Lipid Extraction Methods from Microalgae: A Comprehe

Frontiers in Energy Research 2, DOI: 10.3389/fenrg.2014.00061

Citation Report

#	Article	IF	CITATIONS
1	Microalgae Oil Extraction Pre-treatment Methods: Critical Review and Comparative Analysis. Journal of Fundamentals of Renewable Energy and Applications, 2015, 05, .	0.2	8
2	Comparison of Cell Disruption Methods for Improving Lipid Extraction from Thraustochytrid Strains. Marine Drugs, 2015, 13, 5111-5127.	2.2	142
3	Measuring the regional availability of biomass for biofuels and the potential for microalgae. Renewable and Sustainable Energy Reviews, 2015, 49, 1271-1285.	8.2	51
4	Protocols on Lipid Extraction from Wet Algal Biomass. Springer Protocols, 2015, , 75-79.	0.1	0
5	Cell Disruption and Pressurized Liquid Extraction of Carotenoids from Microalgae. Journal of Thermodynamics & Catalysis, 2016, 07, .	0.2	24
6	Lipidomic Approaches towards Deciphering Glycolipids from Microalgae as a Reservoir of Bioactive Lipids. Marine Drugs, 2016, 14, 101.	2.2	96
7	Progress on lipid extraction from wet algal biomass for biodiesel production. Microbial Biotechnology, 2016, 9, 718-726.	2.0	131
8	The Evolution and Versatility of Microalgal Biotechnology: A Review. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 1104-1123.	5.9	172
9	Green solvents and technologies for oil extraction from oilseeds. Chemistry Central Journal, 2017, 11, 9.	2.6	167
10	Extraction of Lipids and Carotenoids from Algal Sources. , 2017, , 137-152.		2
10	Extraction of Lipids and Carotenoids from Algal Sources. , 2017, , 137-152. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis. Bioprocess and Biosystems Engineering, 2017, 40, 1363-1373.	1.7	2 27
10 11 12	 Extraction of Lipids and Carotenoids from Algal Sources., 2017, , 137-152. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis. Bioprocess and Biosystems Engineering, 2017, 40, 1363-1373. Biodiesel via in Situ Wet Microalgae Biotransformation: Zwitter-Type Ionic Liquid Supported Extraction and Transesterification. ACS Sustainable Chemistry and Engineering, 2017, 5, 1931-1937. 	1.7	2 27 32
10 11 12 13	Extraction of Lipids and Carotenoids from Algal Sources. , 2017, , 137-152.Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis. Bioprocess and Biosystems Engineering, 2017, 40, 1363-1373.Biodiesel via in Situ Wet Microalgae Biotransformation: Zwitter-Type Ionic Liquid Supported Extraction and Transesterification. ACS Sustainable Chemistry and Engineering, 2017, 5, 1931-1937.Multifunctional Nanoparticle Applications to Microalgal Biorefinery. Green Chemistry and Sustainable Technology, 2017, , 59-87.	1.7 3.2 0.4	2 27 32 8
10 11 12 13 14	 Extraction of Lipids and Carotenoids from Algal Sources. , 2017, , 137-152. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis. Bioprocess and Biosystems Engineering, 2017, 40, 1363-1373. Biodiesel via in Situ Wet Microalgae Biotransformation: Zwitter-Type Ionic Liquid Supported Extraction and Transesterification. ACS Sustainable Chemistry and Engineering, 2017, 5, 1931-1937. Multifunctional Nanoparticle Applications to Microalgal Biorefinery. Green Chemistry and Sustainable Technology, 2017, , 59-87. Enhanced and Selective Lipid Extraction from the Microalga <i>P. tricornutum </i> by Dimethyl Carbonate and Supercritical CO₂ Using Deep Eutectic Solvents and Microwaves as Pretreatment. ACS Sustainable Chemistry and Engineering, 2017, 5, 8316-8322. 	1.7 3.2 0.4 3.2	2 27 32 8 80
10 11 12 13 14 15	Extraction of Lipids and Carotenoids from Algal Sources. , 2017, , 137-152.Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis. Bioprocess and Biosystems Engineering, 2017, 40, 1363-1373.Biodiesel via in Situ Wet Microalgae Biotransformation: Zwitter-Type Ionic Liquid Supported Extraction and Transesterification. ACS Sustainable Chemistry and Engineering, 2017, 5, 1931-1937.Multifunctional Nanoparticle Applications to Microalgal Biorefinery. Green Chemistry and Sustainable Technology, 2017, , 59-87.Enhanced and Selective Lipid Extraction from the Microalga <i>P. tricornutum </i> by Dimethyl Carbonate and Supercritical CO ₂ Using Deep Eutectic Solvents and Microwaves as Pretreatment. ACS Sustainable Chemistry and Engineering, 2017, 5, 8316-8322.An overview of the utilisation of microalgae biomass derived from nutrient recycling of wet market wastewater and slaughterhouse wastewater. International Aquatic Research, 2017, 9, 177-193.	1.7 3.2 0.4 3.2 1.5	2 27 32 8 80 47
10 11 12 13 14 15 16	Extraction of Lipids and Carotenoids from Algal Sources., 2017, , 137-152. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis. Bioprocess and Biosystems Engineering, 2017, 40, 1363-1373. Biodiesel via in Situ Wet Microalgae Biotransformation: Zwitter-Type Ionic Liquid Supported Extraction and Transesterification. ACS Sustainable Chemistry and Engineering, 2017, 5, 1931-1937. Multifunctional Nanoparticle Applications to Microalgal Biorefinery. Green Chemistry and Sustainable Technology, 2017, , 59-87. Enhanced and Selective Lipid Extraction from the Microalga <i>P. tricornutum Carbonate and Supercritical CO_{2 Sustainable Chemistry and Engineering, 2017, 5, 8316-8322. An overview of the utilisation of microalgae biomass derived from nutrient recycling of wet market wastewater and slaughterhouse wastewater. International Aquatic Research, 2017, 9, 177-193. Current status and strategies for second generation biofuel production using microbial systems. Energy Conversion and Management, 2017, 148, 1142-1156.}</i>	1.7 3.2 0.4 3.2 1.5 4.4	2 27 32 8 8 80 47 213
10 11 12 13 14 15 16 17	Extraction of Lipids and Carotenoids from Algal Sources. , 2017, , 137-152.Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis. Bioprocess and Biosystems Engineering, 2017, 40, 1363-1373.Biodiesel via in Situ Wet Microalgae Biotransformation: Zwitter-Type Ionic Liquid Supported Extraction and Transesterification. ACS Sustainable Chemistry and Engineering, 2017, 5, 1931-1937.Multifunctional Nanoparticle Applications to Microalgal Biorefinery. Green Chemistry and Sustainable Technology, 2017, , 59-87.Enhanced and Selective Lipid Extraction from the Microalga <i>P. tricornutum Carbonate and Supercritical CO₂ Using Deep Eutectic Solvents and Microwaves as Pretreatment. ACS Sustainable Chemistry and Engineering, 2017, 5, 8316-8322.An overview of the utilisation of microalgae biomass derived from nutrient recycling of wet market wastewater and slaughterhouse wastewater. International Aquatic Research, 2017, 9, 177-193.Current status and strategies for second generation biofuel production using microbial systems. Energy Conversion and Management, 2017, 148, 1142-1156.Promising Applications for the Production of Biofuels Through Algae. , 2017, , 81-103.</i>	1.7 3.2 0.4 3.2 1.5 4.4	2 27 32 8 8 80 47 213 12

#	Article	IF	CITATIONS
19	Biofuels from Microalgae: Energy and Exergy Analysis for the Biodiesel Case. Green Energy and Technology, 2018, , 181-200.	0.4	1
20	Microalgae Biorefineries for Energy and Coproduct Production. Green Energy and Technology, 2018, , 89-140.	0.4	8
21	Understanding the mechanisms of lipid extraction from microalga Chlamydomonas reinhardtii after electrical field solicitations and mechanical stress within a microfluidic device. Bioresource Technology, 2018, 257, 129-136.	4.8	33
22	Biodiesel from Microalgae. Energy, Environment, and Sustainability, 2018, , 277-318.	0.6	9
23	Integration of biology, ecology and engineering for sustainable algal-based biofuel and bioproduct biorefinery. Bioresources and Bioprocessing, 2018, 5, .	2.0	41
24	Comparison of Lipid Extraction from Algae (Chlorella Species) using Wet Lipid Extraction Procedure and Bligh and Dry Method. , 2018, , .		1
25	Review on the Extraction Methods of Crude oil from all Generation Biofuels in last few Decades. IOP Conference Series: Materials Science and Engineering, 2018, 330, 012024.	0.3	36
26	Polar lipids in cosmetics: recent trends in extraction, separation, analysis and main applications. Phytochemistry Reviews, 2018, 17, 1179-1210.	3.1	29
27	Process for selective extraction of pigments and functional proteins from Chlorella vulgaris. Algal Research, 2018, 35, 185-193.	2.4	61
28	Comparison of cell disruption techniques prior to lipid extraction from <i>Scenedesmus</i> sp. slurries for biodiesel production using liquid CO ₂ . Green Chemistry, 2018, 20, 4330-4338.	4.6	23
29	Determination of Microalgal Lipid Content and Fatty Acid for Biofuel Production. BioMed Research International, 2018, 2018, 1-17.	0.9	41
30	Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: A review. Energy Conversion and Management, 2018, 171, 1416-1429.	4.4	200
31	Nanoparticles and Organic Matter. , 2018, , 407-428.		10
32	Supercritical CO2 Extraction of Nannochloropsis sp.: A Lipidomic Study on the Influence of Pretreatment on Yield and Composition. Molecules, 2018, 23, 1854.	1.7	24
33	An Overview of Current Pretreatment Methods Used to Improve Lipid Extraction from Oleaginous Micro-Organisms. Molecules, 2018, 23, 1562.	1.7	90
34	Supercritical carbon dioxide extraction and fractionation of lipids from freeze-dried microalgae Nannochloropsis oculata and Chlorella vulgaris. Algal Research, 2018, 34, 49-56.	2.4	79
35	Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable and Sustainable Energy Reviews, 2018, 94, 49-68.	8.2	288
36	Application of fuzzy modelling and Particle Swarm Optimization to enhance lipid extraction from microalgae. Sustainable Energy Technologies and Assessments, 2019, 35, 73-79.	1.7	24

	CITATION R	EPORT	
#	Article	IF	CITATIONS
37	Microwave-Assisted Brine Extraction for Enhancement of the Quantity and Quality of Lipid Production from Microalgae Nannochloropsis sp Molecules, 2019, 24, 3581.	1.7	30
38	Formation of Secondary Organic Aerosol from the Heterogeneous Oxidation by Ozone of a Phytoplankton Culture. ACS Earth and Space Chemistry, 2019, 3, 2298-2306.	1.2	14
39	Effect of Different Pretreatment Methods on Lipid Yield and Biodiesel Quality of Desmodesmus sp. Isolated from Sri Lanka. , 2019, , .		0
40	Techno-economic assessment of conventional and direct-transesterification processes for microalgal biomass to biodiesel conversion. Bioresource Technology, 2019, 294, 122173.	4.8	25
41	Microwave-assisted three-liquid-phase salting-out extraction of docosahexaenoic acid (DHA)-rich oil from cultivation broths of Schizochytrium limacinium SR21. Food and Bioproducts Processing, 2019, 118, 237-247.	1.8	14
42	Latest development in microalgae-biofuel production with nano-additives. Biotechnology for Biofuels, 2019, 12, 125.	6.2	147
43	Microalgae Culturing To Produce Biobased Diesel Fuels: An Overview of the Basics, Challenges, and a Look toward a True Biorefinery Future. Industrial & Engineering Chemistry Research, 2019, 58, 15724-15746.	1.8	17
44	Recent advances in algae biodiesel production: From upstream cultivation to downstream processing. Bioresource Technology Reports, 2019, 7, 100227.	1.5	69
45	Passive cell disruption lipid extraction methods of microalgae for biofuel production – A review. Fuel, 2019, 252, 699-709.	3.4	60
46	Biodiesel from Algae. , 2019, , 77-112.		3
47	Chemical Composition of Date Pits: Potential to Extract and Characterize the Lipid Fraction. Sustainable Agriculture Reviews, 2019, , 55-77.	0.6	5
48	Cell Wall Disruption: A Critical Upstream Process for Biofuel Production. , 2019, , 21-35.		12
49	A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles. Renewable and Sustainable Energy Reviews, 2019, 109, 448-466.	8.2	110
50	Methods for Extraction of Valuable Products from Microalgae Biomass. , 2019, , 245-263.		10
51	Different Cell Disruption and Lipid Extraction Methods from Microalgae for Biodiesel Production. , 2019, , 265-292.		16
52	Recent Advances in Lipid Extraction for Biodiesel Production. , 2019, , 179-198.		6
53	Advances in bio-oil extraction from nonedible oil seeds and algal biomass. , 2019, , 187-210.		49
54	Microfluidic techniques for enhancing biofuel and biorefinery industry based on microalgae. Biotechnology for Biofuels, 2019, 12, 33.	6.2	33

#	Article	IF	CITATIONS
55	The prospect of microbial oil production and applications from oil palm biomass. Biochemical Engineering Journal, 2019, 143, 9-23.	1.8	34
56	Oxidation stability of yeast biodiesel using Rancimat analysis: validation using infrared spectroscopy and gas chromatography–mass spectrometry. Environmental Science and Pollution Research, 2019, 26, 3075-3090.	2.7	9
57	Recycle of Greywater for Microalgae Biomass Production. Water Science and Technology Library, 2019, , 205-226.	0.2	5
58	Potential production of biodiesel from green microalgae. Biofuels, 2020, 11, 201-208.	1.4	8
59	Algae as green energy reserve: Technological outlook on biofuel production. Chemosphere, 2020, 242, 125079.	4.2	182
60	Cultured Microalgae and Compounds Derived Thereof for Food Applications: Strain Selection and Cultivation, Drying, and Processing Strategies. Food Reviews International, 2020, 36, 559-583.	4.3	56
61	Biodiesel production from Nannochloropsis gaditana using supercritical CO2 for lipid extraction and immobilized lipase transesterification: Economic and environmental impact assessments. Fuel Processing Technology, 2020, 198, 106249.	3.7	51
62	A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered, 2020, 11, 116-129.	1.4	229
63	Microwave-assisted lipid extraction from Chlorella vulgaris in water with 0.5%–2.5% of imidazolium based ionic liquid as additive. Renewable Energy, 2020, 149, 244-252.	4.3	45
64	Extraction of lipids from algae using supercritical carbon dioxide. , 2020, , 17-39.		9
65	Utilization of pomegranate waste-peel as a novel substrate for biodiesel production by <i>Bacillus cereus</i> (MF908505). Sustainable Energy and Fuels, 2020, 4, 1199-1207.	2.5	9
66	Towards green extraction methods from microalgae learning from the classics. Applied Microbiology and Biotechnology, 2020, 104, 9067-9077.	1.7	20
67	Extraction of common microalgae by liquefied dimethyl ether: influence of species and pretreatment on oil yields and composition. Biomass Conversion and Biorefinery, 2023, 13, 141-158.	2.9	10
68	Green technology for the industrial production of biofuels and bioproducts from microalgae: a review. Environmental Chemistry Letters, 2020, 18, 1967-1985.	8.3	89
69	Biodiesel from microalgae. , 2020, , 329-371.		2
70	Efficacy of chemical factors on production and extraction of biodiesel by microalgae. International Journal of Energy Research, 2021, 45, 17080-17093.	2.2	9
71	Utilization of quaternary solvent mixtures for extraction of lipids from Scenedesmus obliquus microalgae. Cogent Engineering, 2020, 7, 1788877.	1.1	3
72	A novel lipids recovery strategy for biofuels generation on microalgae Chlorella cultivation with waste molasses. Journal of Water Process Engineering, 2020, 38, 101665.	2.6	33

#	Article	IF	CITATIONS
73	Lipid Extraction Maximization and Enzymatic Synthesis of Biodiesel from Microalgae. Applied Sciences (Switzerland), 2020, 10, 6103.	1.3	30
74	Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations. Sustainability, 2020, 12, 9980.	1.6	84
75	Priority-based multiple products from microalgae: review on techniques and strategies. Critical Reviews in Biotechnology, 2020, 40, 590-607.	5.1	40
76	Recent Advances in Enzymatic Conversion of Microalgal Lipids into Biodiesel. Energy & Fuels, 2020, 34, 6735-6750.	2.5	28
77	Combustion and emission characteristics of light duty diesel engine fueled with transesterified algae biodiesel by K2CO3/ZnO heterogeneous base catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, , 1-13.	1.2	7
78	An Overview of Potential Oleaginous Microorganisms and Their Role in Biodiesel and Omega-3 Fatty Acid-Based Industries. Microorganisms, 2020, 8, 434.	1.6	155
79	Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. Frontiers in Plant Science, 2020, 11, 279.	1.7	192
80	Sustainable biodiesel production from the green microalgae Nannochloropsis: Novel integrated processes from cultivation to enzyme-assisted extraction and ethanolysis of lipids. Energy Conversion and Management, 2020, 209, 112618.	4.4	45
81	An overview of cell disruption methods for intracellular biomolecules recovery. Preparative Biochemistry and Biotechnology, 2020, 50, 635-654.	1.0	57
82	Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresource Technology, 2020, 304, 122996.	4.8	217
83	Current application of electrical pre-treatment for enhanced microalgal biomolecules extraction. Bioresource Technology, 2020, 302, 122874.	4.8	26
84	Biodiesel synthesis from non-edible oil using agro-waste and evaluation of its physicochemical properties. International Journal of Environmental Science and Technology, 2020, 17, 3785-3800.	1.8	9
85	Bioreactor for algae cultivation and biodiesel production. , 2020, , 289-307.		6
86	Impact of abiotic factors on biodiesel production by microalgae. Fuel, 2021, 284, 118962.	3.4	45
87	Influence of kernel thermal pre-treatments on 5-n-alkylresorcinols, polyphenols and antioxidant activity of durum and einkorn wheat. European Food Research and Technology, 2021, 247, 353-362.	1.6	9
88	New insights to direct conversion of wet microalgae impregnated with ethanol to biodiesel exploiting extraction with supercritical carbon dioxide. Fuel, 2021, 285, 119199.	3.4	37
89	Techniques of lipid extraction from microalgae for biofuel production: a review. Environmental Chemistry Letters, 2021, 19, 231-251.	8.3	61
90	Microalgae: Cultivation, Biotechnological, Environmental, and Agricultural Applications. Environmental and Microbial Biotechnology, 2021, , 635-701.	0.4	5

#	Article	IF	CITATIONS
91	Current and Future Perspective of Microalgae for Simultaneous Wastewater Treatment and Feedstock for Biofuels Production. Chemistry Africa, 2021, 4, 249.	1.2	13
92	Edible bio-oil production from microalgae and application of nano-technology. , 2021, , 91-116.		2
93	Techno-Economic Analysis of Biodiesel Production from Microbial Oil Using Cardoon Stalks as Carbon Source. Energies, 2021, 14, 1473.	1.6	9
94	Microalgal Co-cultivation for Biofuel Production and Bioremediation: Current Status and Benefits. Bioenergy Research, 2022, 15, 1-26.	2.2	43
95	Prospects of Palm Fruit Extraction Technology: Palm Oil Recovery Processes and Quality Enhancement. Food Reviews International, 2022, 38, 893-920.	4.3	10
96	Phospholipids from marine source: Extractions and forthcoming industrial applications. Journal of Functional Foods, 2021, 80, 104448.	1.6	27
97	Assessing diatom-mediated fatty acids in intertidal biofilm: a new conservation concern. Environmental Systems Research, 2021, 10, .	1.5	6
98	Potential of cyanobacteria in the conversion of wastewater to biofuels. World Journal of Microbiology and Biotechnology, 2021, 37, 140.	1.7	18
99	Response surface methodology–based extraction optimization with application of ZrCl4 as novel quenching agent for enhancement of bio-oil yield from Jatropha curcas and Chlorella pyrenoidosa. Biomass Conversion and Biorefinery, 0, , 1.	2.9	1
100	Impact of wastewater cultivation on pollutant removal, biomass production, metabolite biosynthesis, and carbon dioxide fixation of newly isolated cyanobacteria in a multiproduct biorefinery paradigm. Bioresource Technology, 2021, 333, 125194.	4.8	39
101	A Review on the Efficient Catalysts for Algae Transesterification to Biodiesel. Sustainability, 2021, 13, 10479.	1.6	12
102	Acetonitrile allows indirect replacement of nondeuterated lipid detergents by deuterated lipid detergents for the nuclear magnetic resonance study of detergentâ€soluble proteins. Protein Science, 2021, 30, 2324-2332.	3.1	2
103	Lipids from Hermetia illucens, an Innovative and Sustainable Source. Sustainability, 2021, 13, 10198.	1.6	52
104	Current Pretreatment/Cell Disruption and Extraction Methods Used to Improve Intracellular Lipid Recovery from Oleaginous Yeasts. Microorganisms, 2021, 9, 251.	1.6	38
105	Algal Biomass: Potential Renewable Feedstock for Biofuels Production – Part I. Clean Energy Production Technologies, 2020, , 203-237.	0.3	18
106	Nanoparticles for Sustainable Bioenergy and Biofuel Production. , 2020, , 23-60.		2
107	A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects. Renewable and Sustainable Energy Reviews, 2020, 134, 110143.	8.2	71
108	comparison of oil extraction methods for algae by NMR and Chromatographic techniques. Journal of Analytical Bioanalytical and Separation Techniques, 2016, 1, 17-41.	0.1	4

#	Article	IF	CITATIONS
109	Pineapple Waste and Wastewater: Route for Biodiesel Production from Candida tropicalis (MF510172). Brazilian Archives of Biology and Technology, 0, 62, .	0.5	8
110	Microalgae Biomolecules: Extraction, Separation and Purification Methods. Processes, 2021, 9, 10.	1.3	64
111	An efficient oil content estimation technique using microscopic microalgae images. Ecological Informatics, 2021, 66, 101468.	2.3	4
112	Production of Biodesiel from Animal Tallow via Enzymatic Transesterification using the Enzyme Catalyst Ns88001 with Methanol in a Solvent-Free System. Journal of Fundamentals of Renewable Energy and Applications, 2015, 05, .	0.2	0
113	Qualitative and Quantitative Analysis of Lipid Derived via Cell Disruption Techniques from Chlorella vulgaris for Biodiesel Production. Springer Proceedings in Energy, 2018, , 131-139.	0.2	0
114	Extraction of Oil from Algal Biomass. SpringerBriefs in Energy, 2019, , 37-43.	0.2	0
115	An Optimization Study of Lipid Extraction from Chlorella minutissima for Biodiesel Production. Journal of Chemical Engineering Research Updates, 2019, 6, 1-7.	0.1	0
116	Extraction and bioprocessing with supercritical fluids. ChemistrySelect, 2020, 5, .	0.7	1
117	Facing Indonesia's Future Energy with Bacterio-Algal Fuel Cells. Indonesian Journal of Energy, 2020, 3, 68-82.	0.2	0
118	High-value biochemical products & applications of freshwater eukaryotic microalgae. Science of the Total Environment, 2022, 809, 151111.	3.9	25
120	Microbial biodiesel: a comprehensive study toward sustainable biofuel production. , 2022, , 353-375.		1
121	Feasibility of Utilizing Wastewaters for Large-Scale Microalgal Cultivation and Biofuel Productions Using Hydrothermal Liquefaction Technique: A Comprehensive Review. Frontiers in Bioengineering and Biotechnology, 2021, 9, 651138.	2.0	7
122	Oligocat: Oligoesters as Pseudo-Homogenous Catalysts for Biodiesel Synthesis. Polymers, 2022, 14, 210.	2.0	6
123	A comprehensive study on enhancement of lipid yield from Tetradesmus obliquus MT188616.1. Korean Journal of Chemical Engineering, 2022, 39, 167-177.	1.2	3
124	Untargeted metabolomics of the alkaliphilic cyanobacterium Plectonema terebrans elucidated novel stress-responsive metabolic modulations. Journal of Proteomics, 2022, 252, 104447.	1.2	5
125	Emerging microalgae-based technologies in biorefinery and risk assessment issues: Bioeconomy for sustainable development. Science of the Total Environment, 2022, 813, 152417.	3.9	22
126	Screening of Phospholipids in Plasma of Large-Artery Atherosclerotic and Cardioembolic Stroke Patients With Hydrophilic Interaction Chromatography-Mass Spectrometry. Frontiers in Molecular Biosciences, 2022, 9, 794057.	1.6	2
127	Experimental and modeling assessment of large-scale cultivation of microalgae Nannochloropsis sp. PTCC 6016 to reach high efficiency lipid extraction. International Journal of Environmental Science and Technology, 2022, 19, 5511-5528.	1.8	10

#	Article	IF	CITATIONS
128	Comparative study of flash and acid hydrolysis of microalgae (Scenedesmus sp.) for the recovery of biochemicals and production of porous biocarbon nanosheets. Biomass Conversion and Biorefinery, 2024, 14, 2253-2262.	2.9	1
129	Microalgae Biomass as a New Potential Source of Sustainable Green Lubricants. Molecules, 2022, 27, 1205.	1.7	16
130	Extraction and separation of oils: the journey from distillation to pervaporation. , 2022, , 511-535.		2
132	Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods, 2022, 11, 1215.	1.9	13
133	Recovering Microalgal Bioresources: A Review of Cell Disruption Methods and Extraction Technologies. Molecules, 2022, 27, 2786.	1.7	25
134	Algae for Wastewater Treatment and Production of Biofuels and Bioproducts. International Journal of Environmental Research, 2022, 16, .	1.1	3
135	Optimization of Algae Residues Gasification: Experimental and Theoretical Approaches. Journal of Physics: Conference Series, 2022, 2259, 012012.	0.3	1
136	Biorefinery approaches for integral use of microalgal biomass. , 2022, , 321-344.		0
137	Fatty Acid Composition and Cytotoxic Activity of Lipid Extracts from Nannochloropsis gaditana Produced by Green Technologies. Molecules, 2022, 27, 3710.	1.7	7
138	A comprehensive review on microalgal biomass production and processing for biodiesel production. Fuel, 2022, 324, 124773.	3.4	22
139	Characterization of a newly isolated self-flocculating microalga Bracteacoccus pseudominor BERC09 and its evaluation as a candidate for a multiproduct algal biorefinery. Chemosphere, 2022, 304, 135346.	4.2	6
141	Lipids production using agricultural residues. , 2022, , 219-244.		0
142	Technoeconomic Evaluation of Microalgae Oil Production: Effect of Cell Disruption Method. Fermentation, 2022, 8, 301.	1.4	8
143	Microalgae for lipid production: Cultivation, extraction & detection. Algal Research, 2022, 66, 102765.	2.4	15
144	A mini review on microwave and contemporary based biohydrogen production technologies: a comparison. Environmental Science and Pollution Research, 2023, 30, 124735-124747.	2.7	0
146	North by Southwest: Screening the Naturally Isolated Microalgal Strains from Different Habitats of Iran for Various Pharmaceutical and Biotechnology Applications. International Journal of Microbiology, 2022, 2022, 1-11.	0.9	0
147	Cell adaptation of the extremophilic red microalga Galdieria sulphuraria to the availability of carbon sources. Frontiers in Plant Science, 0, 13, .	1.7	4
148	CO2 bio-mitigation using genetically modified algae and biofuel production towards a carbon net-zero society. Bioresource Technology, 2022, 363, 127982.	4.8	25

#	Article	IF	CITATIONS
149	Biofuels from Algae. Clean Energy Production Technologies, 2022, , 183-201.	0.3	0
150	The Promising Future of Microalgae as Biofuels and Valuable Bioproducts. Clean Energy Production Technologies, 2022, , 29-52.	0.3	0
151	Amelioration for oxidative stability and bioavailability of N-3 PUFA enriched microalgae oil: an overview. Critical Reviews in Food Science and Nutrition, 0, , 1-22.	5.4	0
152	Microwave-Assisted Dispersive Liquid–Liquid Microextraction Combined with HPLC for the Determination of Three Biogenic Amines in Beverages. Journal of Chromatographic Science, 0, , .	0.7	0
153	A review on unit operations, challenges, opportunities, and strategies to improve algal based biodiesel and biorefinery. Frontiers in Chemical Engineering, 0, 4, .	1.3	1
154	Biomass to Energy: Scope, Challenges and Applications. Microorganisms for Sustainability, 2022, , 3-24.	0.4	1
155	Optimization of Lipid Extraction from Spirulina spp. by Ultrasound Application and Mechanical Stirring Using the Taguchi Method of Experimental Design. Molecules, 2022, 27, 6794.	1.7	4
156	Coupling with in-situ electrochemical reactive chlorine species generation and two-phase partitioning method for enhanced microalgal biodiesel production. Bioresource Technology, 2022, 364, 128100.	4.8	2
157	Recent advances in photobioreactor systems for sustainable and enhanced microalgal biofuel production. Sustainable Energy and Fuels, 2022, 6, 5459-5473.	2.5	2
158	Multifarious extraction methodologies for ameliorating lipid recovery from algae. Environmental Research, 2023, 218, 114978.	3.7	0
159	Algal Biofuel Production from Municipal Waste Waters. Clean Energy Production Technologies, 2023, , 193-236.	0.3	0
160	Algal biomass dual roles in phycoremediation of wastewater and production of bioenergy and value-added products. International Journal of Environmental Science and Technology, 2023, 20, 8199-8216.	1.8	5
161	Algal Bioactive Components: Sources, Health Benefits, and Sustainability. , 2023, , 85-101.		0
162	"Recent Advances in Algal Biotechnology: Toward the Development of a Sustainable, Algae-Based Bioeconomy― , 2022, 8, 161-167.		0
163	Production of Fatty Acids and Derivatives Using Cyanobacteria. Advances in Biochemical Engineering/Biotechnology, 2022, , .	0.6	0
164	Renewable biofuels from microalgae: technical advances, limitations and economics. Environmental Technology Reviews, 2023, 12, 18-36.	2.1	3
165	Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review. Progress in Energy and Combustion Science, 2023, 96, 101071.	15.8	59
166	Efficient extraction of lipids from microalgal biomass for the production of biofuels using low-cost protic ionic solvents. Biochemical Engineering Journal, 2023, 194, 108902.	1.8	2

#	Article	IF	CITATIONS
168	Effects of iron on the growth, chlorophyll a, total lipids, and fatty acids of Chaetoceros lorenzianus. Journal of Applied Phycology, 2023, 35, 639-647.	1.5	1
169	Glycolipids as a promising ingredient in food and pharmaceutical technologies. New Technologies, 2023, 18, 35-50.	0.1	0
170	Optimized infrared-assisted extraction to obtain total lipid from microalgae <i>Scenedesmus obliquus</i> : a green approach. International Journal of Chemical Reactor Engineering, 2023, 21, 549-563.	0.6	0
171	Development of Cost-Effective Fertilizer-Based Media for the Microalgae Cultivation Aimed at Effective Biomass Production. NUST Journal of Engineering Sciences, 2020, 13, 45-51.	0.2	2
172	The conventional microalgal biofuel production process and the alternative milking pathway: A review. Energy, 2023, 277, 127547.	4.5	2
174	Algal biofuel and its prospects. , 2023, , 299-314.		0
175	Algae as a source of renewable energy: opportunities, challenges, and recent developments. Sustainable Energy and Fuels, 2023, 7, 2515-2544.	2.5	3
177	Algal lipids: structural diversity, analysis and applications. , 2023, , 335-396.		1
179	New perspectives of omega-3 fatty acids from diatoms. Systems Microbiology and Biomanufacturing, 2024, 4, 528-541.	1.5	2
180	Microalgal Biomass: Introduction and Production Methods. , 2023, , 1-28.		0
182	A Smart Integrated Biorefinery Approach for Greywater Treatment and Microalgal Biomass Production: A Review. Waste and Biomass Valorization, 0, , .	1.8	0