	Thermal conversion of defective coffee beans for energy purposes: Characterization and kinetic modeling. Renewable Energy, 2020, 147, 1275-1291.	4.3	11
82	Evaluation of the bioenergy potential of invasive Pennisetum purpureum through pyrolysis and thermogravimetric analysis. Energy, Ecology and Environment, 2020, 5, 118-133.	1.9	46
83	Production and in situ transformation of hematite into magnetite from the thermal decomposition of iron nitrate or goethite mixed with biomass. Journal of Thermal Analysis and Calorimetry, 2020, 139, 1731-1739.	2.0	9
84	Comparative Pyrolysis Characteristics and Kinetics of Typical Hardwood in Inert and Oxygenous Atmosphere. Applied Biochemistry and Biotechnology, 2020, 190, 90-112.	1.4	12
85	Study of quinoa plant residues as a way to produce energy through thermogravimetric analysis and indexes estimation. Renewable Energy, 2020, 146, 2224-2233.	4.3	34
86	Leaching of alkali and alkaline earth metallic species (AAEMs) with phenolic substances in bio-oil and its effect on pyrolysis characteristics of moso bamboo. Fuel Processing Technology, 2020, 200, 106332.	3.7	27
87	Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis. Renewable and Sustainable Energy Reviews, 2020, 121, 109676.	8.2	173
88	Generating Energy and Greenhouse Gas Inventory Data of Activated Carbon Production Using Machine Learning and Kinetic Based Process Simulation. ACS Sustainable Chemistry and Engineering, 2020, 8, 1252-1261.	3.2	43
89	Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production. Renewable Energy, 2020, 148, 168-175.	4.3	34
90	TGA and kinetic study of different torrefaction conditions of wood biomass under air and oxy-fuel combustion atmospheres. Journal of the Energy Institute, 2020, 93, 889-898.	2.7	111
91	Impacts of uncertain feedstock quality on the economic feasibility of fast pyrolysis biorefineries with blended feedstocks and decentralized preprocessing sites in the Southeastern United States. GCB Bioenergy, 2020, 12, 1014-1029.	2.5	15

#	Article	IF	CITATIONS
92	Study of Raw and Recycled Polyethylene Terephthalate by Meaning of TGA and Computer Simulation. Advances in Polymer Technology, 2020, 2020, 1-7.	0.8	7
93	Pyrolysis of cocoa shell and its bioenergy potential: evaluating the kinetic triplet, thermodynamic parameters, and evolved gas analysis using TGA-FTIR. Biomass Conversion and Biorefinery, 2022, 12, 723-739.	2.9	33
94	Kinetics of catalytic and non-catalytic pyrolysis of Nerium Oleander. Fuel, 2020, 280, 118591.	3.4	22
95	Catalytic pyrolysis of rain tree biomass with nano nickel oxide synthetized from nickel plating slag: A green path for treating waste by waste. Bioresource Technology, 2020, 315, 123831.	4.8	30
96	Thermochemical conversion of Polyalthia longifolia leaves at different temperatures and characterization of their products. Fuel, 2020, 280, 118574.	3.4	16
97	Exploiting Deep Eutectic Solvents and Ionic Liquids for the Valorization of Chestnut Shell Waste. ACS Sustainable Chemistry and Engineering, 2020, 8, 18386-18399.	3.2	46
98	Insight into the Ex Situ Catalytic Pyrolysis of Biomass over Char Supported Metals Catalyst: Syngas Production and Tar Decomposition. Nanomaterials, 2020, 10, 1397.	1.9	20
99	Gasification performance of sawdust, pelletized sawdust and sub-bituminous coal in a downdraft gasifier. SN Applied Sciences, 2020, 2, 1.	1.5	3
100	Grindability, thermogravimetric characteristics, and kinetics analysis of semiâ€biochar from coarse wood pyrolyzed in a fluidized bed. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2458.	0.8	1
101	Activated Carbon by Potassium Carbonate Activation from Pine Sawdust (<i>Pinus</i> nus<	0.9	27
102	Modelling approaches to waste biomass pyrolysis: a review. Renewable Energy, 2020, 159, 427-443.	4.3	57
103	Biochar characterization of invasive Pennisetum purpureum grass: effect of pyrolysis temperature. Biochar, 2020, 2, 239-251.	6.2	61
104	Gas-pressurized torrefaction of biomass wastes: The effect of varied pressure on pyrolysis kinetics and mechanism of torrefied biomass. Fuel, 2020, 276, 118132.	3.4	18
105	Catalytic combustions of two bamboo residues with sludge ash, CaO, and Fe2O3: Bioenergy, emission and ash deposition improvements. Journal of Cleaner Production, 2020, 270, 122418.	4.6	25
106	Comparison on solid biofuel production from wet and dry carbonization processes of food wastes. Applied Energy, 2020, 272, 115264.	5.1	33
107	Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes. Waste Management, 2020, 113, 96-104.	3.7	26
108	A comparative study of the behavior of <i>Chlamydomonas reinhardtii</i> and <i>Spirulina platensis</i> in solar catalytic pyrolysis. International Journal of Energy Research, 2020, 44, 5397-5411.	2.2	19
109	Pyrolysis of biological wastes for bioenergy production: Thermo-kinetic studies with machine-learning method and Py-GC/MS analysis. Fuel, 2020, 269, 117238.	3.4	44

#	Article	IF	CITATIONS
110	Explosive property and combustion kinetics of grain dust with different particle sizes. Heliyon, 2020, 6, e03457.	1.4	13
111	Kinetics, Thermodynamics, and Volatile Products of Camphorwood Pyrolysis in Inert Atmosphere. Applied Biochemistry and Biotechnology, 2020, 191, 1605-1623.	1.4	12
112	Engineered biochar with anisotropic layered double hydroxide nanosheets to simultaneously and efficiently capture Pb2+ and CrO42â° from electroplating wastewater. Bioresource Technology, 2020, 306, 123118.	4.8	66
113	Kinetics Model Reconstruction for Multistep Overlapping Thermal Decomposition of Ammonium Perchlorate with and without the Copper Oxide Compound Catalyst. Combustion Science and Technology, 2021, 193, 2856-2871.	1.2	8
114	Combustions of torrefaction-pretreated bamboo forest residues: Physicochemical properties, evolved gases, and kinetic mechanisms. Bioresource Technology, 2020, 304, 122960.	4.8	69
115	Investigation on the Explosion and Combustion of Various Carbon–Starch Blended Dust. Starch/Staerke, 2020, 72, 1900136.	1.1	2
116	Apricot kernel shells pyrolysis controlled by non-isothermal simultaneous thermal analysis (STA). Journal of Thermal Analysis and Calorimetry, 2020, 142, 565-579.	2.0	19
117	Pyrolysis Kinetics, Thermodynamics, and Volatiles of Representative Pine Wood with Thermogravimetry–Fourier Transform Infrared Analysis. Energy & Fuels, 2020, 34, 1859-1869.	2.5	35
118	Drying and Pyrolysis of Lulo Peel: Non-Isothermal Analysis of Physicochemical, Kinetics, and Master Plots. Bioenergy Research, 2020, 13, 927-938.	2.2	7
119	Characterization of acerola (Malpighia emarginata) industrial waste as raw material for thermochemical processes. Waste Management, 2020, 107, 143-149.	3.7	17
120	Catalytic Pyrolysis of Polystyrene over Steel Slag under CO2 Environment. Journal of Hazardous Materials, 2020, 395, 122576.	6.5	61
121	Thermochemical characterisation of <i>Acacia auriculiformis</i> tree parts via proximate, ultimate, TGA, DTG, calorific value and FTIR spectroscopy analyses to evaluate their potential as a biofuel resource. Biofuels, 2021, 12, 9-20.	1.4	35
122	Thermochemical conversion of coconut waste: material characterization and identification of pyrolysis products. Journal of Thermal Analysis and Calorimetry, 2021, 143, 637-646.	2.0	15
123	Synergistic effects, gaseous products, and evolutions of NOx precursors during (co-)pyrolysis of textile dyeing sludge and bamboo residues. Journal of Hazardous Materials, 2021, 401, 123331.	6.5	65
124	Insight into a new phenolic-leaching pretreatment on bamboo pyrolysis: Release characteristics of pyrolytic volatiles, upgradation of three phase products, migration of elements, and energy yield. Renewable and Sustainable Energy Reviews, 2021, 136, 110444.	8.2	64
125	Pyrolysis of ficus nitida wood: Determination of kinetic and thermodynamic parameters. Fuel, 2021, 283, 119253.	3.4	48
126	Intra-pellet transport limitations in the pyrolysis of raintree leaves litter. Energy, 2021, 216, 119267.	4.5	4
127	Detoxification of sisal bagasse hydrolysate using activated carbon produced from the gasification of açaÃ-waste. Journal of Hazardous Materials, 2021, 409, 124494.	6.5	25

#	Article	IF	CITATIONS
128	A robust and frugal model of biomass pyrolysis in the range 100–800°C: Inverse analysis of DAEM parameters, validation on static tests and determination of heats of reaction. Fuel, 2021, 288, 119692.	3.4	6
129	Notes on useful materials and synthesis through various chemical solution techniques. , 2021, , 29-78.		1
130	Combustion Characteristics, Kinetics, and Thermodynamics of Pine Wood Through Thermogravimetric Analysis. Applied Biochemistry and Biotechnology, 2021, 193, 1427-1446.	1.4	23
131	Effect of temperature on catalytic pyrolysis of Polyalthia Longifolia leaves solid waste and characterization of their products. Current Research in Green and Sustainable Chemistry, 2021, 4, 100062.	2.9	13
132	Multiple-distribution DAEM modelling of spruce pyrolysis: An investigation of the best trade-off regarding the number and shape of distributions. Energy Conversion and Management, 2021, 229, 113756.	4.4	17
133	Cocoa pod husk valorization: alkaline-enzymatic pre-treatment for propionic acid production. Cellulose, 2021, 28, 4009-4024.	2.4	15
134	Enhancement of Biogas Production from Macroalgae Ulva latuca via Ozonation Pretreatment. Energies, 2021, 14, 1703.	1.6	26
135	Thermochemical putrefaction of Delonix regia biomass and tube waste to produce high-quality pyrolytic bio-oil. Journal of Thermal Analysis and Calorimetry, 2022, 147, 2969-2983.	2.0	6
136	Reaction mechanisms and product patterns of Pteris vittata pyrolysis for cleaner energy. Renewable Energy, 2021, 167, 600-612.	4.3	16
137	Pyrolysis behavior of alternative cork species. Journal of Thermal Analysis and Calorimetry, 2022, 147, 4017-4025.	2.0	5
138	Chemical composition and calorific value of elephant grass varieties and other feedstocks intended for direct combustion. Grassland Science, 2021, 67, 241-249.	0.6	7
139	Combustion Characteristics and Kinetic Analysis of Biomass Pellet Fuel Using Thermogravimetric Analysis. Processes, 2021, 9, 868.	1.3	28
140	Fast pyrolysis kinetics of lignocellulosic biomass of varying compositions. Energy Conversion and Management: X, 2021, 10, 100071.	0.9	10
141	Comprehensive kinetic study of Imperata Cylindrica pyrolysis via Asym2sig deconvolution and combined kinetics. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105133.	2.6	41
142	Pyrolysis, kinetics, and structural analyses of agricultural residues in Egypt: For future assessment of their energy potential. Cleaner Engineering and Technology, 2021, 2, 100080.	2.1	9
143	Biowaste-to-biochar through microwave-assisted wet co-torrefaction of blending mango seed and passion shell with optoelectronic sludge. Energy, 2021, 225, 120213.	4.5	17
144	Biomethane Production From Residual Algae Biomass (Ecklonia maxima): Effects of Inoculum Acclimatization on Yield. Waste and Biomass Valorization, 2022, 13, 497-509.	1.8	11
145	Hygroscopicity, degradation and thermal stability of isolated bamboo fibers and parenchyma cells upon moderate heat treatment. Cellulose, 2021, 28, 8867-8876.	2.4	23

#	ARTICLE	IF	CITATIONS
146	A study on multistep thermal decomposition behavior and kinetics of magnesium nitrate hydrate. Thermochimica Acta, 2021, 701, 178951.	1.2	17
147	Torrefaction influence on combustion kinetics of Malaysian oil palm wastes. Fuel Processing Technology, 2021, 218, 106843.	3.7	24
148	Thermal and Kinetic Studies on Biomass Degradation <i>via</i> Thermogravimetric Analysis: A Combination of Model-Fitting and Model-Free Approach. ACS Omega, 2021, 6, 22233-22247.	1.6	39
149	Biofuels and biochars production from agricultural biomass wastes by thermochemical conversion technologies: Thermogravimetric analysis and pyrolysis studies. Progress in Agricultural Engineering Sciences, 2021, , .	0.5	1
150	A two-dimensional distributed activation energy model for pyrolysis of solid fuels. Energy, 2021, 230, 120860.	4.5	7
151	Investigation on the kinetic behavior, thermodynamic and volatile products analysis of chili straw waste pyrolysis. Journal of Environmental Chemical Engineering, 2021, 9, 105859.	3.3	30
152	Kinetics of pyrolysis of cotton stalk using model-fitting and model-free methods. Fuel, 2021, 303, 121285.	3.4	35
153	Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Processing Technology, 2021, 223, 106997.	3.7	256
154	Prospection of catole coconut (Syagrus cearensis) as a new bioenergy feedstock: Insights from physicochemical characterization, pyrolysis kinetics, and thermodynamics parameters. Renewable Energy, 2022, 181, 207-218.	4.3	27
155	mixchar: An R Package for the Deconvolution of Thermal Decay Curves. Journal of Open Research Software, 2021, 9, .	2.7	1
156	Sorbents from waste materials: A circular economic approach. , 2021, , 285-322.		4
157	Agro-industrial Wastes: Environmental Toxicology, Risks, and Biological Treatment Approaches. Microorganisms for Sustainability, 2019, , 1-23.	0.4	3
158	Kinetic analysis and thermal degradation study on wheat straw and its biochar from vacuum pyrolysis under non-isothermal condition. Biomass Conversion and Biorefinery, 2023, 13, 7547-7559.	2.9	25
159	Comparative study on pyrolysis of Delonix Regia, Pinewood sawdust and their co-feed for plausible bio-fuels production. Energy, 2020, 203, 117921.	4.5	28
160	ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochimica Acta, 2020, 689, 178597.	1.2	482
161	Dynamic life cycle carbon and energy analysis for cross-laminated timber in the Southeastern United States. Environmental Research Letters, 2020, 15, 124036.	2.2	35
162	Preparation and Characterisation of Biochar from Hazelnut Shell and Its Adsorption Properties for Methylene Blue Dye. Journal of Polytechnic, $0, , .$	0.4	8
163	Iron-coated biochar alleviates acid accumulation and improves methane production under ammonium enrichment conditions. Science of the Total Environment, 2022, 809, 151154.	3.9	8

#	ARTICLE	IF	CITATIONS
164	Reaction kinetics during non-isothermal solid-state synthesis of boron trioxide via boric acid dehydration. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 347-359.	0.8	12
165	KIETOJO ATGAUTOJO KURO GRANULIŲ SAVYBIŲ TYRIMAI. , 2018, , .		0
166	Versatile Model Selection for Pyrolysis of Lignocellulosic-Biomass Components. , 2019, , .		2
167	Prospecting pecan nutshell pyrolysis as a source of bioenergy and bio-based chemicals using multicomponent kinetic modeling, thermodynamic parameters estimation, and Py-GC/MS analysis. Renewable and Sustainable Energy Reviews, 2022, 153, 111753.	8.2	54
168	Thermo-Oxidative Degradation Kinetics of Biomass Pseudo-Components Using Asymmetric Function of Bi-Gaussian as Deconvolution Technique. SSRN Electronic Journal, 0, , .	0.4	0
169	All-lignocellulosic fiberboards from giant reed (Arundo donax L.): Effect of steam explosion pre-treatment on physical and mechanical properties. Construction and Building Materials, 2022, 319, 126064.	3.2	12
170	Insight into the pyrolysis kinetics of cellulose, xylan and lignin with the addition of potassium and calcium based on distributed activation energy model. Energy, 2022, 243, 122816.	4.5	9
171	Simulation of thermal runaway prediction model for nickel-rich Lithium ion batteries. , 2020, , .		4
172	Thermal Analysis and Kinetic Modeling of Pyrolysis and Oxidation of Hydrochars. Energies, 2022, 15, 950.	1.6	12
173	Application of a Hybrid PSO-GA Optimization Algorithm in Determining Pyrolysis Kinetics of Biomass. SSRN Electronic Journal, 0, , .	0.4	0
174	Pyrolysis of juice-squeezed grapefruit waste: effect of nickel oxide on kinetics and bio-oil yield. International Journal of Environmental Science and Technology, 2022, 19, 10211-10222.	1.8	9
175	Thermogravimetric kinetics and pyrolytic tri-state products analysis towards insights into understanding the pyrolysis mechanism of Spirulina platensis with calcium oxide. Renewable Energy, 2022, 184, 498-509.	4.3	14
176	Kinetic analysis and modeling of maize straw hydrochar combustion using a multi-Gaussian-distributed activation energy model. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 464-472.	2.4	15
177	Hydrogen production via in-line pyrolysis-reforming of organic solid waste enhanced by steel slags. International Journal of Hydrogen Energy, 2022, 47, 6605-6619.	3.8	11
178	Biomass to biofuel densification of coconut fibers: kinetic triplet and thermodynamic evaluation. Biomass Conversion and Biorefinery, 2024, 14, 631-648.	2.9	7
179	Evaluation of the physical-mechanical and energy properties of coffee husk briquettes with kraft lignin during slow pyrolysis. Renewable Energy, 2022, 189, 1007-1019.	4.3	10
180	Kinetic and thermodynamic studies of biomass pseudo-components under thermo-oxidative degradation conditions using asymmetric function of Bi-Gaussian as deconvolution technique. Renewable Energy, 2022, 188, 491-503.	4.3	9
181	Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass. Journal of Analytical and Applied Pyrolysis, 2022, 163, 105479.	2.6	95

#	Article	IF	CITATIONS
182	Research on the co-pyrolysis of coal slime and cellulose based on TG-FTIR-MS, artificial neural network, and principal component analysis. Fuel, 2022, 320, 123960.	3.4	20
183	Determination of the Kinetics and Thermodynamic Parameters of Lignocellulosic Biomass Subjected to the Torrefaction Process. Materials, 2021, 14, 7877.	1.3	17
184	Investigation on prospective bioenergy from pyrolysis of butia seed waste using TGA-FTIR: Assessment of kinetic triplet, thermodynamic parameters and evolved volatiles. Renewable Energy, 2022, 191, 238-250.	4.3	24
185	Kinetic and thermodynamic analyses of co-pyrolysis of pine wood and polyethylene plastic based on Fraser-Suzuki deconvolution procedure. Fuel, 2022, 322, 124200.	3.4	30
186	An insight into the thermokinetics of the pyrolysis of invasive grass Sorghum halepense towards its bioenergy potential. Biomass Conversion and Biorefinery, 2024, 14, 5305-5318.	2.9	5
187	Tailored production of lignin-containing cellulose nanofibrils from sugarcane bagasse pretreated by acid-catalyzed alcohol solutions. Carbohydrate Polymers, 2022, 291, 119602.	5.1	19
188	Application of a hybrid PSO-GA optimization algorithm in determining pyrolysis kinetics of biomass. Fuel, 2022, 323, 124344.	3.4	18
189	Thermal Debinding Kinetics of Gelcast Ceramic Parts via a Modified Independent Parallel Reaction Model in Comparison with the Multiple Normally Distributed Activation Energy Model. ACS Omega, 2022, 7, 20219-20228.	1.6	2
190	Investigation on Thermokinetic Study and Optimization of Sugarcane Bagasse Thermal Pyrolysis. Sugar Tech, 2023, 25, 198-209.	0.9	1
191	Progressive deconvolution of biomass thermogram to derive lignocellulosic composition and pyrolysis kinetics for parallel reaction model. Energy, 2022, 254, 124446.	4.5	8
192	Performance and mechanism of bamboo residues pyrolysis: Gas emissions, by-products, and reaction kinetics. Science of the Total Environment, 2022, 838, 156560.	3.9	21
193	Thermal degradation and kinetic studies of redwood (Pinus sylvestris L.). Progress in Agricultural Engineering Sciences, 2022, 18, 33-59.	0.5	0
194	Pyrolysis of Sugarcane (<i>Saccharum officinarum</i> L.) Leaves and Characterization of Products. ACS Omega, 2022, 7, 28052-28064.	1.6	10
195	Effect of Potassium Salts on Biochar Pyrolysis. Energies, 2022, 15, 5779.	1.6	4
196	Pyrolysis kinetics of hydrochar using distributed activation energy model. Biofuels, Bioproducts and Biorefining, 2023, 17, 97-108.	1.9	1
197	Thermochemical Recycling of Solid Biomass Materials for Achieving Sustainable Goal: A Complete Characterization Study on Liquid Yield Products. Journal of Chemistry, 2022, 2022, 1-9.	0.9	1
199	Thermogravimetric Analysis of Marine Macroalgae Waste Biomass as Bio-Renewable Fuel. Journal of Chemistry, 2022, 2022, 1-9.	0.9	4
200	Microorganisms and Genetic Improvement for First and Second Generation Bioethanol Production. Biofuel and Biorefinery Technologies, 2022, , 29-60.	0.1	0

#	ARTICLE	IF	CITATIONS
201	Pyrolysis and combustion behaviors of densified wood. Proceedings of the Combustion Institute, 2023, 39, 4175-4184.	2.4	7
202	Synthesis of biochar using brewery waste for efficient adsorption of ionic iron species. Biomass Conversion and Biorefinery, 0, , .	2.9	1
203	Kinetic study of thermal decomposition of sugarcane bagasse pseudo-components at typical pretreatment conditions: Simulations of opportunities towards the establishment of a feasible primary biorefining., 2022, 4, 100074.		3
204	Evaluation of the Gas Emissions during the Thermochemical Conversion of Eucalyptus Woodchips. Processes, 2022, 10, 2413.	1.3	1
205	Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood. Chinese Journal of Chemical Engineering, 2023, 58, 53-68.	1.7	8
206	Thermochemical conversion of African balsam leavesâ€cow dung hybrid wastes into biochar. Biofuels, Bioproducts and Biorefining, 2023, 17, 510-522.	1.9	17
207	A circular approach for the treatment of aqueous metal effluent and biomass to generate superparamagnetic nanometal carbon hybrid and hydrogen-rich gas mixture. Journal of Hazardous Materials Advances, 2023, 9, 100213.	1.2	3
208	A method for addressing compensation effect in determining kinetics of biomass pyrolysis. Fuel, 2023, 335, 127123.	3.4	5
209	Chemical Evaluation via High-Resolution Techniques and Biopesticide Potential of Bio-Oil and Aqueous Phase from Slow Pyrolysis of Passion Fruit Seed Cake. Waste and Biomass Valorization, 0, , .	1.8	3
210	Analysis of the Catalytic Effects Induced by Alkali and Alkaline Earth Metals (AAEMs) on the Pyrolysis of Beech Wood and Corncob. Catalysts, 2022, 12, 1505.	1.6	3
211	Improving Lignocellulosic and Non-Lignocellulosic Biomass Characteristics through Torrefaction Process. Applied Sciences (Switzerland), 2022, 12, 12210.	1.3	6
212	Preliminary Study on the Thermal Behavior and Chemical-Physical Characteristics of Woody Biomass as Solid Biofuels. Processes, 2023, 11 , 154 .	1.3	2
213	Effects of Different Hydrolysis Methods on the Hydrolysate Characteristics and Photo-Fermentative Hydrogen Production Performance of Corn and Sorghum Straw. Energies, 2023, 16, 301.	1.6	1
214	The Influence of Fuel Mix on the Devolatilization of RDF Based Coal. , 2023, , 317-326.		0
215	Thermogravimetric pyrolysis of residual biomasses obtained post-extraction of carnauba wax: Determination of kinetic parameters using Friedman's isoconversional method. Renewable Energy, 2023, 207, 703-713.	4.3	5
216	Bioenergy potential of Saccharum bengalense through pyrolysis, reaction kinetics, TG-FTIR-GCMS analysis of pyrolysis products, and validation of the pyrolysis data through machine learning. Chemical Engineering Journal, 2023, 465, 142930.	6.6	12
217	Evaluation of Babassu Cake Generated in the Extraction of the Oil as Feedstock for Biofuel Production. Processes, 2023, 11, 585.	1.3	2
218	Assessment of the inherent CaO in char on tar catalytic conversion by a micro fluidized bed reaction analyzer for biomass gasification. Fuel, 2023, 344, 127866.	3.4	1

#	Article	IF	CITATIONS
219	Comparative Analyses of Fucoidans from South African Brown Seaweeds That Inhibit Adhesion, Migration, and Long-Term Survival of Colorectal Cancer Cells. Marine Drugs, 2023, 21, 203.	2.2	3
220	Chemically modified Azadirachta indica sawdust for adsorption of methylene blue from aqueous solutions. Biomass Conversion and Biorefinery, 0, , .	2.9	3
226	Thermogravimetric analysis and kinetic study of raw and torrefied oil palm frond. AIP Conference Proceedings, 2023, , .	0.3	0