Using pLink to Analyze Crossâ€Linked Peptides

Current Protocols in Bioinformatics 49, 8.21.1-8.21.19

DOI: 10.1002/0471250953.bi0821s49

Citation Report

#	Article	IF	CITATIONS
1	Chemical Cross-linking Mass Spectrometry for Profiling Protein Structures and Protein-Protein Interactions. Journal of Proteomics and Bioinformatics, $2015, 8, .$	0.4	2
2	Finding Missing Proteins from the Epigenetically Manipulated Human Cell with Stringent Quality Criteria. Journal of Proteome Research, 2015, 14, 3645-3657.	3.7	22
3	Identification of Missing Proteins Defined by Chromosome-Centric Proteome Project in the Cytoplasmic Detergent-Insoluble Proteins. Journal of Proteome Research, 2015, 14, 3693-3709.	3.7	29
4	Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System. PLoS Pathogens, 2016, 12, e1005820.	4.7	67
5	Advances in protein complex analysis by chemical cross-linking coupled with mass spectrometry (CXMS) and bioinformatics. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 123-129.	2.3	30
6	Proteome-wide Mapping of Endogenous SUMOylation Sites in Mouse Testis. Molecular and Cellular Proteomics, 2017, 16, 717-727.	3.8	15
7	Protein-protein cross-linking and human health: the challenge of elucidating with mass spectrometry. Expert Review of Proteomics, 2017, 14, 917-929.	3.0	13
8	Structure of the Cdc48 ATPase with its ubiquitin-binding cofactor Ufd1–Npl4. Nature Structural and Molecular Biology, 2018, 25, 616-622.	8.2	82
9	The nascent RNA binding complex SFiNX licenses piRNA-guided heterochromatin formation. Nature Structural and Molecular Biology, 2019, 26, 720-731.	8.2	75
10	The Molecular Architecture of Native BBSome Obtained by an Integrated Structural Approach. Structure, 2019, 27, 1384-1394.e4.	3.3	51
11	Improving mass spectrometry analysis of protein structures with arginine-selective chemical cross-linkers. Nature Communications, 2019, 10, 3911.	12.8	45
12	Experimental Assignment of Disulfideâ€Bonds in Purified Proteins. Current Protocols in Protein Science, 2019, 96, e86.	2.8	4
13	Mass spectrometry in structural proteomics: The case for radical probe protein footprinting. TrAC - Trends in Analytical Chemistry, 2019, 110, 293-302.	11.4	7
14	DNA Binding Reorganizes the Intrinsically Disordered C-Terminal Region of PSC in Drosophila PRC1. Journal of Molecular Biology, 2020, 432, 4856-4871.	4.2	6
15	A Cross-linking Mass Spectrometry Approach Defines Protein Interactions in Yeast Mitochondria. Molecular and Cellular Proteomics, 2020, 19, 1161-1178.	3.8	38
16	From classical to new generation approaches: An excursus of -omics methods for investigation of protein-protein interaction networks. Journal of Proteomics, 2021, 230, 103990.	2.4	31
18	DRP1 interacts directly with BAX to induce its activation and apoptosis. EMBO Journal, 2022, 41, e108587.	7.8	59
19	Site-Specific Characterization of Heat-Induced Disulfide Rearrangement in Beta-Lactoglobulin by Liquid Chromatography–Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2022, 70, 847-856.	5.2	11

#	Article	IF	CITATION
20	Oxidation of Whey Proteins during Thermal Treatment Characterized by a Site-Specific LC–MS/MS-Based Proteomic Approach. Journal of Agricultural and Food Chemistry, 2022, 70, 4391-4406.	5.2	7
21	Cysteine residues are responsible for the sulfurous off-flavor formed in heated whey protein solutions. Food Chemistry Molecular Sciences, 2022, 5, 100120.	2.1	1
22	Glycosylation of a key cubilin Asn residue results in reduced binding to albumin. Journal of Biological Chemistry, 2022, 298, 102371.	3.4	0
23	Conformational Dynamics of the Activated GLP-1 Receptor-G _s Complex Revealed by Cross-Linking Mass Spectrometry and Integrative Structure Modeling. ACS Central Science, 2023, 9, 992-1007.	11.3	O
24	Ynamide Coupling Reagent for the Chemical Cross-Linking of Proteins in Live Cells. ACS Chemical Biology, 2023, 18, 1405-1415.	3.4	2
25	IgE Recognition and Structural Analysis of Disulfide Bond Rearrangement and Chemical Modifications in Allergen Aggregations in Roasted Peanuts. Journal of Agricultural and Food Chemistry, 2023, 71, 9110-9119.	5. 2	2
26	Resolving fluorescence spectra of Maillard reaction products formed on bovine serum albumin using parallel factor analysis. Food Research International, 2024, 178, 113950.	6.2	0