Heterogeneous Vehicular Networking: A Survey on Arc Solutions

IEEE Communications Surveys and Tutorials 17, 2377-2396 DOI: 10.1109/comst.2015.2440103

Citation Report

#	Article	IF	CITATIONS
1	How Can Vehicular Communication Reduce Rear-End Collision Probability on Highway. , 2014, , .		0
2	How Can Vehicular Communication Reduce Rear-End Collision Probability on Highway. , 2015, , .		5
3	Queuing enhancements for in-vehicle time-sensitive streams using power line communications. , 2015, ,		2
4	Context-aware heterogeneous V2I communications. , 2015, , .		14
5	Reliable and efficient autonomous driving: the need for heterogeneous vehicular networks. , 2015, 53, 72-79.		68
6	Architecture Harmonization Between Cloud Radio Access Networks and Fog Networks. IEEE Access, 2015, 3, 3019-3034.	2.6	108
7	Dynamic Performance Analysis of Uplink Transmission in Cluster-Based Heterogeneous Vehicular Networks. IEEE Transactions on Vehicular Technology, 2015, 64, 5584-5595.	3.9	43
8	LSOT: A Lightweight Self-Organized Trust Model in VANETs. Mobile Information Systems, 2016, 2016, 1-15.	0.4	34
9	Performance analyses of successive interference cancellation in vehicular network. , 2016, , .		3
10	Random Access Optimization for M2M Communications in VANET with Wireless Network Virtualization. , 2016, , .		3
11	Software defined Internet of vehicles: architecture, challenges and solutions. Journal of Communications and Information Networks, 2016, 1, 14-26.	3.5	51
12	Architecture of Heterogeneous Vehicular Networks. Springer Briefs in Electrical and Computer Engineering, 2016, , 9-24.	0.3	4
13	Efficient MAC Mechanisms for Heterogeneous Vehicular Networks. Springer Briefs in Electrical and Computer Engineering, 2016, , 25-46.	0.3	0
14	Big Sensor Data: A Survey. Lecture Notes in Computer Science, 2016, , 155-166.	1.0	4
15	An Optimized Flow Allocation in Vehicular Cloud. IEEE Access, 2016, 4, 6766-6779.	2.6	29
16	Hybrid secure beamforming and vehicle selection using hierarchical agglomerative clustering for C-RAN-based vehicle-to-infrastructure communications in vehicular cyber-physical systems. International Journal of Distributed Sensor Networks, 2016, 12, 155014771666278.	1.3	8
17	Soft-defined heterogeneous vehicular network: architecture and challenges. IEEE Network, 2016, 30, 72-80.	4.9	131
18	Internet of Vehicles: Motivation, Layered Architecture, Network Model, Challenges, and Future Aspects. IEEE Access, 2016, 4, 5356-5373.	2.6	519

#	Article	IF	CITATIONS
19	A DSRC-Based Vehicular Positioning Enhancement Using a Distributed Multiple-Model Kalman Filter. IEEE Access, 2016, 4, 8338-8350.	2.6	16
20	Hybrid solutions for data dissemination in vehicular networks. , 2016, , .		4
21	Big data-driven optimization for mobile networks toward 5G. IEEE Network, 2016, 30, 44-51.	4.9	243
22	Delay-Optimal Virtualized Radio Resource Scheduling in Software-Defined Vehicular Networks via Stochastic Learning. IEEE Transactions on Vehicular Technology, 2016, 65, 7857-7867.	3.9	112
23	An Empirical Study on the Temporal Structural Characteristics of VANETs on a Taxi GPS Dataset. IEEE Access, 2017, 5, 722-731.	2.6	19
24	Wireless vehicular networks in emergencies: A single frequency network approach. , 2017, , .		5
25	Identification of Cellular Networks for Intelligent Radio Measurements. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 2204-2211.	2.4	27
26	Mobile Service Amount Based Link Scheduling for High-Mobility Cooperative Vehicular Networks. IEEE Transactions on Vehicular Technology, 2017, 66, 9521-9533.	3.9	25
27	Modelling unmanned aerial vehicles base station in groundâ€ŧoâ€∎ir cooperative networks. IET Communications, 2017, 11, 1187-1194.	1.5	40
28	SERVitES: An efficient search and allocation resource protocol based on V2V communication for vehicular cloud. Computer Networks, 2017, 123, 104-118.	3.2	32
29	MIMO HetNet IEEE 802.11p–LTE deployment in a vehicular urban environment. Vehicular Communications, 2017, 9, 222-232.	2.7	12
30	Predict and prevent from misbehaving intruders in heterogeneous vehicular networks. Vehicular Communications, 2017, 10, 74-83.	2.7	16
31	Decoupled U/C plane architecture for HetNets and high speed mobility: research directions & challenges. , 2017, , .		6
32	A two-stage allocation scheme for delay-sensitive services in dense vehicular networks. , 2017, , .		13
33	Latency of Cellular-Based V2X: Perspectives on TTI-Proportional Latency and TTI-Independent Latency. IEEE Access, 2017, 5, 15800-15809.	2.6	69
34	Resource allocation schemes in multi-vehicle cooperation systems. Journal of Communications and Information Networks, 2017, 2, 113-125.	3.5	6
35	A cost-effective SCTP extension for hybrid vehicular networks. Journal of Communications and Information Networks, 2017, 2, 18-29.	3.5	3
36	On the security of warning message dissemination in vehicular Ad hoc networks. Journal of Communications and Information Networks, 2017, 2, 46-58.	3.5	10

	CITATION R	EPORT	
#	Article	IF	CITATIONS
37	A communication architecture for Intelligent Transportation Applications. , 2017, , .		1
38	Vehicle-to-infrastructure communication over multi-tier heterogeneous networks: A survey. Computer Networks, 2017, 112, 144-166.	3.2	71
39	A Game Theoretic Approach to Parked Vehicle Assisted Content Delivery in Vehicular Ad Hoc Networks. IEEE Transactions on Vehicular Technology, 2017, 66, 6461-6474.	3.9	107
40	Communications Protocol Design for 5G Vehicular Networks. , 2017, , 625-649.		11
41	Measurement and comparison of Sub-1GHz and IEEE 802.11p in vehicular networks. , 2017, , .		0
42	Cell-Less Communications in 5G Vehicular Networks Based on Vehicle-Installed Access Points. IEEE Wireless Communications, 2017, 24, 64-71.	6.6	44
43	On the Connectivity of Vehicular Ad Hoc Network Under Various Mobility Scenarios. IEEE Access, 2017, 5, 22559-22565.	2.6	32
44	Vehicular Communications: A Physical Layer Perspective. IEEE Transactions on Vehicular Technology, 2017, 66, 10647-10659.	3.9	188
45	Software-Defined heterogeneous vehicular networks: Taxonomy and architecture. , 2017, , .		13
46	Elastic local breakout strategy and implementation for delay-sensitive packets with local significance. , 2017, , .		1
47	Design on Publish/Subscribe Message Dissemination for Vehicular Networks with Mobile Edge Computing. , 2017, , .		5
48	Robust power allocation for NOMA in heterogeneous vehicular communications with imperfect channel estimation. , 2017, , .		9
49	A Centralized Clustering Based Hybrid Vehicular Networking Architecture for Safety Data Delivery. , 2017, , .		9
50	ROR: An RSSI Based OMNI-Directional Routing Algorithm for GeoBroadcast in VANETs. , 2017, , .		3
51	Study on a method to improve the efficiency of vehicular networks. , 2017, , .		0
52	A blockchain-based reputation system for data credibility assessment in vehicular networks. , 2017, , .		104
53	An Efficient and QoS Supported Multichannel MAC Protocol for Vehicular Ad Hoc Networks. Sensors, 2017, 17, 2293.	2.1	15
54	Adaptive Virtual RSU Scheduling for Scalable Coverage under Bidirectional Vehicle Traffic Flow. Algorithms, 2017, 10, 98.	1.2	Ο

#	Article	IF	CITATIONS
55	Stochastic Analysis of Network Coding Based Relay-Assisted I2V Communications in Intelligent Transportation Systems. Wireless Communications and Mobile Computing, 2017, 2017, 1-9.	0.8	1
56	LTE Network Enhancement for Vehicular Safety Communication. Mobile Information Systems, 2017, 2017, 1-18.	0.4	12
57	A Survey on Infrastructure-Based Vehicular Networks. Mobile Information Systems, 2017, 2017, 1-28.	0.4	59
58	Joint power control and user pairing for ergodic capacity maximization in V2V communications. , 2017, , .		4
59	Latency-constrained content dissemination scheme in vehicular networks. , 2017, , .		0
60	Effective gateway association schemes for performance improvement of V2I communications in heterogeneous vehicular networks. , 2017, , .		2
61	V2X Access Technologies: Regulation, Research, and Remaining Challenges. IEEE Communications Surveys and Tutorials, 2018, 20, 1858-1877.	24.8	289
62	Low Complexity and Fast Processing Algorithms for V2I Massive MIMO Uplink Detection. IEEE Transactions on Vehicular Technology, 2018, 67, 5054-5068.	3.9	23
63	Cooperative Vehicular Networking: A Survey. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 996-1014.	4.7	193
64	Data Uploading in Hybrid V2V/V2I Vehicular Networks: Modeling and Cooperative Strategy. IEEE Transactions on Vehicular Technology, 2018, 67, 4602-4614.	3.9	40
65	USA: Faster update for SDN-based internet of things sensory environments. Computer Communications, 2018, 120, 80-92.	3.1	7
66	Implicit aggressive driving detection in social VANET. Procedia Computer Science, 2018, 129, 348-352.	1.2	3
67	A Latency and Reliability Guaranteed Resource Allocation Scheme for LTE V2V Communication Systems. IEEE Transactions on Wireless Communications, 2018, 17, 3850-3860.	6.1	134
68	Network slicing and efficient ONU migration for reliable communications in converged vehicular and fixed access network. Vehicular Communications, 2018, 11, 57-67.	2.7	21
69	Proactive Doppler Shift Compensation in Vehicular Cyber-Physical Systems. IEEE/ACM Transactions on Networking, 2018, 26, 807-818.	2.6	10
70	Approximate and Sublinear Spatial Queries for Large-Scale Vehicle Networks. IEEE Transactions on Vehicular Technology, 2018, 67, 1561-1569.	3.9	1
71	Driver's Intention Identification and Risk Evaluation at Intersections in the Internet of Vehicles. IEEE Internet of Things Journal, 2018, 5, 1575-1587.	5.5	47
72	Quality of service aware multicasting in heterogeneous vehicular networks. Vehicular Communications, 2018, 13, 38-55.	2.7	15

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
73	Heterogeneous vehicular communications: A comprehensive study. Ad Hoc Networks, 2018, 75-76, 52-79.	3.4	70
74	Performance analysis of cooperative small cell systems under correlated Rician/Gamma fading channels. IET Signal Processing, 2018, 12, 64-73.	0.9	13
75	A Domain-Specific Comparison of Information-Centric Networking Architectures for Connected Vehicles. IEEE Communications Surveys and Tutorials, 2018, 20, 2372-2388.	24.8	27
76	Cooperative coexistence and resource allocation for V2X communications in LTE-unlicensed. , 2018, , .		9
77	Robust adaptive multi-service transmission with hierarchical modulation for OFDM systems in high mobility scenarios. Telecommunication Systems, 2018, 69, 381-395.	1.6	1
78	5G next generation VANETs using SDN and fog computing framework. , 2018, , .		87
79	sdnMAC: A Software-Defined Network Inspired MAC Protocol for Cooperative Safety in VANETs. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 2011-2024.	4.7	36
80	Emerging technologies and research challenges for intelligent transportation systems: 5G, HetNets, and SDN. International Journal on Interactive Design and Manufacturing, 2018, 12, 327-335.	1.3	49
81	A Continuous-Time Markov decision process-based resource allocation scheme in vehicular cloud for mobile video services. Computer Communications, 2018, 118, 140-147.	3.1	18
82	Mitigating tail latency in IEEE 802.11–based networks. International Journal of Communication Systems, 2018, 31, e3404.	1.6	5
83	Privacy and Integrity Considerations in Hyperconnected Autonomous Vehicles. Proceedings of the IEEE, 2018, 106, 160-170.	16.4	57
84	Towards Reasoning Vehicles. ACM Computing Surveys, 2018, 50, 1-37.	16.1	21
85	Vehicular Wi-Fi Offloading in Heterogeneous Vehicular Networks: Techniques and Challenges. Mobile Networks and Applications, 2018, 23, 560-579.	2.2	4
86	Distribution-aware cache replication for cooperative road side units in VANETs. Peer-to-Peer Networking and Applications, 2018, 11, 1075-1084.	2.6	10
87	The MEC-Based Architecture Design for Low-Latency and Fast Hand-Off Vehicular Networking. , 2018, , .		12
88	A Connectivity-Aware Caching Algorithm for Vehicular Content Centric Networks with Cache-Enabled Vehicles. , 2018, , .		4
89	Performance Analysis of Communication Standards in Vehicular Cloud Networks. , 2018, , .		0
90	Systems Analysis and Design of a Smart Traffic Service System for Predictive and Smarter Mobility and Safety in Roadway Work Zones. , 2018, , .		0

#	Article	IF	CITATIONS
91	An Adaptive Task Assignment Scheme for Data Service in Heterogeneous Vehicular Networks. , 2018, , .		0
92	Optimal Power Allocations for Relay-assisted NOMA-based 5G V2X Broadcast/Multicast Communications. , 2018, , .		10
94	Reinforcement Learning Policy for Adaptive Edge Caching in Heterogeneous Vehicular Network. , 2018, , .		13
95	Hybrid V2X Communications: Multi-RAT as Enabler for Connected Autonomous Driving. , 2018, , .		16
96	Vehicle location measurement method for radio-shadow area through iBeacon message. International Journal of Distributed Sensor Networks, 2018, 14, 155014771881257.	1.3	1
97	Congestion Game With Link Failures for Network Selection in High-Speed Vehicular Networks. IEEE Access, 2018, 6, 76165-76175.	2.6	7
98	Handover Algorithm for the Improved Phantom Cells. , 2018, , .		1
99	Computation Offloading Scheme to Improve QoE in Vehicular Networks with Mobile Edge Computing. , 2018, , .		15
100	Coverage Analysis in Cellular Networks with Planar and Vehicular Base Stations. , 2018, , .		1
101	A Joint Allocation Scheme of Control Tasks and Communication Resources in Cyber-Physical Systems. , 2018, , .		1
102	A Two-Stage Content Pushing Service Based on Virtual MIMO in LTE-V Networks. , 2018, , .		0
103	Heterogeneous ITS Architecture for Manned and Unmanned Cars in Suburban Areas. , 2018, , .		1
104	Interest Tree Based Information Dissemination via Vehicular Named Data Networking. , 2018, , .		7
105	Mobility and Handoff Management in Connected Vehicular Networks. , 2018, , .		13
106	Transparent Edge Gateway for Mobile Networks. , 2018, , .		7
107	Implementation of Co-Operative Vehicle Positioning System Using Kalman Filter MANETS. , 2018, , .		1
108	Improving the Communication of Heterogeneous Vehicular Networks through Clusterization. , 2018, ,		3
109	An efficient anonymous batch authentication scheme based on priority and cooperation for VANETs. Eurasip Journal on Wireless Communications and Networking, 2018, 2018, .	1.5	5

#	Article	IF	CITATIONS
110	Intelligent 5G Vehicular Networks: An Integration of DSRC and mmWave Communications. , 2018, , .		21
111	Stable Clustering for VANETs on Highways. , 2018, , .		13
112	Performance Analysis of a VANET with optimal infrastructure location in setting urban. , 2018, , .		3
113	QoE-Driven and Traffic-Flow-Density-Based Link Scheduling Algorithm in LLC Protocol for HetVNETs. , 2018, , .		0
114	VANET–LTE based heterogeneous vehicular clustering for driving assistance and route planning applications. Computer Networks, 2018, 145, 128-140.	3.2	30
115	Vehicular micro cloud in action: On gateway selection and gateway handovers. Ad Hoc Networks, 2018, 78, 73-83.	3.4	14
116	Wireless Resource Management in LTE-U Driven Heterogeneous V2X Communication Networks. IEEE Transactions on Vehicular Technology, 2018, 67, 7508-7522.	3.9	44
117	Software-Defined Collaborative Offloading for Heterogeneous Vehicular Networks. Wireless Communications and Mobile Computing, 2018, 2018, 1-9.	0.8	18
118	Spatio-Temporal Motifs for Optimized Vehicle-to-Vehicle (V2V) Communications. , 2018, , .		6
119	On the Human Factor Consideration for VANETs Security Based on Social Networks. , 2018, , .		3
120	Effect of Fog and Rain on the Performance of Vehicular Visible Light Communications. , 2018, , .		59
121	Modeling and Solving Method for Supporting †Vehicle-to-Anything' EV Charging Mode. Applied Sciences (Switzerland), 2018, 8, 1048.	1.3	24
122	Toward Edge-based Caching in Software-defined Heterogeneous Vehicular Networks. , 2018, , 267-285.		1
123	Spectrum Resource Sharing in Heterogeneous Vehicular Networks: A Noncooperative Game-Theoretic Approach With Correlated Equilibrium. IEEE Transactions on Vehicular Technology, 2018, 67, 9449-9458.	3.9	68
124	An Analytical Framework for Coverage in Cellular Networks Leveraging Vehicles. IEEE Transactions on Communications, 2018, , 1-1.	4.9	58
125	Realization of VANET-Based Cloud Services through Named Data Networking. IEEE Communications Magazine, 2018, 56, 168-175.	4.9	26
126	Evaluating UAV-to-Car Communications Performance: Testbed Experiments. , 2018, , .		8
127	Social internet of vehicles: an epistemological and systematic perspective. Library Hi Tech, 2018, 38, 221-231.	3.7	6

#	Article	IF	CITATIONS
128	CarAgent: Collecting and disseminating floating car data in vehicular networks. Vehicular Communications, 2018, 13, 114-127.	2.7	6
129	Social Internet of Vehicles: Architecture and enabling technologies. Computers and Electrical Engineering, 2018, 69, 68-84.	3.0	77
130	A distributed time-limited multicast algorithm for VANETs using incremental power strategy. Computer Networks, 2018, 145, 141-155.	3.2	9
131	Sliced Sensing System: Toward 5G Cognitive Radio Applications Under Fast Time-Varying Channels. IEEE Systems Journal, 2019, 13, 1297-1307.	2.9	7
132	Blockchain-Based Decentralized Trust Management in Vehicular Networks. IEEE Internet of Things Journal, 2019, 6, 1495-1505.	5.5	610
133	Medium Access Control Protocols for Power Line Communication: A Survey. IEEE Communications Surveys and Tutorials, 2019, 21, 920-939.	24.8	27
134	ASGR: An Artificial Spider-Web-Based Geographic Routing in Heterogeneous Vehicular Networks. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 1604-1620.	4.7	89
135	Synergizing Roadway Infrastructure Investment with Digital Infrastructure for Infrastructure-Based Connected Vehicle Applications: Review of Current Status and Future Directions. Journal of Infrastructure Systems, 2019, 25, .	1.0	19
136	QoE and Cost for Wireless Networks With Mobility Under Spatio-Temporal Traffic. IEEE Access, 2019, 7, 47206-47220.	2.6	11
137	Machine Learning-Based Handovers for Sub-6 GHz and mmWave Integrated Vehicular Networks. IEEE Transactions on Wireless Communications, 2019, 18, 4873-4885.	6.1	71
138	Semi-Persistent V2X Resource Allocation with Traffic Prediction in Two-Tier Cellular Networks. , 2019, , \cdot		4
139	Review on V2X, I2X, and P2X Communications and Their Applications: A Comprehensive Analysis over Time. Sensors, 2019, 19, 2756.	2.1	42
140	The Vehicle-to-Vehicle Link Duration Scheme Using Platoon-Optimized Clustering Algorithm. IEEE Access, 2019, 7, 78584-78596.	2.6	6
141	Intelligent Prediction of Mobile Vehicle Trajectory Based on Space-Time Information. , 2019, , .		5
142	Decentralized Deep Reinforcement Learning for Delay-Power Tradeoff in Vehicular Communications. , 2019, , .		3
143	Edge Computing Based Applications in Vehicular Environments: Comparative Study and Main Issues. Journal of Computer Science and Technology, 2019, 34, 869-886.	0.9	27
144	Benefits of using 5G Network Slicing to implement Vehicle-to-Everything (V2X) technology. , 2019, , .		14
145	ADMM Empowered Distributed Computational Intelligence for Internet of Energy. IEEE Computational Intelligence Magazine, 2019, 14, 42-51.	3.4	15

#	Article	IF	CITATIONS
146	Trust enforcement in vehicular networks: challenges and opportunities. IET Wireless Sensor Systems, 2019, 9, 237-246.	1.3	10
147	Martingale Theory-Based Optimal Task Allocation in Heterogeneous Vehicular Networks. IEEE Access, 2019, 7, 122354-122366.	2.6	14
148	Short-Term Traffic Prediction Based on DeepCluster in Large-Scale Road Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 12301-12313.	3.9	21
149	A Deep Review and Analysis of Data Exchange in Vehicle-to-Vehicle Communications Systems: Coherent Taxonomy, Challenges, Motivations, Recommendations, Substantial Analysis and Future Directions. IEEE Access, 2019, 7, 158349-158378.	2.6	15
150	Mapping and Deep Analysis of Vehicle-to-Infrastructure Communication Systems: Coherent Taxonomy, Datasets, Evaluation and Performance Measurements, Motivations, Open Challenges, Recommendations, and Methodological Aspects. IEEE Access, 2019, 7, 126753-126772.	2.6	22
151	A Game-Based Adaptive Traffic Signal Control Policy Using the Vehicle to Infrastructure (V2I). IEEE Transactions on Vehicular Technology, 2019, 68, 9425-9437.	3.9	16
152	Wireless Sensing using Vehicle Headlamps for Intelligent Transportation Systems: Proof of Concept. MATEC Web of Conferences, 2019, 271, 06004.	0.1	2
153	A survey on internet of vehicles: Applications, security issues & solutions. Vehicular Communications, 2019, 20, 100182.	2.7	153
154	Cell Fault Management Using Machine Learning Techniques. IEEE Access, 2019, 7, 124514-124539.	2.6	30
155	A Scalable Indirect Position-Based Causal Diffusion Protocol for Vehicular Networks. IEEE Access, 2019, 7, 14767-14778.	2.6	4
156	Mobility Management through Scalable C/U-Plane Decoupling in IoV Networks. IEEE Communications Magazine, 2019, 57, 122-129.	4.9	22
157	Privacy Management in Social Internet of Vehicles: Review, Challenges and Blockchain Based Solutions. IEEE Access, 2019, 7, 79694-79713.	2.6	105
158	Device-to-Device Communications Underlaying an Uplink SCMA System. IEEE Access, 2019, 7, 21756-21768.	2.6	18
159	Edge Computing for Autonomous Driving: Opportunities and Challenges. Proceedings of the IEEE, 2019, 107, 1697-1716.	16.4	364
160	Intrinsic Secrecy in Inhomogeneous Stochastic Networks. IEEE/ACM Transactions on Networking, 2019, 27, 1291-1304.	2.6	4
161	A 3D Wideband Non-Stationary Multi-Mobility Model for Vehicle-to-Vehicle MIMO Channels. IEEE Access, 2019, 7, 32562-32577.	2.6	33
162	Self-Adaptive Clustering and Load-Bandwidth Management for Uplink Enhancement in Heterogeneous Vehicular Networks. IEEE Internet of Things Journal, 2019, 6, 5607-5617.	5.5	17
163	Software-Defined Heterogeneous Vehicular Networking: The Architectural Design and Open Challenges. Future Internet, 2019, 11, 70.	2.4	57

#	Article	IF	Citations
164	A secure message-passing framework for inter-vehicular communication using blockchain. International Journal of Distributed Sensor Networks, 2019, 15, 155014771982967.	1.3	15
165	High-Reliability and Low-Latency Wireless Communication for Internet of Things: Challenges, Fundamentals, and Enabling Technologies. IEEE Internet of Things Journal, 2019, 6, 7946-7970.	5.5	170
166	Ant Colony Optimization Based Delay-Sensitive Routing Protocol in Vehicular Ad Hoc Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2019, , 138-148.	0.2	1
167	Dynamic Resource Allocation for LTE-Based Vehicle-to-Infrastructure Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 5017-5030.	3.9	15
168	A Relay-Node Selection on Curve Road in Vehicular Networks. IEEE Access, 2019, 7, 12714-12728.	2.6	22
169	Trajectories and Resource Management of Flying Base Stations for C-V2X. Sensors, 2019, 19, 811.	2.1	18
170	Delay-Constrained Data Transmission with Minimal Energy Consumption in Cognitive Radio/WiFi Vehicular Networks. Wireless Personal Communications, 2019, 107, 1777-1797.	1.8	1
171	On Mobile Edge Caching. IEEE Communications Surveys and Tutorials, 2019, 21, 2525-2553.	24.8	161
172	Learning to Entangle Radio Resources in Vehicular Communications: An Oblivious Game-Theoretic Perspective. IEEE Transactions on Vehicular Technology, 2019, 68, 4262-4274.	3.9	10
173	Cooperative NOMA Broadcasting/Multicasting for Low-Latency and High-Reliability 5G Cellular V2X Communications. IEEE Internet of Things Journal, 2019, 6, 7828-7838.	5.5	128
174	Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives. IEEE Communications Surveys and Tutorials, 2019, 21, 2488-2524.	24.8	166
175	A Heterogeneous IoV Architecture for Data Forwarding in Vehicle to Infrastructure Communication. Mobile Information Systems, 2019, 2019, 1-12.	0.4	40
176	Low Delay Inter-Packet Coding in Vehicular Networks. Future Internet, 2019, 11, 212.	2.4	4
177	Multi-Agent Deep Reinforcement Learning for Cooperative Connected Vehicles. , 2019, , .		9
178	Survey of Hybrid VANET Design for Provisioning Infotainment Application. , 2019, , .		0
179	Secure Edge Caching Placement and Delivery for Ultra-Reliable and Low-Latency Vehicular Networks. , 2019, , .		2
180	RSS-RSQ Based Base Station and Mobile Station Localization in 3GPP UMTS Cellular Network. , 2019, , .		0
181	Disaster-Resilient Communication Framework for Heterogeneous Vehicular Networks. , 2019, , .		1

#	Article	IF	CITATIONS
182	Optimum SWIPT relaying in bidirectional nonâ€regenerative relay networks. IET Communications, 2019, 13, 679-686.	1.5	2
183	Decentralised resource allocation of positionâ€based and fullâ€duplexâ€based allâ€ŧoâ€all broadcasting. IET Communications, 2019, 13, 2254-2260.	1.5	1
184	A Handover Algorithm for Video Sharing over Vehicular Networks. , 2019, , .		2
185	Stochastic Geometry Modeling of Cellular V2X Communication Over Shared Channels. IEEE Transactions on Vehicular Technology, 2019, 68, 11873-11887.	3.9	45
186	Exploiting Multi-RAT Diversity in Vehicular Ad-Hoc Networks to Improve Reliability of Cooperative Automated Driving Applications. , 2019, , .		8
187	An Efficient Requirement-Aware Attachment Policy for Future Millimeter Wave Vehicular Networks. , 2019, , .		1
188	An Empirical Study on V2X Enhanced Low-Cost GNSS Cooperative Positioning in Urban Environments. Sensors, 2019, 19, 5201.	2.1	9
189	Cooperative Driving and the Tactile Internet. Proceedings of the IEEE, 2019, 107, 436-446.	16.4	50
190	Holistic approach for coupling privacy with safety in VANETs. Computer Networks, 2019, 148, 214-230.	3.2	19
191	Cooperative Temporal Data Dissemination in SDN-Based Heterogeneous Vehicular Networks. IEEE Internet of Things Journal, 2019, 6, 72-83.	5.5	35
192	Networking and Communications in Autonomous Driving: A Survey. IEEE Communications Surveys and Tutorials, 2019, 21, 1243-1274.	24.8	319
193	A Novel Classifier Exploiting Mobility Behaviors for Sybil Detection in Connected Vehicle Systems. IEEE Internet of Things Journal, 2019, 6, 2626-2636.	5.5	21
194	TACASHI: Trust-Aware Communication Architecture for Social Internet of Vehicles. IEEE Internet of Things Journal, 2019, 6, 5870-5877.	5.5	59
195	LTE efficiency when used in traffic information systems: A stable interest aware clustering. International Journal of Communication Systems, 2019, 32, e3853.	1.6	13
196	Privacy-Preserving Content Dissemination for Vehicular Social Networks: Challenges and Solutions. IEEE Communications Surveys and Tutorials, 2019, 21, 1314-1345.	24.8	114
197	Survey of Spectrum Sharing for Inter-Technology Coexistence. IEEE Communications Surveys and Tutorials, 2019, 21, 1112-1144.	24.8	45
198	A Center-Based Secure and Stable Clustering Algorithm for VANETs on Highways. Wireless Communications and Mobile Computing, 2019, 2019, 1-10.	0.8	48
199	NeedÂof Ambient Intelligence for Next-Generation ConnectedÂand Autonomous Vehicles. Computer Communications and Networks, 2019, , 133-151.	0.8	5

#	Article	IF	CITATIONS
200	Distributed Real-Time IoT for Autonomous Vehicles. IEEE Transactions on Industrial Informatics, 2019, 15, 1131-1140.	7.2	67
201	Robust Resource Allocation With Imperfect Channel Estimation in NOMA-Based Heterogeneous Vehicular Networks. IEEE Transactions on Communications, 2019, 67, 2321-2332.	4.9	55
202	A \$Q\$ -Learning-Based Proactive Caching Strategy for Non-Safety Related Services in Vehicular Networks. IEEE Internet of Things Journal, 2019, 6, 4512-4520.	5.5	61
203	QoS supported adaptive and multichannel MAC protocol in vehicular ad-hoc network. Cluster Computing, 2019, 22, 3325-3337.	3.5	7
204	Vehicular Communications: A Network Layer Perspective. IEEE Transactions on Vehicular Technology, 2019, 68, 1064-1078.	3.9	204
205	Mutual authentication for vehicular network in complex and uncertain driving. Neural Computing and Applications, 2020, 32, 61-72.	3.2	21
206	A robust distance-based relay selection for message dissemination in vehicular network. Wireless Networks, 2020, 26, 1755-1771.	2.0	49
207	A Topological Approach to Secure Message Dissemination in Vehicular Networks. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 135-148.	4.7	70
208	A Cooperative Heterogeneous Vehicular Clustering Mechanism for Road Traffic Management. International Journal of Parallel Programming, 2020, 48, 870-889.	1.1	14
209	Reliable Emergency Message Dissemination Scheme for Urban Vehicular Networks. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 1154-1166.	4.7	21
210	Bayesian networks based reliable broadcast in vehicular networks. Vehicular Communications, 2020, 21, 100181.	2.7	9
211	Orchestration of heterogeneous wireless networks: State of the art and remaining challenges. Computer Communications, 2020, 149, 62-77.	3.1	12
212	Differential Privacy Techniques for Cyber Physical Systems: A Survey. IEEE Communications Surveys and Tutorials, 2020, 22, 746-789.	24.8	335
213	A Comprehensive Survey on Mobility-Aware D2D Communications: Principles, Practice and Challenges. IEEE Communications Surveys and Tutorials, 2020, 22, 1863-1886.	24.8	95
214	Internet Provisioning in VANETs: Performance Modeling of Drive-Thru Scenarios. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 2801-2815.	4.7	7
215	Efficient Hybrid Data Dissemination for Edge-Assisted Automated Driving. IEEE Internet of Things Journal, 2020, 7, 148-159.	5.5	18
216	5G Vehicular Network Resource Management for Improving Radio Access Through Machine Learning. IEEE Access, 2020, 8, 6792-6800.	2.6	91
218	TCEMD: A Trust Cascading-Based Emergency Message Dissemination Model in VANETs. IEEE Internet of Things Journal, 2020, 7, 4028-4048.	5.5	33

ARTICLE IF CITATIONS A Blockchain-Based Trust Management With Conditional Privacy-Preserving Announcement Scheme 219 5.5 113 for VANETs. IEEE Internet of Things Journal, 2020, 7, 4101-4112. A Blockchain-SDN-Enabled Internet of Vehicles Environment for Fog Computing and 5G Networks. IEEE 5.5 147 Internet of Things Journal, 2020, 7, 4278-4291. 221 Security issues and challenges in V2X: A Survey. Computer Networks, 2020, 169, 107093. 3.2 117 The Internet of Things for Logistics: Perspectives, Application Review, and Challenges. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 2022, 39, 93-121. Performance-Based Structural Seismic Method in High-rise Building Design. Journal of Physics: 223 0.3 1 Conference Series, 2020, 1578, 012190. An Efficient Hybrid Signcryption Scheme With Conditional Privacy-Preservation for Heterogeneous Vehicular Communication in VANETs. IEEE Transactions on Vehicular Technology, 2020, 69, 11266-11280. 224 Delay-Minimized Edge Caching in Heterogeneous Vehicular Networks: A Matching-Based Approach. IEEE 225 6.1 44 Transactions on Wireless Communications, 2020, 19, 6409-6424. A Directional Clustering Protocol for Millimeter Wave Vehicular Ad hoc Networks., 2020, , . 226 Design and Analysis for Dual Connectivity and Raptor Codes Assisted Handover in Vehicular 227 0 Networks. , 2020, , . Driving Stability Analysis Using Naturalistic Driving Data With Random Matrix Theory. IEEE Access, 2.6 2020, 8, 175521-175534. A Hierarchical Vehicular-Based Architecture for Vehicular Networks: A Case Study on Computation 229 2.6 1 Offloading. IEEE Access, 2020, 8, 184273-184283. EVC-TDMA: An enhanced TDMA based cooperative MAC protocol for vehicular networks. Journal of 1.8 Communications and Networks, 2020, 22, 316-325. Architectural Design Alternatives Based on Cloud/Edge/Fog Computing for Connected Vehicles. IEEE 231 24.8 78 Communications Surveys and Tutorials, 2020, 22, 2349-2377. Multi-Layer Offloading at the Edge for Vehicular Networks., 2020, ... An Analytical Model and Performance Evaluation of Multihomed Multilane VANETs. IEEE/ACM 233 2.6 4 Transactions on Networking, 2020, , 1-14. A Multiple Linear Regression Model for Predicting Congestion in Heterogeneous Vehicular Networks. 234 ,2020,,. Heterogeneous User-Centric Cluster Migration Improves the Connectivity-Handover Trade-Off in 235 3.9 21 Vehicular Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 16027-16043. Vehicular LTE connectivity analysis in urban and rural environments using USRP measurements. Array, 2020, 8, 100045.

CITATION REPORT

#

ARTICLE IF CITATIONS # Middle-Order Vehicle-Based Clustering Model for Reducing Packet Loss in Vehicular Ad-hoc Networks. 237 1.0 3 Journal of Circuits, Systems and Computers, 2020, 29, 2050180. Machine learning based trust management framework for vehicular networks. Vehicular 2.7 Communications, 2020, 25, 100256. Leveraging Dynamic Stackelberg Pricing Game for Multi-Mode Spectrum Sharing in 5G-VANET. IEEE 239 3.9 33 Transactions on Vehicular Technology, 2020, 69, 6374-6387. Cognitive Radio based Spectrum Sharing technique for 5G system., 2020,,. 240 Internet of Ships: A Survey on Architectures, Emerging Applications, and Challenges. IEEE Internet of 241 5.5 112 Things Journal, 2020, 7, 9714-9727. System-Level Reliability Analysis of Cooperative Driving with V2X Communication for Intersection Collision Avoidance. Transportation Research Record, 2020, 2674, 696-709. 1.0 CoMP-Based Dynamic Handover for Vehicular VLC Networks. IEEE Communications Letters, 2020, 24, 243 2.533 2024-2028. Channel Modelling and Performance Limits of Vehicular Visible Light Communication Systems. IEEE 244 3.9 Transactions on Vehicular Technology, 2020, 69, 6891-6901. Resource Allocation for Vehicular Fog Computing Using Reinforcement Learning Combined With 245 5.5 87 Heuristic Information. IEEE Internet of Things Journal, 2020, 7, 10450-10464. The k-hop-limited V2V2I VANET data offloading using the Mobile Edge Computing (MEC) mechanism. 246 2.7 Vehicular Communications, 2020, 26, 100268 Fog Computing Empowered Data Dissemination in Software Defined Heterogeneous VANETs. IEEE 247 3.9 57 Transactions on Mobile Computing, 2021, 20, 3181-3193. A low-complexity design for the terminal device of the urban IoT-oriented heterogeneous network 249 5.1 with ultra-high-speed OFDM processing. Sustainable Cities and Society, 2020, 61, 102323. Energy and Information Management of Electric Vehicular Network: A Survey. IEEE Communications 250 24.8 47 Surveys and Tutorials, 2020, 22, 967-997. Repetition-Based Cooperative Broadcasting for Vehicular Ad Hoc Networks Under the Rayleigh Fading 1.3 Channel. Applied Sciences (Switzerland), 2020, 10, 212. Joint Frame Design and Resource Allocation for Ultra-Reliable and Low-Latency Vehicular Networks. 252 6.1 27 IEEE Transactions on Wireless Communications, 2020, 19, 3607-3622. Multi-Armed Bandit Based Task Offloading By Probabilistic V2X Communication in Vehicle Edge Cloud System., 2020,,. Toward the Internet of Things for Physical Internet: Perspectives and Challenges. IEEE Internet of 254 5.5 113 Things Journal, 2020, 7, 4711-4736. Two-Way Transmission for Low-Latency and High-Reliability 5G Cellular V2X Communications. Sensors, 2.1 2020, 20, 386.

		CITATION REPORT	
#	Article	IF	Citations
256	An adaptive intersection selection mechanism using ant Colony optimization for efficient dat dissemination in urban VANET. Peer-to-Peer Networking and Applications, 2020, 13, 1375-13	a 2.6 93.	20
257	Age of Information Aware Radio Resource Management in Vehicular Networks: A Proactive De Reinforcement Learning Perspective. IEEE Transactions on Wireless Communications, 2020, 2268-2281.	eep .9, 6.1	118
258	Safety Assessment of Radio Frequency and Visible Light Communication for Vehicular Netwo Wireless Communications, 2020, 27, 186-192.	ks. IEEE 6.6	4
259	CCVNet: A Modified Content-Centric Approach to Enable Multiple Types of Applications in Ve Networks. Wireless Personal Communications, 2020, 113, 139-166.	hicular 1.8	5
260	Evolutionary V2X Technologies Toward the Internet of Vehicles: Challenges and Opportunitie Proceedings of the IEEE, 2020, 108, 308-323.	s. 16.4	360
261	Radio resource management for vehicular communication via cellular device to device links: r and challenges. Telecommunication Systems, 2020, 73, 607-635.	eview 1.6	13
262	Design and Evaluation of Flooding-Based Location Service in Vehicular Ad Hoc Networks. Sen 2020, 20, 2389.	sors, 2.1	4
263	Twin-Timescale Radio Resource Management for Ultra-Reliable and Low-Latency Vehicular Ne IEEE Transactions on Vehicular Technology, 2020, 69, 1023-1036.	tworks. 3.9	26
264	Internet of Vehicles: Key Technologies, Network Model, Solutions and Challenges With Future Aspects. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 1777-1786.	2 4.7	73
265	Vehicular Visible Light Communications: A Survey. IEEE Communications Surveys and Tutoria 23, 161-181.	s, 2021, 24.8	134
266	A Survey on Resource Allocation in Vehicular Networks. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 701-721.	4.7	69
267	Research Advances and Challenges of Autonomous and Connected Ground Vehicles. IEEE Tra on Intelligent Transportation Systems, 2021, 22, 683-711.	nsactions 4.7	158
268	UAV Trajectory Design for UAV-2-GV Communication in VANETs. , 2021, , .		4
269	Analytical Nonstationary 3D MIMO Channel Model for Vehicle-to-Vehicle Communication on International Journal of Antennas and Propagation, 2021, 2021, 1-16.	Slope. 0.7	1
270	A Context-Sensitive Cloud-Based Data Analytic Mobile Alert and Optimal Route Discovery Sys Rural and Urban ITS Penetration. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 35-51.	tem for 0.2	0
271	Telematics and Mobile Internet. Advances in Wireless Technologies and Telecommunication E Series, 2021, , 373-396.	Book 0.3	5
272	Software-Defined Vehicular Networks (SDVN) for Intelligent Transportation Systems (ITS). Ac in Web Technologies and Engineering Book Series, 2021, , 305-327.	vances 0.4	0
273	Resource Allocation of Video Streaming Over Vehicular Networks: A Survey, Some Research Is Challenges. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 5955-5975.	ssues and 4.7	31

#	Article	IF	Citations
274	Spectrum Sensing and Signal Identification With Deep Learning Based on Spectral Correlation Function. IEEE Transactions on Vehicular Technology, 2021, 70, 10514-10527.	3.9	25
275	Multi-Objective Optimization for Resource Allocation in Vehicular Cloud Computing Networks. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 25536-25545.	4.7	63
276	Truck Platooning Aided Secure Publish/Subscribe System Based on Smart Contract in Autonomous Vehicular Networks. IEEE Transactions on Vehicular Technology, 2021, 70, 782-794.	3.9	10
277	Popularity-Aware Online Task Offloading for Heterogeneous Vehicular Edge Computing Using Contextual Clustering of Bandits. IEEE Internet of Things Journal, 2022, 9, 5422-5433.	5.5	19
278	Classification of C-ITS Services in Vehicular Environments. IEEE Access, 2021, 9, 117868-117879.	2.6	13
280	A Centralized and Dynamic Network Congestion Classification Approach for Heterogeneous Vehicular Networks. IEEE Access, 2021, 9, 122284-122298.	2.6	7
281	Aiding Traffic Prediction Servers through Self-Localization to Increase Stability in Complex Vehicular Clustering. Complexity, 2021, 2021, 1-11.	0.9	2
282	A Survey of Driving Safety With Sensing, Vehicular Communications, and Artificial Intelligence-Based Collision Avoidance. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 6142-6163.	4.7	35
283	Cross Network Slicing in Vehicular Networks. Internet of Things, 2021, , 151-189.	1.3	1
284	A Survey of Autonomous Vehicles: Enabling Communication Technologies and Challenges. Sensors, 2021, 21, 706.	2.1	142
285	A Survey on Resource Allocation for 5G Heterogeneous Networks: Current Research, Future Trends, and Challenges. IEEE Communications Surveys and Tutorials, 2021, 23, 668-695.	24.8	305
286	A Survey on the Current Security Landscape of Intelligent Transportation Systems. IEEE Access, 2021, 9, 9180-9208.	2.6	64
287	Applications of Game Theory in Vehicular Networks: A Survey. IEEE Communications Surveys and Tutorials, 2021, 23, 2660-2710.	24.8	22
288	Comprehensive Survey on Machine Learning in Vehicular Network: Technology, Applications and Challenges. IEEE Communications Surveys and Tutorials, 2021, 23, 2027-2057.	24.8	92
289	Sequence-Based Schemes for Broadcast and Unicast under Frequency Division Duplex. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2021, E104.A, 376-383.	0.2	0
290	Effective Capacity Maximization in beyond 5G Vehicular Networks: A Hybrid Deep Transfer Learning Method. Wireless Communications and Mobile Computing, 2021, 2021, 1-12.	0.8	7
291	Blockchain Based Trust Model Using Tendermint in Vehicular Adhoc Networks. Applied Sciences (Switzerland), 2021, 11, 1998.	1.3	9
292	Multi-Directional Vehicle-To-Vehicle Visible Light Communication With Angular Diversity Technology. , 2021, , .		5

ARTICLE IF CITATIONS Analysis of Cellular Vehicle-to-Everything Physical Layer Parameters., 2021,,. 293 1 FC-BET: A Fast Consecutive Beam Tracking Scheme for MmWave Vehicular Communications., 2021,,. 294 Interference-Based QoS and Capacity Analysis of VANETs for Safety Applications. IEEE Transactions on 295 3.9 6 Vehicular Technology, 2021, 70, 2448-2464. BTMPP: Balancing Trust Management and Privacy Preservation for Emergency Message Dissemination in 296 Vehicular Networks. IEEE Internet of Things Journal, 2021, 8, 5386-5407. Performance evaluation of multi service provisioning for multi-hop cooperative data dissemination in 297 3.3 4 SDHVN. Journal of Ambient Intelligence and Humanized Computing, 2022, 13, 4773-4786. Machine learning based cluster formation in vehicular communication. Telecommunication Systems, 298 1.6 2021, 78, 39. Design and Analysis of Cooperative Broadcast Scheme Based on Reliability in Mesh Network. Mobile 299 0.4 2 Information Systems, 2021, 2021, 1-18. A Comprehensive Survey of the Key Technologies and Challenges Surrounding Vehicular Ad Hoc 300 2.9 34 Networks. ACM Transactions on Intelligent Systems and Technology, 2021, 12, 1-30. Bilinear Pairing-Based Hybrid Signcryption for Secure Heterogeneous Vehicular Communications. IEEE 301 3.9 27 Transactions on Vehicular Technology, 2021, 70, 5974-5989. 6G Opportunities Arising from Internet of Things Use Cases: A Review Paper. Future Internet, 2021, 13, 2.4 159. A comprehensive survey on vehicular networks for smart roads: A focus on IP-based approaches. 303 2.7 25 Vehicular Communications, 2021, 29, 100334. Review of Communication Technologies for Electric Vehicle Charging Management and Coordination. 1.6 World Electric Vehicle Journal, 2021, 12, 92. Novel Road Traffic Management Strategy for Rapid Clarification of the Emergency Vehicle Route Based on V2V Communications. Sensors, 2021, 21, 5120. 305 2.1 7 DRL-Based Intelligent Resource Allocation for Diverse QoS in 5G and toward 6G Vehicular Networks: 306 0.8 14 A Comprehensive Survey. Wireless Communications and Mobile Computing, 2021, 2021, 1-21. Learning-Based Robust Resource Allocation for Ultra-Reliable V2X Communications. IEEE Transactions 307 10 6.1 on Wireless Communications, 2021, 20, 5199-5211. Vehicle Pairing, Spectrum Assignment and Power Control for Non-Safety Critical Services in 308 3.9 Heterogeneous Vehicular Networks. IEEE Transactions on Vehicular Technology, 2021, 70, 9160-9173. A Comprehensive Study of Security Attack on VANET. Lecture Notes on Data Engineering and 309 0.5 5 Communications Technologies, 2022, , 407-428. Designing a multi-layer edge-computing platform for energy-efficient and delay-aware offloading in 3.2 vehicular networks. Computer Networks, 2021, 198, 108330.

#	Article	IF	CITATIONS
311	ECCHSC: Computationally and Bandwidth Efficient ECC-Based Hybrid Signcryption Protocol for Secure Heterogeneous Vehicle-to-Infrastructure Communications. IEEE Internet of Things Journal, 2022, 9, 4435-4450.	5.5	15
312	Heterogeneous-Internet of Vehicles (Het-IoV) in Twenty-First Century: A Comprehensive Study. , 2020, , 555-584.		10
313	Smart Transportation Systems: Architecture, Enabling Technologies, and Open Issues. SpringerBriefs in Computer Science, 2017, , 23-49.	0.2	18
314	A driving intention prediction method based on hidden Markov model for autonomous driving. Computer Communications, 2020, 157, 143-149.	3.1	53
315	MAC Layer Performance of Multi-Hop Vehicular VLC Networks with CSMA/CA. , 2020, , .		13
317	A Systematic Approach for Cyber Security in Vehicular Networks. Journal of Computer and Communications, 2016, 04, 38-62.	0.6	18
318	Adaptive Heterogeneous V2X Communication for Cooperative Vehicular Maneuvering. Communications in Computer and Information Science, 2021, , 228-254.	0.4	0
319	Large-Size Data Distribution in IoV Based on 5G/6G Compatible Heterogeneous Network. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 9840-9852.	4.7	9
320	Performance Analysis and Optimization of Cascaded I2V and V2V VLC Links. , 2021, , .		10
321	A new fog-based routing strategy (FBRS) for vehicular ad-hoc networks. Peer-to-Peer Networking and Applications, 2022, 15, 386-407.	2.6	3
322	A Receiver Structure for Frequency-Flat Time-Varying Rayleigh Channels and Performance Analysis. International Journal of Communications, Network and System Sciences, 2016, 09, 387-412.	0.4	0
323	Conclusion and Future Research Directions. Wireless Networks, 2017, , 103-109.	0.3	0
325	Hybrid-Aware Collaborative Multipath Communications for Heterogeneous Vehicular Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2018, , 208-218.	0.2	1
326	Motion Planning Based on Artificial Potential Field for Unmanned Tractor in Farmland. Advances in Intelligent Systems and Computing, 2019, , 153-162.	0.5	3
327	System Performance of Relay-Assisted Heterogeneous Vehicular Networks with Unreliable Backhaul over Double-Rayleigh Fading Channels. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2019, , 109-116.	0.2	0
328	Social Internet of Vehicles. Advances in Knowledge Acquisition, Transfer and Management Book Series, 2019, , 172-188.	0.1	0
329	Vehicular Social Networks and Vehicular Ad-hoc Networks, Applications, Modelling Tools and Challenges: A Survey. International Journal of Computer Applications, 2020, 176, 32-38.	0.2	2
330	Visible Light Communication for Automotive Market Weather Conditions Simulation. Advances in Intelligent Systems and Computing, 2021, , 637-651.	0.5	0

	CITATION	CITATION REPORT	
# 331	ARTICLE An Oblivious Game-Theoretic Perspective of RRM in Vehicular Communications. , 2020, , .	IF	Citations
332	A survey on road safety and traffic efficiency vehicular applications based on C-V2X technologies. Vehicular Communications, 2022, 33, 100428.	2.7	22
333	Multi-Link Scheduling Algorithm of LLC Protocol in Heterogeneous Vehicle Networks Based on Environment and Vehicle-Risk-Field Model. IEEE Access, 2020, 8, 224211-224223.	2.6	2
334	A Reinforcement Learning Aided Decoupled RAN Slicing Framework for Cellular V2X. , 2020, , .		4
335	Seamless V2I Communication in HetNet: State-of-the-Art and Future Research Directions. , 2020, , 37-83.		3
336	Radio Access Technologies Selection in Vehicular Networks: State-of-the-Art and Perspectives for Autonomous Connected Vehicles. Lecture Notes in Computer Science, 2020, , 99-112.	1.0	0
337	Wireless Infrastructure in the Transportation Market and the Challenges. SpringerBriefs in Applied Sciences and Technology, 2021, , 5-22.	0.2	0
339	An Intelligent Multimode Clustering Mechanism Using Driving Pattern Recognition in Cognitive Internet of Vehicles. Sensors, 2021, 21, 7588.	2.1	8
340	Cyberâ€physical description and CPSâ€based pinning approach of mixed traffic. IET Intelligent Transport Systems, 2022, 16, 344-362.	1.7	1
341	Machine Learning for Security in Vehicular Networks: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 2022, 24, 346-379.	24.8	28
342	A Survey on Cooperative Architectures and Maneuvers for Connected and Automated Vehicles. IEEE Communications Surveys and Tutorials, 2022, 24, 380-403.	24.8	24
343	Experimental V2X Evaluation for C-V2X and ITS-C5 Technologies in a Real-Life Highway Environment. IEEE Transactions on Network and Service Management, 2022, 19, 1521-1538.	3.2	36
344	Smart Infrastructure for Autonomous Driving. , 2021, , 173-190.		2
345	Bilinear Pairing-Based Signcryption Scheme for Secure Heterogeneous Vehicle-to-Infrastructure Communications in VANETs. , 2022, , 147-173.		0
346	Design of Antenna Configuration for Interference Control in MmWave V2V Communication Systems. , 2020, , .		2
347	Decision Making Optimization for Job Offloading in Vehicular Edge Computing Networks. , 2020, , .		0
348	Content Distribution Based on Joint V2I and V2V Scheduling in mmWave Vehicular Networks. IEEE Transactions on Vehicular Technology, 2022, 71, 3201-3213.	3.9	10
349	Distributed Unmanned Aerial Vehicle Positioning for Multitarget Tracking with Bearing-Only Information. Journal of Aerospace Information Systems, 2022, 19, 355-365.	1.0	1

#	Article	IF	CITATIONS
351	Packet Header Compression: A Principle-Based Survey of Standards and Recent Research Studies. IEEE Communications Surveys and Tutorials, 2022, 24, 698-740.	24.8	11
352	Multi-Access Edge Computing-Based Vehicle-Vehicle-RSU Data Offloading Over the Multi-RSU-Overlapped Environment. IEEE Open Journal of Intelligent Transportation Systems, 2022, 3, 7-32.	2.6	14
353	Blockchain Technology for Intelligent Transportation Systems: A Systematic Literature Review. IEEE Access, 2022, 10, 20995-21031.	2.6	70
354	Service-Centric Heterogeneous Vehicular Network Modeling for Connected Traffic Environments. Sensors, 2022, 22, 1247.	2.1	11
355	An Integrated Approach of 4G LTE and DSRC (IEEE 802.11p) for Internet of Vehicles (IoV) by Using a Novel Cluster-Based Efficient Radio Interface Selection Algorithm to Improve Vehicular Network (VN) Performance. Lecture Notes in Electrical Engineering, 2022, , 569-583.	0.3	5
356	A Novel Approach for UAV-Aided Vehicle-to-Everything Networks. , 2022, , .		0
357	Distributed Resource Allocation Based on Timeslot Reservation in High-Density VANETs. IEEE Transactions on Vehicular Technology, 2022, 71, 6586-6595.	3.9	3
359	The Time-Extended V2V2I path Prediction Method for Multi-RSU VANET Data Offloading based on the Multi-Access Edge Computing (MEC) Architecture. , 2021, , .		0
360	Using IOTA as an Inter-Vehicular Trust Mechanism in Autonomous Vehicles. , 2021, , .		2
361	Resource Optimization Algorithm for Task Offloading with Predicted Congestion. , 2021, , .		0
362	The Future of Internet of Vehicle : Challenges and Applications. , 2021, , .		2
364	Aol-Aware Joint Spectrum and Power Allocation for Internet of Vehicles: A Trust Region Policy Optimization-Based Approach. IEEE Internet of Things Journal, 2022, 9, 19916-19927.	5.5	11
365	Full Physical Layer Simulation Tool to Design Future 77 GHz JCRS-Applications. IEEE Access, 2022, 10, 47437-47460.	2.6	6
366	Performance Analysis of Unmanned Aerial Vehicle Assisted Fiber-based Visible Light Communication System. Journal of Physics: Conference Series, 2022, 2264, 012009.	0.3	1
367	Optimal collision-avoiding deceleration when approaching a stochastically vanishing obstacle. Automatica, 2022, 142, 110323.	3.0	0
368	C-ITS Applications, Use Cases andÂRequirements forÂV2X Communication Systems—Threading Through IEEE 802.11p toÂ5G. , 2022, , 261-285.		4
369	Survey on Issues and Recent Advances in Vehicular Public-Key Infrastructure (VPKI). IEEE Communications Surveys and Tutorials, 2022, 24, 1574-1601.	24.8	24
371	Utilizing ICN Caching for IoT Big Data Management in WSN-Based Vehicular Networks. EAI/Springer Innovations in Communication and Computing, 2022, , 225-241.	0.9	1

#	Article	IF	CITATIONS
372	An Intelligent Congestion Avoidance Mechanism Based on Generalized Regression Neural Network for Heterogeneous Vehicular Networks. IEEE Transactions on Intelligent Vehicles, 2023, 8, 3106-3118.	9.4	6
373	Impacts of location-privacy preserving schemes on vehicular applications. Vehicular Communications, 2022, 36, 100499.	2.7	3
374	Performance Analysis of V2V and V2I Channels for Autonomous Smart Car. , 2022, , .		1
375	A Smart Road Side Unit in a Microeolic Box to Provide Edge Computing for Vehicular Applications. IEEE Transactions on Green Communications and Networking, 2023, 7, 194-210.	3.5	9
376	Quality-Aware Caching, Computing and Communication Design for Video Delivery in Vehicular Networks. , 2022, , .		7
377	V2X Communication Aided Emergency Message Dissemination in Intelligent Transportation Systems. , 2022, , .		3
378	Group data communication in connected vehicles: A survey. Vehicular Communications, 2022, 37, 100518.	2.7	4
379	A Comprehensive Survey on Vehicular Networking: Communications, Applications, Challenges, and Upcoming Research Directions. IEEE Access, 2022, 10, 86127-86180.	2.6	27
380	A Survey on Trust Models in Heterogeneous Networks. IEEE Communications Surveys and Tutorials, 2022, 24, 2127-2162.	24.8	14
381	A content distribution method of internet of vehicles based on edge cache and immune cloning strategy. Ad Hoc Networks, 2023, 138, 103012.	3.4	14
382	Service-Oriented LSTM Multi-Criteria RAT Selection Scheme for Vehicle-to-Infrastructure Communication. IEEE Access, 2022, 10, 110261-110284.	2.6	4
383	Improved Recurrent Neural Network Schema for Validating Digital Signatures in VANET. Mathematics, 2022, 10, 3895.	1.1	16
384	A Directional TDMA Protocol for High Throughput URLLC in mmWave Vehicular Networks. IEEE Transactions on Vehicular Technology, 2023, 72, 3584-3599.	3.9	6
385	Quality-Aware Joint Caching, Computing and Communication Optimization for Video Delivery in Vehicular Networks. IEEE Transactions on Vehicular Technology, 2023, 72, 5240-5256.	3.9	0
386	Mobility-Aware Online Content Caching for Vehicular Networks based on Deep Reinforcement Learning. , 2022, , .		0
387	Spatial-Temporal Modeling and Analysis of Reliability and Delay in Urban V2X Networks. IEEE Transactions on Network Science and Engineering, 2023, 10, 1752-1765.	4.1	4
388	A Clustering Algorithm Based on Node Cost and Service Priority for Urban Rail In-Vehicle Ad-Hoc Network. , 2022, , .		1
389	Multi-Agent Reinforcement Learning for Energy-Efficiency Edge Association in Internet of Vehicles. , 2022, , .		1

#	Article	IF	CITATIONS
390	FABRIC: Fast and Secure Unbounded Cross-System Encrypted Data Sharing in Cloud Computing. IEEE Transactions on Dependable and Secure Computing, 2023, 20, 5130-5142.	3.7	1
391	Prioritization Based Task Offloading in UAV-Assisted Edge Networks. Sensors, 2023, 23, 2375.	2.1	0
392	Stochastic modeling and performance analysis in balancing load and traffic for vehicular ad hoc networks: A review. International Journal of Network Management, 2023, 33, .	1.4	1
393	FlexiChain 3.0: Distributed Ledger Technology-Based Intelligent Transportation for Vehicular Digital Asset Exchange in Smart Cities. Sensors, 2023, 23, 4114.	2.1	5
395	Analysis of Internet of Vehicles Technology Evolution and Trends Based on Bibliometric Visualization. Lecture Notes in Electrical Engineering, 2023, , 188-202.	0.3	0
399	Predicated on IoT, a Safe Intelligent Driver Assistance System in V2X Communication Environments. Lecture Notes in Networks and Systems, 2023, , 252-260.	0.5	0
401	ImageFed: Practical Privacy Preserving Intrusion Detection System for In-Vehicle CAN Bus Protocol. , 2023, , .		3
404	Machine learning-based predictive analytics and big data in the automotive sector. , 2023, , .		4
411	Improving Age of Information in Large-Scale Energy Harvesting Networks. , 2023, , .		0
418	A Study for Securing IoV Using Blockchain. , 2023, , .		0
419	Revolutionizing Retail Logistics: Fine-Tuning 5G-Cyberphysical Vehicular Networks with AGSA-Driven Path Loss Models. , 2023, , .		0
425	Fog Computing Empowered Data Dissemination in Heterogeneous Vehicular Networks. , 2024, , 71-93.		0