Synthesis, Electronic Properties and WOLED Devices of Polycyclic Aromatic Hydrocarbons

Chemistry - A European Journal 21, 6547-6556 DOI: 10.1002/chem.201500203

Citation Report

#	Article	IF	CITATIONS
1	Edge modification of PAHs: the effect of embedded heterocycles on the aromaticity pattern. Structural Chemistry, 2015, 26, 1351-1357.	1.0	15
2	Organophosphorus Compounds in Organic Electronics. Chemistry - A European Journal, 2016, 22, 10718-10735.	1.7	195
3	Tuning the Electronic Properties of Acetylenic Fluorenes by Phosphaalkene Incorporation. Chemistry - A European Journal, 2016, 22, 4247-4255.	1.7	18
4	Ï€-Conjugated phospholes and their incorporation into devices: components with a great deal of potential. Chemical Society Reviews, 2016, 45, 5296-5310.	18.7	216
5	Fusing Porphyrins and Phospholes: Synthesis and Analysis of a Phosphorusâ€Containing Porphyrin. Angewandte Chemie - International Edition, 2016, 55, 12311-12315.	7.2	26
6	Fusing Porphyrins and Phospholes: Synthesis and Analysis of a Phosphorusâ€Containing Porphyrin. Angewandte Chemie, 2016, 128, 12499-12503.	1.6	6
7	Synthesis and electronic properties of polycyclic aromatic hydrocarbons doped with phosphorus and sulfur. Dalton Transactions, 2016, 45, 1896-1903.	1.6	24
8	Organophosphorus derivatives for electronic devices. Journal of Materials Chemistry C, 2016, 4, 3686-3698.	2.7	149
9	Synthesis of the first metal-free phosphanylphosphonate and its use in the "phospha–Wittig–Horner― reaction. Dalton Transactions, 2016, 45, 2201-2207.	1.6	20
10	Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: Synthetic Routes, Properties, and Applications. Chemical Reviews, 2017, 117, 3479-3716.	23.0	1,018
11	Strategies toward phosphorus-containing PAHs and the effect of P-substitution on the electronic properties. Pure and Applied Chemistry, 2017, 89, 341-355.	0.9	9
12	Coordination Complexes of P-Containing Polycyclic Aromatic Hydrocarbons: Optical Properties and Solid-State Supramolecular Assembly. Organometallics, 2017, 36, 2502-2511.	1.1	16
13	DFT study of host-dopant systems of DPVBi with organophosphorus π-conjugated materials. Computational and Theoretical Chemistry, 2017, 1113, 61-71.	1.1	3
14	A Guide for the Design of Functional Polyaromatic Organophosphorus Materials. Chemistry - A European Journal, 2017, 23, 13919-13928.	1.7	41
15	Phosphorus ontaining Polycyclic Aromatic Hydrocarbons. ChemPhysChem, 2017, 18, 2618-2630.	1.0	66
16	Rich Coordination Chemistry of π-Acceptor Dibenzoarsole Ligands. Inorganic Chemistry, 2017, 56, 4504-4511.	1.9	16
17	Tungsten pentacarbonyl complexes of 1,3-benzoxaphospholes. Journal of Organometallic Chemistry, 2017, 851, 9-13.	0.8	4
18	Copper-mediated phospha-annulation to attain water-soluble polycyclic luminophores. Chemical Communications, 2017, 53, 10954-10957.	2.2	21

#	Article	IF	CITATIONS
19	Phosphole <i>P</i> -Oxide-Containing π-Electron Materials: Synthesis and Applications in Fluorescence Imaging. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1179-1187.	0.0	14
20	Phosphole–Thiophene Hybrid: A Dual Role of Dithieno[3,4- <i>b</i> :3′,4′- <i>d</i>]phosphole as Electron Acceptor and Electron Donor. Journal of Organic Chemistry, 2018, 83, 3397-3402.	1.7	12
21	Pathway Complexity Versus Hierarchical Selfâ€Assembly in <i>N</i> â€Annulated Perylenes: Structural Effects in Seeded Supramolecular Polymerization. Angewandte Chemie - International Edition, 2018, 57, 4697-4701.	7.2	130
22	Pathway Complexity Versus Hierarchical Selfâ€Assembly in <i>N</i> â€Annulated Perylenes: Structural Effects in Seeded Supramolecular Polymerization. Angewandte Chemie, 2018, 130, 4787-4791.	1.6	54
23	Waterâ€Soluble Phospholo[3,2â€ <i>b</i>]phospholeâ€ <i>P</i> , <i>P</i> â€2â€Dioxideâ€Based Fluorescent Dyes High Photostability. Chemistry - an Asian Journal, 2018, 13, 1616-1624.	with 1.7	24
25	Optical tuning of tetrabenzo[8]circulene derivatives through pseudorotational conformational isomerization. Dyes and Pigments, 2018, 151, 372-379.	2.0	5
26	Synthesis of 1,3-Azaphospholes with Pyrrolo[1,2- <i>a</i>]quinoline Skeleton and Their Optical Applications. Organic Letters, 2018, 20, 4103-4106.	2.4	24
27	Iodocarbocyclization to Access Six―and Sevenâ€Membered Phosphacycles from Phosphoryl‣inked Alkynes. European Journal of Organic Chemistry, 2019, 2019, 6369-6376.	1.2	15
28	Lighting with organophosphorus materials: solution-processed blue/cyan light-emitting devices based on phosphaphenalenes. Dalton Transactions, 2019, 48, 7503-7508.	1.6	19
29	Phosphindole fused pyrrolo[3,2- <i>b</i>]pyrroles: a new single-molecule junction for charge transport. Dalton Transactions, 2019, 48, 6347-6352.	1.6	16
30	Intramolecular Phosphacyclization: Polyaromatic Phosphonium Pâ€Heterocycles with Wideâ€Tuning Optical Properties. Chemistry - A European Journal, 2019, 25, 6332-6341.	1.7	38
31	Phosphahelicenes: From Chiroptical and Photophysical Properties to OLED Applications. Chemistry - A European Journal, 2019, 25, 5303-5310.	1.7	30
32	Systematic Control of Structural and Photophysical Properties of Ï€â€Extended Mono―and Bisâ€BODIPY Derivatives. Chemistry - A European Journal, 2020, 26, 316-325.	1.7	33
33	Luminescent Organogels Formed by Ionic Selfâ€Assembly of AIEâ€Active Phospholes. ChemPlusChem, 2020, 85, 79-83.	1.3	7
34	Solventâ€Vaporâ€Induced Reversible Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformation of a Triphosphaazatrianguleneâ€Based Metal–Organic Framework. Angewandte Chemie, 2020, 132, 1451-1455.	1.6	5
35	Solventâ€Vaporâ€Induced Reversible Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformation of a Triphosphaazatrianguleneâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2020, 59, 1435-1439.	7.2	40
36	Oddâ€Even Effects on Transport Properties of Polycyclic Arene Molecular Devices with Decreasing Numbers of Benzene Rings. ChemPhysChem, 2020, 21, 568-574.	1.0	2
37	Synthesis of π-Extended Imidazoles by 1,3-Dipolar Cycloaddition of Polycyclic Aromatic Azomethine Ylides with Nitriles. Organic Letters, 2020, 22, 6132-6137.	2.4	15

CITATION REPORT

#	Article	IF	CITATIONS
38	Versatile Phosphole Derivatives with Photovoltaic, Light-Emitting, and Resistive Memory Properties. ACS Applied Energy Materials, 2020, 3, 3059-3070.	2.5	14
39	Structures and spectral properties of 5-phenyl-5H-benzo[b]phosphindole 5-oxide and its substituted derivatives: The substitutional effect study based on density functional theory calculations. Journal of Molecular Structure, 2021, 1226, 129401.	1.8	3
40	Topologically diverse polycyclic aromatic hydrocarbons from pericyclic reactions with polyaromatic phospholes. New Journal of Chemistry, 2021, 45, 8118-8124.	1.4	2
41	Electrosynthesis of Phosphacycles via Dehydrogenative C–P Bond Formation Using DABCO as a Mediator. Organic Letters, 2021, 23, 3120-3124.	2.4	29
42	Highly Emissive Layers based on Organic/Inorganic Nanohybrids Using Aggregation Induced Emission Effect. Advanced Materials Technologies, 2022, 7, 2100876.	3.0	6
44	Rapid Computational Approach Towards Designing Singlet-Fission Chromophores by Tuning the Diradical Character of Heteroatom-Doped Polycyclic Aromatic Hydrocarbons Using the Atom-Specific Fukui Function. Journal of Physical Chemistry A, 2022, 126, 1579-1590.	1.1	3
45	Nucleophilic aromatic substitution approach to phosphanyl-substituted diboraanthracenes: biphilic compounds with tunable electron affinities. Organic Chemistry Frontiers, 2022, 9, 5611-5616.	2.3	3
46	Yellow to blue switching of fluorescence by the tuning of the pentaphenylphosphole structure: phosphorus electronic state <i>vs.</i> ring conjugation. Physical Chemistry Chemical Physics, 2022, 24, 25307-25315.	1.3	1
47	Recent development of three-coordinated boron-doped aromatics for optoelectronic applications. Journal of Organometallic Chemistry, 2023, 984, 122564.	0.8	6
48	Luminescent 1 <i>H</i> -1,3-benzazaphospholes. RSC Advances, 2022, 13, 594-601.	1.7	2
49	Threeâ€Component Synthesis of Dioxaphosphoraneâ€Fused Diphosphacycles Exhibiting Unique Dynamic Fluorescence "On/Off―Properties. Angewandte Chemie, 2023, 135, .	1.6	0
50	Threeâ€Component Synthesis of Dioxaphosphoraneâ€Fused Diphosphacycles Exhibiting Unique Dynamic Fluorescence "On/Off―Properties. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
51	Computational methods and points for attention in absolute configuration determination. , 0, 1, .		9
54	Direct air-induced arylphosphinoyl radicals for the synthesis of benzo[<i>b</i>]phosphole oxides. Green Chemistry, 0,	4.6	1