Regulation of Muscle Satellite Cell Function in Tissue H

Cell Stem Cell 16, 585-587 DOI: 10.1016/j.stem.2015.05.007

Citation Report

#	Article	IF	CITATIONS
1	Regulation of Muscle Stem Cell Functions: A Focus on the p38 MAPK Signaling Pathway. Frontiers in Cell and Developmental Biology, 2016, 4, 91.	1.8	134
2	Frailty and sarcopenia as the basis for the phenotypic manifestation of chronic diseases in older adults. Molecular Aspects of Medicine, 2016, 50, 1-32.	2.7	120
3	SWI/SNF-directed stem cell lineage specification: dynamic composition regulates specific stages of skeletal myogenesis. Cellular and Molecular Life Sciences, 2016, 73, 3887-3896.	2.4	29
4	Signal transducer and activator of transcription 3 signaling as a potential target to treat muscle wasting diseases. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 1.	1.3	25
5	Regenerative decline of stem cells in sarcopenia. Molecular Aspects of Medicine, 2016, 50, 109-117.	2.7	99
6	Rejuvenating Strategies for Stem Cell-Based Therapies in Aging. Cell Stem Cell, 2017, 20, 161-175.	5.2	129
7	Proteostatic and Metabolic Control of Stemness. Cell Stem Cell, 2017, 20, 593-608.	5.2	101
8	DNA damage signaling mediates the functional antagonism between replicative senescence and terminal muscle differentiation. Genes and Development, 2017, 31, 648-659.	2.7	25
9	Impact of Aging on Endurance and Neuromuscular Physical Performance: The Role of Vascular Senescence. Sports Medicine, 2017, 47, 583-598.	3.1	38
10	Age-related declines in α-Klotho drive progenitor cell mitochondrial dysfunction and impaired muscle regeneration. Nature Communications, 2018, 9, 4859.	5.8	103
11	The effect of age on stem cell function and utility for therapy. Cell Medicine, 2018, 10, 215517901877375.	5.0	13
12	Assessing Muscle Stem Cell Clonal Complexity During Aging. Methods in Molecular Biology, 2018, 2045, 1-11.	0.4	3
13	Obesity, Metabolic Syndrome, and Musculoskeletal Disease: Common Inflammatory Pathways Suggest a Central Role for Loss of Muscle Integrity. Frontiers in Physiology, 2018, 9, 112.	1.3	182
14	Pim1 kinase positively regulates myoblast behaviors and skeletal muscle regeneration. Cell Death and Disease, 2019, 10, 773.	2.7	10
15	Single-cell analysis of adult skeletal muscle stem cells in homeostatic and regenerative conditions. Development (Cambridge), 2019, 146, .	1.2	135
16	<i>mastermind</i> regulates niche ageing independently of the <i>Notch</i> pathway in the <i>Drosophila</i> ovary. Open Biology, 2019, 9, 190127.	1.5	4
17	Zfp422 promotes skeletal muscle differentiation by regulating EphA7 to induce appropriate myoblast apoptosis. Cell Death and Differentiation, 2020, 27, 1644-1659.	5.0	15
18	Loss of ARNT in skeletal muscle limits muscle regeneration in aging. FASEB Journal, 2020, 34, 16086-16104.	0.2	10

	Сіт	TATION REPORT	
#	Article	IF	CITATIONS
19	Motoneuron deafferentation and gliosis occur in association with neuromuscular regressive changes during ageing in mice. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1628-1660.	2.9	21
20	Platelet-Rich Plasma Modulates Gap Junction Functionality and Connexin 43 and 26 Expression During TGF-Î21–Induced Fibroblast to Myofibroblast Transition: Clues for Counteracting Fibrosis. Cells, 2020 9, 1199.		19
21	From Development to Aging: The Path to Cellular Senescence. Antioxidants and Redox Signaling, 2021 34, 294-307.	., 2.5	15
22	MiRNAs and Muscle Regeneration: Therapeutic Targets in Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2021, 22, 4236.	1.8	13
23	Magnesium supplementation enhances mTOR signalling to facilitate myogenic differentiation and improve aged muscle performance. Bone, 2021, 146, 115886.	1.4	15
24	Beneficial effects of dietary supplementation with green tea catechins and cocoa flavanols on aging-related regressive changes in the mouse neuromuscular system. Aging, 2021, 13, 18051-18093.	1.4	4
25	Dnmt3a Regulates Proliferation of Muscle Satellite Cells via p57Kip2. PLoS Genetics, 2016, 12, e10061	l67. 1.5	44
26	Stage-specific effects of Notch activation during skeletal myogenesis. ELife, 2016, 5, .	2.8	79
27	The thymus regulates skeletal muscle regeneration by directly promoting satellite cell expansion. Journal of Biological Chemistry, 2022, 298, 101516.	1.6	6
28	Adiponectin receptors activation performs dual effects on regulating myogenesis and adipogenesis of young and aged muscle satellite cells. Cell Proliferation, 2023, 56, .	2.4	3