Pediatric tubular pulmonary heart valve from decellula

Biomaterials

62, 88-94

DOI: 10.1016/j.biomaterials.2015.05.009

Citation Report

CITATIO	NDE	т

#	Article	IF	CITATIONS
1	Heart Valve Replacements with Regenerative Capacity. Transfusion Medicine and Hemotherapy, 2016, 43, 282-290.	1.6	29
2	Micro and nanotechnologies in heart valve tissue engineering. Biomaterials, 2016, 103, 278-292.	11.4	38
3	Nanofibrous bioengineered heart valve—Application in paediatric medicine. Biomedicine and Pharmacotherapy, 2016, 84, 1179-1188.	5.6	18
4	Tissue engineering of acellular vascular grafts capable of somatic growth in young lambs. Nature Communications, 2016, 7, 12951.	12.8	136
5	Towards 3D in vitro models for the study of cardiovascular tissues and disease. Drug Discovery Today, 2016, 21, 1437-1445.	6.4	31
6	Tissue-engineered mitral valve chordae tendineae: Biomechanical and biological characterization of decellularized porcine chordae. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 56, 205-217.	3.1	5
7	Implantation of a Tissue-Engineered Tubular Heart Valve in Growing Lambs. Annals of Biomedical Engineering, 2017, 45, 439-451.	2.5	89
8	In situ heart valve tissue engineering using a bioresorbable elastomeric implant – From material design to 12 months follow-up in sheep. Biomaterials, 2017, 125, 101-117.	11.4	231
9	JetValve: Rapid manufacturing of biohybrid scaffolds for biomimetic heart valve replacement. Biomaterials, 2017, 133, 229-241.	11.4	95
10	Tissue-Engineered Tubular Heart Valves Combining a Novel Precontraction Phase with the Self-Assembly Method. Annals of Biomedical Engineering, 2017, 45, 427-438.	2.5	7
11	Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. BioMed Research International, 2017, 2017, 1-13.	1.9	487
12	The future of heart valve replacement: recent developments and translational challenges for heart valve tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e323-e335.	2.7	61
13	Heart valve scaffold fabrication: Bioinspired control of macro-scale morphology, mechanics and micro-structure. Biomaterials, 2018, 150, 25-37.	11.4	66
14	In vitro biomechanical and hydrodynamic characterisation of decellularised human pulmonary and aortic roots. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 53-63.	3.1	14
15	Tissue Engineered Heart Valves. , 2018, , 263-288.		0
16	Can We Grow Valves Inside the Heart? Perspective on Material-based In Situ Heart Valve Tissue Engineering. Frontiers in Cardiovascular Medicine, 2018, 5, 54.	2.4	45
17	Fibrosis in tissue engineering and regenerative medicine: treat or trigger?. Advanced Drug Delivery Reviews, 2019, 146, 17-36.	13.7	16
18	Tissue-engineered heart valves. , 2019, , 123-176.		3

CITATION REPORT

#	Article	IF	CITATIONS
19	State of the Art: Tissue Engineering in Congenital Heart Surgery. Seminars in Thoracic and Cardiovascular Surgery, 2019, 31, 807-817.	0.6	15
20	Blending Polymer Labile Elements at Differing Scales to Affect Degradation Profiles in Heart Valve Scaffolds. Biomacromolecules, 2019, 20, 2494-2505.	5.4	6
21	Artificial Heart Valves with Balanced Charged Networks Exhibiting Anti-Calcification Properties. ACS Applied Bio Materials, 2020, 3, 838-847.	4.6	12
22	Tissue engineered heart valves for transcatheter aortic valve implantation: current state, challenges, and future developments. Expert Review of Cardiovascular Therapy, 2020, 18, 681-696.	1.5	12
23	A riboflavin–ultraviolet light A-crosslinked decellularized heart valve for improved biomechanical properties, stability, and biocompatibility. Biomaterials Science, 2020, 8, 2549-2563.	5.4	25
24	Elastin-Based Materials: Promising Candidates for Cardiac Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 657.	4.1	27
25	Comparison of Extracellular Matrix (ECM) of Normal and D-Galactosamine-Induced Mice Model of Liver Injury Before and After Liver Decellularization. Regenerative Engineering and Translational Medicine, 2021, 7, 405-415.	2.9	2
26	Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nature Reviews Cardiology, 2021, 18, 92-116.	13.7	128
27	Heart Valve Bioengineering. Reference Series in Biomedical Engineering, 2021, , 23-80.	0.1	0
28	Pediatric tri-tube valved conduits made from fibroblast-produced extracellular matrix evaluated over 52 weeks in growing lambs. Science Translational Medicine, 2021, 13, .	12.4	33
29	Evaluation of the probe burst test as a measure of strength for a biologically-engineered vascular graft. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119, 104527.	3.1	2
30	Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioactive Materials, 2022, 10, 15-31.	15.6	230
31	Bioprosthetic heart valves with reduced immunogenic residuals using vacuum-assisted decellularization treatment. Biomedical Materials (Bristol), 2020, 15, 065012.	3.3	9
32	Recellularization of a novel off-the-shelf valve following xenogenic implantation into the right ventricular outflow tract. PLoS ONE, 2017, 12, e0181614.	2.5	33
33	Heart Valve Bioengineering. , 2020, , 1-59.		1
34	An overview of post transplantation events of decellularized scaffolds. Transplant Immunology, 2022, 74, 101640.	1.2	6
35	Macrophage-extracellular matrix interactions: Perspectives for tissue engineered heart valve remodeling. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	6
36	Hybrid heart valves with VEGF-loaded zwitterionic hydrogel coating for improved anti-calcification and re-endothelialization. Materials Today Bio, 2022, 17, 100459.	5.5	4

CITATION REPORT

#	Article	IF	CITATIONS
37	Multiscale analysis of human tissue engineered matrices for next generation heart valve applications. Acta Biomaterialia, 2023, 158, 101-114.	8.3	3
38	Functional acellular matrix for tissue repair. Materials Today Bio, 2023, 18, 100530.	5.5	17
39	Tergitol Based Decellularization Protocol Improves the Prerequisites for Pulmonary Xenografts: Characterization and Biocompatibility Assessment. Polymers, 2023, 15, 819.	4.5	0
40	Pediatric pulmonary valve replacements: Clinical challenges and emerging technologies. Bioengineering and Translational Medicine, 2023, 8, .	7.1	4
41	Tissue-Engineered Heart Valves. , 2023, , 357-382.		0