Ni₂P as a Janus catalyst for water splitting: Ni₂P nanoparticles

Energy and Environmental Science 8, 2347-2351 DOI: 10.1039/c5ee01155h

Citation Report

#	Article	IF	CITATIONS
50	Self‣upported Cobalt Phosphide Mesoporous Nanorod Arrays: A Flexible and Bifunctional Electrode for Highly Active Electrocatalytic Water Reduction and Oxidation. Advanced Functional Materials, 2015, 25, 7337-7347.	7.8	688
51	Electrodeposited Niâ€P Alloy Nanoparticle Films for Efficiently Catalyzing Hydrogen―and Oxygenâ€Evolution Reactions. ChemNanoMat, 2015, 1, 558-561.	1.5	80
52	Multifunctional Coatings from Scalable Single Source Precursor Chemistry in Tandem Photoelectrochemical Water Splitting. Advanced Energy Materials, 2015, 5, 1501668.	10.2	73
53	A Flexible Electrode Based on Iron Phosphide Nanotubes for Overall Water Splitting. Chemistry - A European Journal, 2015, 21, 18062-18067.	1.7	228
54	Ultrafine CoP Nanoparticles Supported on Carbon Nanotubes as Highly Active Electrocatalyst for Both Oxygen and Hydrogen Evolution in Basic Media. ACS Applied Materials & Interfaces, 2015, 7, 28412-28419.	4.0	187
55	Surface Oxidized Cobalt-Phosphide Nanorods As an Advanced Oxygen Evolution Catalyst in Alkaline Solution. ACS Catalysis, 2015, 5, 6874-6878.	5.5	441
56	Self-supported NiMo hollow nanorod array: an efficient 3D bifunctional catalytic electrode for overall water splitting. Journal of Materials Chemistry A, 2015, 3, 20056-20059.	5.2	218
57	Self-assembled IrO ₂ nanoparticles on a DNA scaffold with enhanced catalytic and oxygen evolution reaction (OER) activities. Journal of Materials Chemistry A, 2015, 3, 24463-24478.	5.2	133
58	Porous Nickel–Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 19386-19392.	4.0	284
59	Efficient Water Splitting Catalyzed by Cobalt Phosphideâ€Based Nanoneedle Arrays Supported on Carbon Cloth. ChemSusChem, 2016, 9, 472-477.	3.6	185
60	Phaseâ€Transformation Engineering in Cobalt Diselenide Realizing Enhanced Catalytic Activity for Hydrogen Evolution in an Alkaline Medium. Advanced Materials, 2016, 28, 7527-7532.	11.1	307
61	Bifunctional Nickel Phosphide Nanocatalysts Supported on Carbon Fiber Paper for Highly Efficient and Stable Overall Water Splitting. Advanced Functional Materials, 2016, 26, 4067-4077.	7.8	591
62	Hierarchical NiCo ₂ S ₄ Nanowire Arrays Supported on Ni Foam: An Efficient and Durable Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reactions. Advanced Functional Materials, 2016, 26, 4661-4672.	7.8	1,204
63	Strong oupled Cobalt Borate Nanosheets/Graphene Hybrid as Electrocatalyst for Water Oxidation Under Both Alkaline and Neutral Conditions. Angewandte Chemie, 2016, 128, 2534-2538.	1.6	52
64	Strong oupled Cobalt Borate Nanosheets/Graphene Hybrid as Electrocatalyst for Water Oxidation Under Both Alkaline and Neutral Conditions. Angewandte Chemie - International Edition, 2016, 55, 2488-2492.	7.2	391
65	Overall Water Splitting Catalyzed Efficiently by an Ultrathin Nanosheetâ€Built, Hollow Ni ₃ S ₂ â€Based Electrocatalyst. Advanced Functional Materials, 2016, 26, 4839-4847.	7.8	438
66	Promoting the Water Oxidation Catalysis by Synergistic Interactions between Ni(OH) ₂ and Carbon Nanotubes. Advanced Energy Materials, 2016, 6, 1600516.	10.2	68
67		1.3	74

#	Article	IF	CITATIONS
68	Porous MoO ₂ Nanosheets as Nonâ€noble Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Materials, 2016, 28, 3785-3790.	11.1	729
69	Defect-Rich Ultrathin Cobalt–Iron Layered Double Hydroxide for Electrochemical Overall Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 34474-34481.	4.0	345
70	Enhancing electrocatalytic activity of bifunctional Ni ₃ Se ₂ for overall water splitting through etching-induced surface nanostructuring. Journal of Materials Research, 2016, 31, 2888-2896.	1.2	26
71	Surface Roughening of Nickel Cobalt Phosphide Nanowire Arrays/Ni Foam for Enhanced Hydrogen Evolution Activity. ACS Applied Materials & Interfaces, 2016, 8, 34270-34279.	4.0	116
72	Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight. ChemSusChem, 2016, 9, 61-66.	3.6	112
73	Dual-valence nickel nanosheets covered with thin carbon as bifunctional electrocatalysts for full water splitting. Journal of Materials Chemistry A, 2016, 4, 7297-7304.	5.2	73
74	A noble and single source precursor for the synthesis of metal-rich sulphides embedded in an N-doped carbon framework for highly active OER electrocatalysts. Dalton Transactions, 2016, 45, 6352-6356.	1.6	33
75	Ni0.85Se as an efficient non-noble bifunctional electrocatalyst for full water splitting. International Journal of Hydrogen Energy, 2016, 41, 10688-10694.	3.8	92
76	Surface-Oxidized Dicobalt Phosphide Nanoneedles as a Nonprecious, Durable, and Efficient OER Catalyst. ACS Energy Letters, 2016, 1, 169-174.	8.8	251
77	Electrochemical etching of α-cobalt hydroxide for improvement of oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 9578-9584.	5.2	125
78	Efficient electrochemical water splitting catalyzed by electrodeposited NiFe nanosheets film. International Journal of Hydrogen Energy, 2016, 41, 8785-8792.	3.8	58
79	Controllable synthesis of three dimensional electrodeposited Co–P nanosphere arrays as efficient electrocatalysts for overall water splitting. RSC Advances, 2016, 6, 52761-52771.	1.7	51
80	Bifunctionality and Mechanism of Electrodeposited Nickel–Phosphorous Films for Efficient Overall Water Splitting. ChemCatChem, 2016, 8, 106-112.	1.8	147
81	Template-directed approach to two-dimensional molybdenum phosphide–carbon nanocomposites with high catalytic activities in the hydrogen evolution reaction. New Journal of Chemistry, 2016, 40, 6015-6021.	1.4	25
82	Simultaneous Reduction of CO ₂ and Splitting of H ₂ O by a Single Immobilized Cobalt Phthalocyanine Electrocatalyst. ACS Catalysis, 2016, 6, 3092-3095.	5.5	237
83	One-step electrodeposition of Ni–Co–S nanosheets film as a bifunctional electrocatalyst for efficient water splitting. International Journal of Hydrogen Energy, 2016, 41, 7264-7269.	3.8	107
84	Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting. ACS Applied Materials & Interfaces, 2016, 8, 10826-10834.	4.0	205
85	Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy, 2016, 24, 103-110.	8.2	377

#	Article	IF	CITATIONS
86	Cobalt phosphide-based nanoparticles as bifunctional electrocatalysts for alkaline water splitting. Journal of Materials Chemistry A, 2016, 4, 7549-7554.	5.2	53
87	Activity and stability of cobalt phosphides for hydrogen evolution upon water splitting. Nano Energy, 2016, 29, 37-45.	8.2	166
88	Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts. Nano Energy, 2016, 25, 42-50.	8.2	187
89	Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy and Environmental Science, 2016, 9, 2257-2261.	15.6	535
90	One-step, integrated fabrication of Co2P nanoparticles encapsulated N, P dual-doped CNTs for highly advanced total water splitting. Nano Energy, 2016, 30, 303-311.	8.2	195
91	Nanostructured Bifunctional Redox Electrocatalysts. Small, 2016, 12, 5656-5675.	5.2	174
92	Electrodeposited synthesis of self-supported Ni-P cathode for efficient electrocatalytic hydrogen generation. Progress in Natural Science: Materials International, 2016, 26, 303-307.	1.8	18
93	Carbon-Coated Nickel Phosphide Nanosheets as Efficient Dual-Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 27850-27858.	4.0	113
94	In-situ Growth of Ultrathin ZIF-67 Nanosheets on Conductive Ti@TiO 2 /CdS Substrate for High-efficient Electrochemical Catalysis. Electrochimica Acta, 2016, 219, 623-629.	2.6	55
95	Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. Journal of Power Sources, 2016, 333, 213-236.	4.0	390
96	Iron-Doped Nickel Phosphate as Synergistic Electrocatalyst for Water Oxidation. Chemistry of Materials, 2016, 28, 5659-5666.	3.2	262
97	Mechanistic Insights on Ternary Ni _{2â^²} <i>_x</i> Co <i>_x</i> P for Hydrogen Evolution and Their Hybrids with Graphene as Highly Efficient and Robust Catalysts for Overall Water Splitting. Advanced Functional Materials, 2016, 26, 6785-6796.	7.8	500
98	Three-Dimensional Ni ₂ P Nanoarray: An Efficient Catalyst Electrode for Sensitive and Selective Nonenzymatic Glucose Sensing with High Specificity. Analytical Chemistry, 2016, 88, 7885-7889.	3.2	209
99	Synthesis, Characterization, and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction. Chemistry of Materials, 2016, 28, 6017-6044.	3.2	519
100	Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting. Nano Research, 2016, 9, 3346-3354.	5.8	184
101	Solution Growth of Vertical VS ₂ Nanoplate Arrays for Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2016, 28, 5587-5591.	3.2	173
102	Assembling pore-rich FeP nanorods on the CNT backbone as an advanced electrocatalyst for oxygen evolution. Journal of Materials Chemistry A, 2016, 4, 13005-13010.	5.2	82
103	An efficient nanostructured copper(I) sulfide-based hydrogen evolution electrocatalyst at neutral pH. Electrochimica Acta, 2016, 215, 366-373.	2.6	62

#	Article	IF	CITATIONS
104	Transitionâ€Metal (Co, Ni, and Fe)â€Based Electrocatalysts for the Water Oxidation Reaction. Advanced Materials, 2016, 28, 9266-9291.	11.1	1,392
105	Cobalt and nickel selenide nanowalls anchored on graphene as bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 14789-14795.	5.2	150
106	Iron–Nickel Nitride Nanostructures in Situ Grown on Surface-Redox-Etching Nickel Foam: Efficient and Ultrasustainable Electrocatalysts for Overall Water Splitting. Chemistry of Materials, 2016, 28, 6934-6941.	3.2	453
107	Self-Supported Cedarlike Semimetallic Cu ₃ P Nanoarrays as a 3D High-Performance Janus Electrode for Both Oxygen and Hydrogen Evolution under Basic Conditions. ACS Applied Materials & Interfaces, 2016, 8, 23037-23048.	4.0	170
108	From water reduction to oxidation: Janus Co-Ni-P nanowires as high-efficiency and ultrastable electrocatalysts for over 3000Âh water splitting. Journal of Power Sources, 2016, 330, 156-166.	4.0	190
109	Ternary Metal Phosphide with Tripleâ€Layered Structure as a Lowâ€Cost and Efficient Electrocatalyst for Bifunctional Water Splitting. Advanced Functional Materials, 2016, 26, 7644-7651.	7.8	389
110	Disclosing the High Activity of Ceramic Metallics in the Oxygen Evolution Reaction: Nickel Materials as a Case Study. ChemSusChem, 2016, 9, 2928-2932.	3.6	25
111	Highly Ordered Mesoporous Bimetallic Phosphides as Efficient Oxygen Evolution Electrocatalysts. ACS Energy Letters, 2016, 1, 792-796.	8.8	139
112	Electrocatalytic Performance and Stability of Nanostructured Fe–Ni Pyrite-Type Diphosphide Catalyst Supported on Carbon Paper. Journal of Physical Chemistry C, 2016, 120, 16537-16544.	1.5	53
113	NiCoFe Layered Triple Hydroxides with Porous Structures as High-Performance Electrocatalysts for Overall Water Splitting. ACS Energy Letters, 2016, 1, 445-453.	8.8	361
114	Electroâ€Oxidation of Ni42 Steel: A Highly Active Bifunctional Electrocatalyst. Advanced Functional Materials, 2016, 26, 6402-6417.	7.8	90
115	Simultaneous H ₂ Generation and Biomass Upgrading in Water by an Efficient Nobleâ€Metalâ€Free Bifunctional Electrocatalyst. Angewandte Chemie - International Edition, 2016, 55, 9913-9917.	7.2	435
116	Simultaneous H ₂ Generation and Biomass Upgrading in Water by an Efficient Nobleâ€Metalâ€Free Bifunctional Electrocatalyst. Angewandte Chemie, 2016, 128, 10067-10071.	1.6	94
117	A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 17587-17603.	5.2	1,037
118	Wireless Synthesis and Activation of Electrochemiluminescent Thermoresponsive Janus Objects Using Bipolar Electrochemistry. Langmuir, 2016, 32, 12995-13002.	1.6	29
119	Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting. Nano Letters, 2016, 16, 7718-7725.	4.5	1,079
120	Low Overpotential Water Splitting Using Cobalt–Cobalt Phosphide Nanoparticles Supported on Nickel Foam. ACS Energy Letters, 2016, 1, 1192-1198.	8.8	143
121	Co-Doped NiSe nanowires on nickel foam via a cation exchange approach as efficient electrocatalyst for enhanced oxygen evolution reaction. RSC Advances, 2016, 6, 106832-106836.	1.7	46

#	Article	IF	CITATIONS
122	CuCo Hybrid Oxides as Bifunctional Electrocatalyst for Efficient Water Splitting. Advanced Functional Materials, 2016, 26, 8555-8561.	7.8	251
123	A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nature Communications, 2016, 7, 12324.	5.8	807
124	FeCo Alloy Nanoparticles Confined in Carbon Layers as High-activity and Robust Cathode Catalyst for Zn-Air Battery. Electrochimica Acta, 2016, 220, 354-362.	2.6	112
125	One-step synthesis of nickel phosphide nanowire array supported on nickel foam with enhanced electrocatalytic water splitting performance. RSC Advances, 2016, 6, 107859-107864.	1.7	65
126	In situ electrochemical formation of NiSe/NiO _x core/shell nano-electrocatalysts for superior oxygen evolution activity. Catalysis Science and Technology, 2016, 6, 8268-8275.	2.1	78
127	Novel CoP Hollow Prisms as Bifunctional Electrocatalysts for Hydrogen Evolution Reaction in Acid media and Overall Water-splitting in Basic media. Electrochimica Acta, 2016, 220, 98-106.	2.6	64
128	Hierarchical nickel–cobalt phosphide yolk–shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting. Nanoscale, 2016, 8, 19129-19138.	2.8	140
129	Shape effects of nickel phosphide nanocrystals on hydrogen evolution reaction. CrystEngComm, 2016, 18, 6083-6089.	1.3	96
130	Efficient and Stable Bifunctional Electrocatalysts Ni/Ni <i>_x</i> M <i>_y</i> (M =) Tj ETQ4	q0 0 0 rgB	T /Qyerlock 1
131			
	Hierarchically Porous Nickel Sulfide Multifunctional Superstructures. Advanced Energy Materials, 2016, 6, 1502333.	10.2	268
132	Hierarchically Porous Nickel Sulfide Multifunctional Superstructures. Advanced Energy Materials, 2016, 6, 1502333. Dual Electricalâ€Behavior Regulation on Electrocatalysts Realizing Enhanced Electrochemical Water Oxidation. Advanced Materials, 2016, 28, 3326-3332.	10.2	268 145
132 133	 Hierarchically Porous Nickel Sulfide Multifunctional Superstructures. Advanced Energy Materials, 2016, 6, 1502333. Dual Electricalâ€Behavior Regulation on Electrocatalysts Realizing Enhanced Electrochemical Water Oxidation. Advanced Materials, 2016, 28, 3326-3332. Amorphous Cobalt Boride (Co₂B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1502313. 	10.2 11.1 10.2	268 145 686
132 133 134	 Hierarchically Porous Nickel Sulfide Multifunctional Superstructures. Advanced Energy Materials, 2016, 6, 1502333. Dual Electricalâ€Behavior Regulation on Electrocatalysts Realizing Enhanced Electrochemical Water Oxidation. Advanced Materials, 2016, 28, 3326-3332. Amorphous Cobalt Boride (Co₂B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1502313. Earthâ€Rich Transition Metal Phosphide for Energy Conversion and Storage. Advanced Energy Materials, 2016, 6, 1600087. 	10.2 11.1 10.2 10.2	268 145 686 437
132 133 134 135	 Hierarchically Porous Nickel Sulfide Multifunctional Superstructures. Advanced Energy Materials, 2016, 6, 1502333. Dual Electricalâ€Behavior Regulation on Electrocatalysts Realizing Enhanced Electrochemical Water Oxidation. Advanced Materials, 2016, 28, 3326-3332. Amorphous Cobalt Boride (Co₂B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1502313. Earthâ€Rich Transition Metal Phosphide for Energy Conversion and Storage. Advanced Energy Materials, 2016, 6, 1600087. Interface Engineering of MoS₂/Ni₃S₂ Heterostructures for Highly Enhanced Electrochemical Overallâ€Waterâ€6plitting Activity. Angewandte Chemie - International Edition, 2016, 55, 6702-6707. 	10.2 11.1 10.2 10.2 7.2	268 145 686 437 1,159
132 133 134 135 136	Hierarchically Porous Nickel Sulfide Multifunctional Superstructures. Advanced Energy Materials, 2016, 6, 1502333. Dual Electricalâ€Behavior Regulation on Electrocatalysts Realizing Enhanced Electrochemical Water Oxidation. Advanced Materials, 2016, 28, 3326-3332. Amorphous Cobalt Boride (Co ₂ B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1502313. Earthâ€Rich Transition Metal Phosphide for Energy Conversion and Storage. Advanced Energy Materials, 2016, 6, 1600087. Interface Engineering of MoS ₂ /Ni ₃ S ₂ Heterostructures for Highly Enhanced Electrochemical Overallâ€Waterâ€Splitting Activity. Angewandte Chemie - International Edition, 2016, 55, 6702-6707. Strongly Coupled Architectures of Cobalt Phosphide Nanoparticles Assembled on Graphene as Bifunctional Electrocatalysts for Water Splitting. ChemElectroChem, 2016, 3, 719-725.	10.2 11.1 10.2 10.2 7.2 1.7	268 145 686 437 1,159 82
132 133 134 135 136	Hierarchically Porous Nickel Sulfide Multifunctional Superstructures. Advanced Energy Materials, 2016, 6, 1502333. Dual Electricalâ€Behavior Regulation on Electrocatalysts Realizing Enhanced Electrochemical Water Oxidation. Advanced Materials, 2016, 28, 3326-3332. Amorphous Cobalt Boride (Co ₂ B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1502313. Earthâ€Rich Transition Metal Phosphide for Energy Conversion and Storage. Advanced Energy Materials, 2016, 6, 1600087. Interface Engineering of MoS ₂ /Ni ₃ S ₂ /Heterostructures for Highly Enhanced Electrochemical Overallâ€Watera€Eplitting Activity. Angewandte Chemie - International Edition, 2016, 55, 6702-6707. Strongly Coupled Architectures of Cobalt Phosphide Nanoparticles Assembled on Graphene as Bifunctional Electrocatalysts for Water Splitting. ChemElectroChem, 2016, 3, 719-725. The Role of Anions in Metal Chalcogenide Oxygen Evolution Catalysis: Electrodeposited Thin Films of Nickel Sulfide as "Pre-catalystsã+ACS Energy Letters, 2016, 1, 195-201.	10.2 11.1 10.2 10.2 7.2 1.7 8.8	268 145 686 437 1,159 82 328

¹³⁹ Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt–zinc oxide catalysts for efficient oxidation of water. Journal of Materials Chemistry A, 2016, 4, 10014-10022.
 ^{5.2} 171

# 140	ARTICLE Facile synthesis of iron phosphide nanorods for efficient and durable electrochemical oxygen evolution. Chemical Communications, 2016, 52, 8711-8714.	IF 2.2	CITATIONS
141	Ni-based heterogeneous catalyst from a designed molecular precursor for the efficient electrochemical water oxidation. Chemical Communications, 2016, 52, 9255-9258.	2.2	21
142	Production of Ni(OH) ₂ nanosheets by liquid phase exfoliation: from optical properties to electrochemical applications. Journal of Materials Chemistry A, 2016, 4, 11046-11059.	5.2	71
143	A highly efficient noble metal free photocatalytic hydrogen evolution system containing MoP and CdS quantum dots. Nanoscale, 2016, 8, 14438-14447.	2.8	77
144	Ultrathin Laminar Ir Superstructure as Highly Efficient Oxygen Evolution Electrocatalyst in Broad pH Range. Nano Letters, 2016, 16, 4424-4430.	4.5	339
145	Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Research, 2016, 9, 2251-2259.	5.8	342
146	Bifunctional Porous NiFe/NiCo ₂ O ₄ /Ni Foam Electrodes with Triple Hierarchy and Double Synergies for Efficient Whole Cell Water Splitting. Advanced Functional Materials, 2016, 26, 3515-3523.	7.8	545
147	Interface Engineering of MoS ₂ /Ni ₃ S ₂ Heterostructures for Highly Enhanced Electrochemical Overallâ€Waterâ€5plitting Activity. Angewandte Chemie, 2016, 128, 6814-6819.	1.6	403
148	A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Research, 2016, 9, 713-725.	5.8	171
149	Unprecedented metal-free 3D porous carbonaceous electrodes for full water splitting. Energy and Environmental Science, 2016, 9, 1210-1214.	15.6	291
150	Ultrathin cobalt phosphide nanosheets as efficient bifunctional catalysts for a water electrolysis cell and the origin for cell performance degradation. Green Chemistry, 2016, 18, 2287-2295.	4.6	108
151	Cobalt nanoparticles embedded in porous N-rich carbon as an efficient bifunctional electrocatalyst for water splitting. Journal of Materials Chemistry A, 2016, 4, 3204-3209.	5.2	207
152	Efficient Electrochemical Water Splitting Catalyzed by Electrodeposited Nickel Diselenide Nanoparticles Based Film. ACS Applied Materials & Interfaces, 2016, 8, 4718-4723.	4.0	239
153	Iron triad (Fe, co, Ni) trinary phosphide nanosheet arrays as high-performance bifunctional electrodes for full water splitting in basic and neutral conditions. RSC Advances, 2016, 6, 9647-9655.	1.7	64
154	Morphology–activity correlation in hydrogen evolution catalyzed by cobalt sulfides. Inorganic Chemistry Frontiers, 2016, 3, 279-285.	3.0	33
155	Facile Synthesis of Nickel–Iron/Nanocarbon Hybrids as Advanced Electrocatalysts for Efficient Water Splitting. ACS Catalysis, 2016, 6, 580-588.	5.5	354
156	Fast fabrication of self-supported porous nickel phosphide foam for efficient, durable oxygen evolution and overall water splitting. Journal of Materials Chemistry A, 2016, 4, 5639-5646.	5.2	224
157	Electrodeposited Co-doped NiSe ₂ nanoparticles film: a good electrocatalyst for efficient water splitting. Nanoscale, 2016, 8, 3911-3915.	2.8	367

#	Article	IF	CITATIONS
158	Efficient Water Oxidation Using CoMnP Nanoparticles. Journal of the American Chemical Society, 2016, 138, 4006-4009.	6.6	510
159	Highly-active oxygen evolution electrocatalyzed by a Fe-doped NiSe nanoflake array electrode. Chemical Communications, 2016, 52, 4529-4532.	2.2	116
160	Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy and Environmental Science, 2016, 9, 1246-1250.	15.6	839
161	Amorphous Ni-B alloy nanoparticle film on Ni foam: rapid alternately dipping deposition for efficient overall water splitting. Nanotechnology, 2016, 27, 12LT01.	1.3	86
162	Hierarchically Porous Urchin-Like Ni ₂ P Superstructures Supported on Nickel Foam as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catalysis, 2016, 6, 714-721.	5.5	737
163	Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen. ACS Applied Materials & Interfaces, 2016, 8, 2158-2165.	4.0	486
164	Metallic Co ₂ P ultrathin nanowires distinguished from CoP as robust electrocatalysts for overall water-splitting. Green Chemistry, 2016, 18, 1459-1464.	4.6	254
165	Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution. Chemical Communications, 2016, 52, 1633-1636.	2.2	271
166	Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chemical Communications, 2016, 52, 1486-1489.	2.2	499
167	Periodate – an alternative oxidant for testing potential water oxidation catalysts. Journal of Materials Chemistry A, 2016, 4, 2863-2872.	5.2	14
168	Highly Active Threeâ€Dimensional NiFe/Cu ₂ O Nanowires/Cu Foam Electrode for Water Oxidation. ChemSusChem, 2017, 10, 1475-1481.	3.6	53
169	Nickel Nanoparticles Encapsulated in Few‣ayer Nitrogenâ€Doped Graphene Derived from Metal–Organic Frameworks as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Materials, 2017, 29, 1605957.	11.1	507
170	General Synthesis of Multishell Mixedâ€Metal Oxyphosphide Particles with Enhanced Electrocatalytic Activity in the Oxygen Evolution Reaction. Angewandte Chemie, 2017, 129, 2426-2429.	1.6	37
171	General Synthesis of Multishell Mixedâ€Metal Oxyphosphide Particles with Enhanced Electrocatalytic Activity in the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 2386-2389.	7.2	257
172	A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy and Environmental Science, 2017, 10, 893-899.	15.6	412
173	Petal-like hierarchical array of ultrathin Ni(OH) ₂ nanosheets decorated with Ni(OH) ₂ nanoburls: a highly efficient OER electrocatalyst. Catalysis Science and Technology, 2017, 7, 882-893.	2.1	123
174	Fe-Doped Ni ₂ P Nanosheet Array for High-Efficiency Electrochemical Water Oxidation. Inorganic Chemistry, 2017, 56, 1041-1044.	1.9	193
175	Core-Oxidized Amorphous Cobalt Phosphide Nanostructures: An Advanced and Highly Efficient Oxygen Evolution Catalyst. Inorganic Chemistry, 2017, 56, 1742-1756.	1.9	102

#	Article	IF	CITATIONS
176	Multimetallic Ni–Mo/Cu nanowires as nonprecious and efficient full water splitting catalyst. Journal of Materials Chemistry A, 2017, 5, 4207-4214.	5.2	83
177	Synthesis and application of transition metal phosphides as electrocatalyst for water splitting. Science Bulletin, 2017, 62, 633-644.	4.3	179
178	Boosting Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide–Carbon Nitride System. Angewandte Chemie, 2017, 129, 1675-1679.	1.6	57
179	Boosting Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide–Carbon Nitride System. Angewandte Chemie - International Edition, 2017, 56, 1653-1657.	7.2	261
180	Homologous NiO//Ni ₂ P nanoarrays grown on nickel foams: a well matched electrode pair with high stability in overall water splitting. Nanoscale, 2017, 9, 4409-4418.	2.8	127
181	Graphitic C 3 N 4 modified by Ni 2 P cocatalyst: An efficient, robust and low cost photocatalyst for visible-light-driven H 2 evolution from water. Chemical Engineering Journal, 2017, 315, 296-303.	6.6	184
182	A hierarchically porous nickel–copper phosphide nano-foam for efficient electrochemical splitting of water. Nanoscale, 2017, 9, 4401-4408.	2.8	110
183	Three-dimensional porous MoNi ₄ networks constructed by nanosheets as bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 2508-2513.	5.2	122
184	Atomic-layer-deposited ultrafine MoS ₂ nanocrystals on cobalt foam for efficient and stable electrochemical oxygen evolution. Nanoscale, 2017, 9, 2711-2717.	2.8	88
185	Efficient water splitting catalyzed by flexible NiP ₂ nanosheet array electrodes under both neutral and alkaline solutions. New Journal of Chemistry, 2017, 41, 2154-2159.	1.4	77
186	Vapor–solid synthesis of monolithic single-crystalline CoP nanowire electrodes for efficient and robust water electrolysis. Chemical Science, 2017, 8, 2952-2958.	3.7	162
187	Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017, 46, 337-365.	18.7	4,505
188	Composition-controlled synthesis of Ni _{2â^'x} Co _x P nanocrystals as bifunctional catalysts for water splitting. RSC Advances, 2017, 7, 7906-7913.	1.7	24
189	Colloidal nanocrystals for photoelectrochemical and photocatalytic water splitting. Journal Physics D: Applied Physics, 2017, 50, 074006.	1.3	25
190	One pot synthesis of Ni 12 P 5 hollow nanocapsules as efficient electrode materials for oxygen evolution reactions and supercapacitor applications. Electrochimica Acta, 2017, 229, 380-386.	2.6	64
191	Hydrous RuO 2 nanoparticles as highly active electrocatalysts for hydrogen evolution reaction. Chemical Physics Letters, 2017, 673, 89-92.	1.2	48
192	Facile electrochemical preparation of self-supported porous Ni–Mo alloy microsphere films as efficient bifunctional electrocatalysts for water splitting. Journal of Materials Chemistry A, 2017, 5, 5797-5805.	5.2	119
193	Graphene and Their Hybrid Electrocatalysts for Water Splitting. ChemCatChem, 2017, 9, 1554-1568.	1.8	88

#	Article	IF	CITATIONS
194	Catalytic Stability Study of a Pdâ€Ni ₂ P/C Catalyst for Formic Acid Electrooxidation. ChemElectroChem, 2017, 4, 1243-1249.	1.7	45
195	Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting. Nano Energy, 2017, 34, 472-480.	8.2	258
196	Ultrathin Iron obalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction. Advanced Materials, 2017, 29, 1606793.	11.1	1,144
197	Carbonâ€Incorporated Nickel–Cobalt Mixed Metal Phosphide Nanoboxes with Enhanced Electrocatalytic Activity for Oxygen Evolution. Angewandte Chemie, 2017, 129, 3955-3958.	1.6	177
198	Carbonâ€Incorporated Nickel–Cobalt Mixed Metal Phosphide Nanoboxes with Enhanced Electrocatalytic Activity for Oxygen Evolution. Angewandte Chemie - International Edition, 2017, 56, 3897-3900.	7.2	725
199	A nickel-borate nanoarray: a highly active 3D oxygen-evolving catalyst electrode operating in near-neutral water. Chemical Communications, 2017, 53, 3070-3073.	2.2	79
200	Enhancing Water Oxidation Catalysis on a Synergistic Phosphorylated NiFe Hydroxide by Adjusting Catalyst Wettability. ACS Catalysis, 2017, 7, 2535-2541.	5.5	292
201	Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy and Environmental Science, 2017, 10, 788-798.	15.6	629
202	Strengthened Synergistic Effect of Metallic M <i>_x</i> P <i>_y</i> (M = Co, Ni,) Tj ETQqO	0 0 rgBT / 5.2	Overlock 10 ⁻ 48
	Reactions. Small, 2017, 13, 1603718.		
203	Design and Application of Foams for Electrocatalysis. ChemCatChem, 2017, 9, 1721-1743.	1.8	245
203 204	Reactions. Small, 2017, 13, 1603718. Design and Application of Foams for Electrocatalysis. ChemCatChem, 2017, 9, 1721-1743. Bimetallic phosphide hollow nanocubes derived from a prussian-blue-analog used as high-performance catalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2017, 7, 1549-1555.	1.8 2.1	245 118
203 204 205	Reactions. Small, 2017, 13, 1603718. Design and Application of Foams for Electrocatalysis. ChemCatChem, 2017, 9, 1721-1743. Bimetallic phosphide hollow nanocubes derived from a prussian-blue-analog used as high-performance catalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2017, 7, 1549-1555. The Birth of Nickel Phosphide Catalysts: Monitoring Phosphorus Insertion into Nickel. ChemCatChem, 2017, 9, 2318-2323.	1.8 2.1 1.8	245 118 31
203 204 205 206	Reactions: Small, 2017, 13, 1603718. Design and Application of Foams for Electrocatalysis. ChemCatChem, 2017, 9, 1721-1743. Bimetallic phosphide hollow nanocubes derived from a prussian-blue-analog used as high-performance catalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2017, 7, 1549-1555. The Birth of Nickel Phosphide Catalysts: Monitoring Phosphorus Insertion into Nickel. ChemCatChem, 2017, 9, 2318-2323. Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting. Small Methods, 2017, 1, 1700090.	1.8 2.1 1.8 4.6	245 118 31 106
203 204 205 206	Reactions. Small, 2017, 13, 1603718. Design and Application of Foams for Electrocatalysis. ChemCatChem, 2017, 9, 1721-1743. Bimetallic phosphide hollow nanocubes derived from a prussian-blue-analog used as high-performance catalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2017, 7, 1549-1555. The Birth of Nickel Phosphide Catalysts: Monitoring Phosphorus Insertion into Nickel. ChemCatChem, 2017, 9, 2318-2323. Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting. Small Methods, 2017, 1, 1700090. Catalytic activities of Ni-decorated boron particles. Materials and Design, 2017, 125, 205-212.	1.8 2.1 1.8 4.6	245 118 31 106
203 204 205 206 207	Reactions. Small, 2017, 13, 1603718. Design and Application of Foams for Electrocatalysis. ChemCatChem, 2017, 9, 1721-1743. Bimetallic phosphide hollow nanocubes derived from a prussian-blue-analog used as high-performance catalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2017, 7, 1549-1555. The Birth of Nickel Phosphide Catalysts: Monitoring Phosphorus Insertion into Nickel. ChemCatChem, 2017, 9, 2318-2323. Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting. Small Methods, 2017, 1, 1700090. Catalytic activities of Ni-decorated boron particles. Materials and Design, 2017, 125, 205-212. Highly stable and efficient non-precious metal electrocatalysts of tantalum dioxyfluoride used for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 8287-8291.	1.8 2.1 1.8 4.6 3.3 5.2	245 118 31 106 4 29
203 204 205 206 207 208	Reactions. Small, 2017, 13, 1603718. Design and Application of Foams for Electrocatalysis. ChemCatChem, 2017, 9, 1721-1743. Bimetallic phosphide hollow nanocubes derived from a prussian-blue-analog used as high-performance catalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2017, 7, 1549-1555. The Birth of Nickel Phosphide Catalysts: Monitoring Phosphorus Insertion into Nickel. ChemCatChem, 2017, 9, 2318-2323. Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting. Small Methods, 2017, 1, 1700090. Catalytic activities of Ni-decorated boron particles. Materials and Design, 2017, 125, 205-212. Highly stable and efficient non-precious metal electrocatalysts of tantalum dioxyfluoride used for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 8287-8291. <i><i><i><i>>i></i></i></i></i>	1.8 2.1 1.8 4.6 3.3 5.2	245 118 31 106 4 29
 203 204 205 206 207 208 209 210 	Reactions. Small, 2017, 13, 1603718. Design and Application of Foams for Electrocatalysis. ChemCatChem, 2017, 9, 1721-1743. Bimetallic phosphide hollow nanocubes derived from a prussian-blue-analog used as high-performance catalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2017, 7, 1549-1555. The Birth of Nickel Phosphide Catalysts: Monitoring Phosphorus Insertion into Nickel. ChemCatChem, 2017, 9, 2318-2323. Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting. Small Methods, 2017, 1, 1700090. Catalytic activities of Ni-decorated boron particles. Materials and Design, 2017, 125, 205-212. Highly stable and efficient non-precious metal electrocatalysts of tantalum dioxyfluoride used for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 8287-8291. (J) In Situ Yigh Temperature Synthesis of Single-Component Metallic Nanoparticles. ACS Central Science, 2017, 3, 294-301. Amorphous NiFe-OH/NiFeP Electrocatalyst Fabricated at Low Temperature for Water Oxidation Applications. ACS Energy Letters, 2017, 2, 1035-1042.	 1.8 2.1 1.8 4.6 3.3 5.2 5.3 8.8 	245 118 31 106 4 29 34 34

#	Article	IF	CITATIONS
212	Facile synthesis of Ni2P/Ni12P5 composite as long-life electrode material for hybrid supercapacitor. Journal of Alloys and Compounds, 2017, 713, 10-17.	2.8	71
213	Facile Surface Modification of Ubiquitous Stainless Steel Led to Competent Electrocatalysts for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2017, 5, 4778-4784.	3.2	78
214	Design and synthesis of integrally structured Ni ₃ N nanosheets/carbon microfibers/Ni ₃ N nanosheets for efficient full water splitting catalysis. Journal of Materials Chemistry A, 2017, 5, 9377-9390.	5.2	123
215	Ironâ€Doped Cobalt Monophosphide Nanosheet/Carbon Nanotube Hybrids as Active and Stable Electrocatalysts for Water Splitting. Advanced Functional Materials, 2017, 27, 1606635.	7.8	206
216	Emerging approaches to stabilise photocorrodible electrodes and catalysts for solar fuel applications. Energy and Environmental Science, 2017, 10, 1116-1127.	15.6	40
217	Cobalt nickel boride as an active electrocatalyst for water splitting. Journal of Materials Chemistry A, 2017, 5, 12379-12384.	5.2	214
218	Highly active catalyst derived from a 3D foam of Fe(PO ₃) ₂ /Ni ₂ P for extremely efficient water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5607-5611.	3.3	302
219	Niâ€Fe Nitride Nanoplates on Nitrogenâ€Doped Graphene as a Synergistic Catalyst for Reversible Oxygen Evolution Reaction and Rechargeable Znâ€Air Battery. Small, 2017, 13, 1700099.	5.2	151
220	Tuning the electrocatalysts for oxygen evolution reaction. Materials Today Energy, 2017, 5, 37-57.	2.5	94
221	Core–shell CoFe ₂ O ₄ @Co–Fe–Bi nanoarray: a surface-amorphization water oxidation catalyst operating at near-neutral pH. Nanoscale, 2017, 9, 7714-7718.	2.8	55
222	Mechanistic insight into oxygen evolution electrocatalysis of surface phosphate modified cobalt phosphide nanorod bundles and their superior performance for overall water splitting. Electrochimica Acta, 2017, 242, 355-363.	2.6	127
223	Hierarchical NiFeP microflowers directly grown on Ni foam for efficient electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2017, 5, 11229-11235.	5.2	148
224	Hydrothermal Synthesis of Monolithic Co ₃ Se ₄ Nanowire Electrodes for Oxygen Evolution and Overall Water Splitting with High Efficiency and Extraordinary Catalytic Stability. Advanced Energy Materials, 2017, 7, 1602579.	10.2	267
225	Ultrathin High Surface Area Nickel Boride (Ni <i>_x</i> B) Nanosheets as Highly Efficient Electrocatalyst for Oxygen Evolution. Advanced Energy Materials, 2017, 7, 1700381.	10.2	348
226	Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Materials Today, 2017, 20, 425-451.	8.3	339
227	Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017, 37, 136-157.	8.2	1,257
228	Fine Co Nanoparticles Encapsulated in a N-Doped Porous Carbon Matrix with Superficial N-Doped Porous Carbon Nanofibers for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2017, 9, 21747-21755.	4.0	98
229	Nest-like NiCoP for Highly Efficient Overall Water Splitting. ACS Catalysis, 2017, 7, 4131-4137.	5.5	480

#	Article	IF	CITATIONS
231	Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. Nature Communications, 2017, 8, 15377.	5.8	284
232	General Strategy for the Synthesis of Transition-Metal Phosphide/N-Doped Carbon Frameworks for Hydrogen and Oxygen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 16187-16193.	4.0	175
233	Crystallinityâ€Modulated Electrocatalytic Activity of a Nickel(II) Borate Thin Layer on Ni ₃ B for Efficient Water Oxidation. Angewandte Chemie, 2017, 129, 6672-6677.	1.6	34
234	Crystallinityâ€Modulated Electrocatalytic Activity of a Nickel(II) Borate Thin Layer on Ni ₃ B for Efficient Water Oxidation. Angewandte Chemie - International Edition, 2017, 56, 6572-6577.	7.2	271
235	Bimetallic Carbides-Based Nanocomposite as Superior Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 16977-16985.	4.0	135
236	Interlayer expanded lamellar CoSe 2 on carbon paper as highly efficient and stable overall water splitting electrodes. Electrochimica Acta, 2017, 241, 106-115.	2.6	48
237	A nanostructured nickel–cobalt alloy with an oxide layer for an efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 10669-10677.	5.2	98
238	A Ni ₂ P modified Ti ⁴⁺ doped Fe ₂ O ₃ photoanode for efficient solar water oxidation by promoting hole injection. Dalton Transactions, 2017, 46, 10549-10552.	1.6	30
239	Selfâ€Templating Synthesis of Hollow Co ₃ O ₄ Microtube Arrays for Highly Efficient Water Electrolysis. Angewandte Chemie, 2017, 129, 1344-1348.	1.6	79
240	Selfâ€Templating Synthesis of Hollow Co ₃ O ₄ Microtube Arrays for Highly Efficient Water Electrolysis. Angewandte Chemie - International Edition, 2017, 56, 1324-1328.	7.2	648
241	Core-shell structured Ni12P5/Ni3(PO4)2 hollow spheres as difunctional and efficient electrocatalysts for overall water electrolysis. Applied Catalysis B: Environmental, 2017, 204, 486-496.	10.8	148
242	One-step electroreductively deposited iron-cobalt composite films as efficient bifunctional electrocatalysts for overall water splitting. Nano Energy, 2017, 38, 576-584.	8.2	65
243	Efficient Overall Water‧plitting Electrocatalysis Using Lepidocrocite VOOH Hollow Nanospheres. Angewandte Chemie, 2017, 129, 588-592.	1.6	63
244	NiMn layered double hydroxides as efficient electrocatalysts for the oxygen evolution reaction and their application in rechargeable Zn–air batteries. Nanoscale, 2017, 9, 774-780.	2.8	130
245	Controlled synthesis of Mo-doped Ni ₃ S ₂ nano-rods: an efficient and stable electro-catalyst for water splitting. Journal of Materials Chemistry A, 2017, 5, 1595-1602.	5.2	148
246	A Robust Molecular Catalyst Generated Inâ€Situ for Photo―and Electrochemical Water Oxidation. ChemSusChem, 2017, 10, 862-875.	3.6	43
247	Efficient Overall Water‧plitting Electrocatalysis Using Lepidocrocite VOOH Hollow Nanospheres. Angewandte Chemie - International Edition, 2017, 56, 573-577.	7.2	209
248	Uncovering the Nature of Active Species of Nickel Phosphide Catalysts in High-Performance Electrochemical Overall Water Splitting. ACS Catalysis, 2017, 7, 103-109.	5.5	350

#	Article	IF	CITATIONS
249	Understanding Structure-Dependent Catalytic Performance of Nickel Selenides for Electrochemical Water Oxidation. ACS Catalysis, 2017, 7, 310-315.	5.5	155
250	In situ surface engineering of nickel inverse opal for enhanced overall electrocatalytic water splitting. Journal of Materials Chemistry A, 2017, 5, 14873-14880.	5.2	31
251	Synergistic Phase and Disorder Engineering in 1Tâ€MoSe ₂ Nanosheets for Enhanced Hydrogenâ€Evolution Reaction. Advanced Materials, 2017, 29, 1700311.	11.1	411
252	Free‣tanding Holey Ni(OH) ₂ Nanosheets with Enhanced Activity for Water Oxidation. Small, 2017, 13, 1700334.	5.2	97
253	Monolithic Photoassisted Water Splitting Device Using Anodized Niâ€Fe Oxygen Evolution Catalytic Substrate. Advanced Energy Materials, 2017, 7, 1700659.	10.2	35
254	Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 14828-14837.	5.2	255
255	Highly Stable Threeâ€Dimensional Porous Nickelâ€Iron Nitride Nanosheets for Full Water Splitting at High Current Densities. Chemistry - A European Journal, 2017, 23, 10187-10194.	1.7	61
256	A Plasmaâ€Assisted Route to the Rapid Preparation of Transitionâ€Metal Phosphides for Energy Conversion and Storage. Small Methods, 2017, 1, 1700111.	4.6	36
257	Integrated Hierarchical Cobalt Sulfide/Nickel Selenide Hybrid Nanosheets as an Efficient Three-dimensional Electrode for Electrochemical and Photoelectrochemical Water Splitting. Nano Letters, 2017, 17, 4202-4209.	4.5	263
258	Unprecedented Activity of Bifunctional Electrocatalyst for High Power Density Aqueous Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2017, 9, 21216-21224.	4.0	64
259	Highly active and durable electrocatalytic water oxidation by a NiB0.45/NiO core-shell heterostructured nanoparticulate film. Nano Energy, 2017, 38, 175-184.	8.2	71
260	Synthesis and applications of MOF-derived porous nanostructures. Green Energy and Environment, 2017, 2, 218-245.	4.7	301
261	Bimetallic Ni–Mo nitride nanotubes as highly active and stable bifunctional electrocatalysts for full water splitting. Journal of Materials Chemistry A, 2017, 5, 13648-13658.	5.2	191
262	Improving the water splitting performance of nickel electrodes by optimizing their pore structure using a phase inversion method. Catalysis Science and Technology, 2017, 7, 3056-3064.	2.1	18
263	Self-supported nickel phosphosulphide nanosheets for highly efficient and stable overall water splitting. Journal of Materials Chemistry A, 2017, 5, 14865-14872.	5.2	74
264	Graphdiyneâ€Supported NiCo ₂ S ₄ Nanowires: A Highly Active and Stable 3D Bifunctional Electrode Material. Small, 2017, 13, 1700936.	5.2	194
265	Synthesis of Nickel Phosphide Electrocatalysts from Hybrid Metal Phosphonates. ACS Applied Materials & Interfaces, 2017, 9, 14013-14022.	4.0	59
266	A Dendritic Nanostructured Copper Oxide Electrocatalyst for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 4792-4796.	7.2	201

#	Article	IF	CITATIONS
267	Heteroatoms dual doped porous graphene nanosheets as efficient bifunctional metal-free electrocatalysts for overall water-splitting. Journal of Materials Chemistry A, 2017, 5, 7784-7790.	5.2	95
268	Hierarchically scaffolded CoP/CoP ₂ nanoparticles: controllable synthesis and their application as a well-matched bifunctional electrocatalyst for overall water splitting. Nanoscale, 2017, 9, 5677-5685.	2.8	123
269	A Dendritic Nanostructured Copper Oxide Electrocatalyst for the Oxygen Evolution Reaction. Angewandte Chemie, 2017, 129, 4870-4874.	1.6	41
270	Monodispersed Carbon-Coated Cubic NiP ₂ Nanoparticles Anchored on Carbon Nanotubes as Ultra-Long-Life Anodes for Reversible Lithium Storage. ACS Nano, 2017, 11, 3705-3715.	7.3	231
271	A TiO ₂ /FeMnP Core/Shell Nanorod Array Photoanode for Efficient Photoelectrochemical Oxygen Evolution. ACS Nano, 2017, 11, 4051-4059.	7.3	106
272	Hierarchical NiCo ₂ S ₄ @NiFe LDH Heterostructures Supported on Nickel Foam for Enhanced Overall-Water-Splitting Activity. ACS Applied Materials & Interfaces, 2017, 9, 15364-15372.	4.0	468
273	Electrocatalysis of Furfural Oxidation Coupled with H ₂ Evolution via Nickelâ€Based Electrocatalysts in Water. ChemNanoMat, 2017, 3, 491-495.	1.5	78
274	Experimental and theoretical insights into sustained water splitting with an electrodeposited nanoporous nickel hydroxide@nickel film as an electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 7744-7748.	5.2	90
275	Designed Synthesis of Sizeâ€Controlled PtCu Alloy Nanoparticles Encapsulated in Carbon Nanofibers and Their High Efficient Electrocatalytic Activity Toward Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2017, 4, 1700005.	1.9	31
276	Orthorhombic α-NiOOH Nanosheet Arrays: Phase Conversion and Efficient Bifunctional Electrocatalysts for Full Water Splitting. ACS Sustainable Chemistry and Engineering, 2017, 5, 3808-3818.	3.2	92
277	A nickel–borate–phosphate nanoarray for efficient and durable water oxidation under benign conditions. Inorganic Chemistry Frontiers, 2017, 4, 840-844.	3.0	46
278	Self-supported NiMoP ₂ nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 7191-7199.	5.2	168
279	Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3â^'xS4 coupled Ni3S2 nanosheet arrays. Nano Energy, 2017, 35, 161-170.	8.2	339
280	Co-vacancy-rich Co1–x S nanosheets anchored on rGO for high-efficiency oxygen evolution. Nano Research, 2017, 10, 1819-1831.	5.8	78
281	Boosting the Catalytic Performance of Iron Phosphide Nanorods for the Oxygen Evolution Reaction by Incorporation of Manganese. Chemistry of Materials, 2017, 29, 3048-3054.	3.2	148
282	Trimetallic Oxyhydroxide Coralloids for Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2017, 129, 4573-4577.	1.6	68
283	Trimetallic Oxyhydroxide Coralloids for Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2017, 56, 4502-4506.	7.2	225
284	Crystalline Copper Phosphide Nanosheets as an Efficient Janus Catalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 2240-2248.	4.0	228

#	Article	IF	CITATIONS
285	Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces. ACS Catalysis, 2017, 7, 675-688.	5.5	488
286	Developments of Metal Phosphides as Efficient OER Precatalysts. Journal of Physical Chemistry Letters, 2017, 8, 144-152.	2.1	290
287	Vertically Aligned Porous Nickel(II) Hydroxide Nanosheets Supported on Carbon Paper with Longâ€Term Oxygen Evolution Performance. Chemistry - an Asian Journal, 2017, 12, 543-551.	1.7	118
288	Quaternary pyrite-structured nickel/cobalt phosphosulfide nanowires on carbon cloth as efficient and robust electrodes for water electrolysis. Nano Research, 2017, 10, 814-825.	5.8	71
289	Scalable Two-Step Synthesis of Nickel–Iron Phosphide Electrodes for Stable and Efficient Electrocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2017, 121, 284-292.	1.5	31
290	Vertical Growth of 2D Amorphous FePO ₄ Nanosheet on Ni Foam: Outer and Inner Structural Design for Superior Water Splitting. Advanced Materials, 2017, 29, 1704574.	11.1	278
291	Assembling Co9S8 nanoflakes on Co3O4 nanowires as advanced core/shell electrocatalysts for oxygen evolution reaction. Journal of Energy Chemistry, 2017, 26, 1203-1209.	7.1	46
292	Hexagonal-Phase Cobalt Monophosphosulfide for Highly Efficient Overall Water Splitting. ACS Nano, 2017, 11, 11031-11040.	7.3	297
293	One-step synthesis of well-structured NiS–Ni ₂ P ₂ S ₆ nanosheets on nickel foam for efficient overall water splitting. Journal of Materials Chemistry A, 2017, 5, 22131-22136.	5.2	72
294	Flowerâ€Like Nickel Phosphide Microballs Assembled by Nanoplates with Exposed Highâ€Energy (0 0 1) Facets: Efficient Electrocatalyst for the Hydrogen Evolution Reaction. ChemSusChem, 2017, 10, 4899-4908.	3.6	55
295	Highly defective porous CoP nanowire as electrocatalyst for full water splitting. International Journal of Hydrogen Energy, 2017, 42, 29080-29090.	3.8	68
296	Highly Efficient Bifunctional Catalyst of NiCo ₂ O ₄ @NiO@Ni Core/Shell Nanocone Array for Stable Overall Water Splitting. Particle and Particle Systems Characterization, 2017, 34, 1700228.	1.2	16
297	Space-Confined Earth-Abundant Bifunctional Electrocatalyst for High-Efficiency Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 36762-36771.	4.0	114
298	Active Sites Intercalated Ultrathin Carbon Sheath on Nanowire Arrays as Integrated Core–Shell Architecture: Highly Efficient and Durable Electrocatalysts for Overall Water Splitting. Small, 2017, 13, 1702018.	5.2	91
299	Cuboid Ni ₂ P as a Bifunctional Catalyst for Efficient Hydrogen Generation from Hydrolysis of Ammonia Borane and Electrocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2017, 12, 2967-2972.	1.7	21
300	Firstâ€Row Transition Metal Based Catalysts for the Oxygen Evolution Reaction under Alkaline Conditions: Basic Principles and Recent Advances. Small, 2017, 13, 1701931.	5.2	352
301	Defective graphene anchored iron–cobalt nanoparticles for efficient electrocatalytic oxygen reduction. Chemical Communications, 2017, 53, 12140-12143.	2.2	24
302	Mixed-Metal–Organic Framework Self-Template Synthesis of Porous Hybrid Oxyphosphides for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 38621-38628.	4.0	40

#	Article	IF	CITATIONS
303	Coupling cobalt-iron bimetallic nitrides and N-doped multi-walled carbon nanotubes as high-performance bifunctional catalysts for oxygen evolution and reduction reaction. Electrochimica Acta, 2017, 258, 51-60.	2.6	61
304	Unique hybrid Ni ₂ P/MoO ₂ @MoS ₂ nanomaterials as bifunctional non-noble-metal electro-catalysts for water splitting. Nanoscale, 2017, 9, 17349-17356.	2.8	49
305	Self-Supported Ferric Phosphide Spherical Clusters as Efficient Electrocatalysts for Hydrogen Evolution Reaction. ChemistrySelect, 2017, 2, 9472-9478.	0.7	6
306	Domain Structures of Ni and NiFe (Oxy)Hydroxide Oxygen-Evolution Catalysts from X-ray Pair Distribution Function Analysis. Journal of Physical Chemistry C, 2017, 121, 25421-25429.	1.5	25
307	Highly Efficient and Stable Waterâ€Oxidation Electrocatalysis with a Very Low Overpotential using FeNiP Substitutionalâ€Solidâ€Solution Nanoplate Arrays. Advanced Materials, 2017, 29, 1704075.	11.1	163
308	Promoting Charge Separation and Injection by Optimizing the Interfaces of GaN:ZnO Photoanode for Efficient Solar Water Oxidation. ACS Applied Materials & amp; Interfaces, 2017, 9, 30696-30702.	4.0	34
309	Photogenerated Carriers Boost Water Splitting Activity over Transition-Metal/Semiconducting Metal Oxide Bifunctional Electrocatalysts. ACS Catalysis, 2017, 7, 6464-6470.	5.5	62
310	In situ decoration of stainless steel nanoparticles for synergistic enhancement of α-Ni(OH)2 oxygen evolution reaction catalysis. Materials Chemistry Frontiers, 2017, 1, 2376-2382.	3.2	19
311	3 D Porous Nickel–Cobalt Nitrides Supported on Nickel Foam as Efficient Electrocatalysts for Overall Water Splitting. ChemSusChem, 2017, 10, 4170-4177.	3.6	187
312	Molecularly dispersed nickel-containing species on the carbon nitride network as electrocatalysts for the oxygen evolution reaction. Carbon, 2017, 124, 180-187.	5.4	55
313	Rational Design of Cobalt–Iron Selenides for Highly Efficient Electrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 33833-33840.	4.0	140
314	Controlled Synthesis of 3D Flowerâ€ike Ni ₂ P Composed of Mesoporous Nanoplates for Overall Water Splitting. Chemistry - an Asian Journal, 2017, 12, 2956-2961.	1.7	30
315	Enhancing the water oxidation activity of Ni2P nanocatalysts by iron-doping and electrochemical activation. Electrochimica Acta, 2017, 253, 498-505.	2.6	40
316	Porous Multishelled Ni ₂ P Hollow Microspheres as an Active Electrocatalyst for Hydrogen and Oxygen Evolution. Chemistry of Materials, 2017, 29, 8539-8547.	3.2	279
317	NiMoS ₃ Nanorods as pH-Tolerant Electrocatalyst for Efficient Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2017, 5, 9006-9013.	3.2	43
318	Acid promoted Ni/NiO monolithic electrode for overall water splitting in alkaline medium. Science China Materials, 2017, 60, 918-928.	3.5	32
319	Phosphorus and Fluorine Coâ€Đoping Induced Enhancement of Oxygen Evolution Reaction in Bimetallic Nitride Nanorods Arrays: Ionic Liquidâ€Đriven and Mechanism Clarification. Chemistry - A European Journal, 2017, 23, 16862-16870.	1.7	41
320	Co ₃ O ₄ @Co/NCNT Nanostructure Derived from a Dicyanamideâ€Based Metalâ€Organic Framework as an Efficient Biâ€functional Electrocatalyst for Oxygen Reduction and Evolution Reactions. Chemistry - A European Journal, 2017, 23, 18049-18056.	1.7	74

#	Article	IF	CITATIONS
321	Hydrogen evolution reaction activity of nickel phosphide is highly sensitive to electrolyte pH. Journal of Materials Chemistry A, 2017, 5, 20390-20397.	5.2	98
322	One-pot synthesis nickel sulfide/amorphous molybdenum sulfide nanosheets array on nickel foam as a robust oxygen evolution reaction electrocatalyst. Journal of Solid State Chemistry, 2017, 256, 124-129.	1.4	19
323	Ag@Co _{<i>x</i>} P Core–Shell Heterogeneous Nanoparticles as Efficient Oxygen Evolution Reaction Catalysts. ACS Catalysis, 2017, 7, 7038-7042.	5.5	144
324	Current progress and challenges in engineering viable artificial leaf for solar water splitting. Journal of Science: Advanced Materials and Devices, 2017, 2, 399-417.	1.5	26
325	Large-Area Synthesis of a Ni ₂ P Honeycomb Electrode for Highly Efficient Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 32812-32819.	4.0	62
326	Anomalous in situ Activation of Carbon-Supported Ni2P Nanoparticles for Oxygen Evolving Electrocatalysis in Alkaline Media. Scientific Reports, 2017, 7, 8236.	1.6	21
327	Iron-Doped Nickel Phosphide Nanosheet Arrays: An Efficient Bifunctional Electrocatalyst for Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 26001-26007.	4.0	200
328	Porous Structured Ni–Fe–P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 26134-26142.	4.0	220
329	A facile strategy for the synthesis of NiSe@CoOOH core-shell nanowires on nickel foam with high surface area as efficient electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2017, 426, 688-693.	3.1	35
330	Bifunctional metal phosphide FeMnP films from single source metal organic chemical vapor deposition for efficient overall water splitting. Nano Energy, 2017, 39, 444-453.	8.2	117
331	Hierarchical Nanostructures: Design for Sustainable Water Splitting. Advanced Energy Materials, 2017, 7, 1700559.	10.2	247
332	Straightforward synthesis of nitrogen-doped carbon nanotubes as highly active bifunctional electrocatalysts for full water splitting. Journal of Catalysis, 2017, 353, 19-27.	3.1	105
333	Hierarchical Nickel Sulfide Nanosheets Directly Grown on Ni Foam: A Stable and Efficient Electrocatalyst for Water Reduction and Oxidation in Alkaline Medium. ACS Sustainable Chemistry and Engineering, 2017, 5, 7203-7210.	3.2	122
334	Nanoporous Nitrogenâ€Đoped Graphene Oxide/Nickel Sulfide Composite Sheets Derived from a Metalâ€Organic Framework as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution. Advanced Functional Materials, 2017, 27, 1700451.	7.8	198
335	Preparation of rimose NiZnP electrode for hydrogen evolution reaction in alkaline medium by electroless and H 2 SO 4 etching. Journal of Alloys and Compounds, 2017, 719, 376-382.	2.8	8
336	Nickel Diselenide Ultrathin Nanowires Decorated with Amorphous Nickel Oxide Nanoparticles for Enhanced Water Splitting Electrocatalysis. Small, 2017, 13, 1701487.	5.2	99
337	Integrated Ni2P nanosheet arrays on three-dimensional Ni foam for highly efficient water reduction and oxidation. Journal of Energy Chemistry, 2017, 26, 1196-1202.	7.1	100
338	Synthesis and oxygen evolution reaction (OER) catalytic performance of Ni _{2â^'x} Ru _x P nanocrystals: enhancing activity by dilution of the noble metal. Journal of Materials Chemistry A, 2017, 5, 17609-17618.	5.2	59

#	Article	IF	CITATIONS
339	Improving the oxygen evolution performance of nickel phosphide nanoparticles with satellite nitrogen-doped carbon quantum dots. Materials Letters, 2017, 209, 106-110.	1.3	17
340	Anchoring Ni ₂ P Sheets on NiCo ₂ O ₄ Nanocone Arrays as Optimized Bifunctional Electrocatalyst for Water Splitting. Advanced Materials Interfaces, 2017, 4, 1700481.	1.9	59
341	Boosting Electrocatalytic Activity of Binary Ag-Fe-doped Co 2 P Nanospheres as Bifunctional Electrocatalysts for Overall Water Splitting. Electrochimica Acta, 2017, 249, 16-25.	2.6	23
342	Facile synthesis of bicontinuous Ni3Fe alloy for efficient electrocatalytic oxygen evolution reaction. Journal of Alloys and Compounds, 2017, 726, 875-884.	2.8	49
343	Iridium nanoparticles anchored on 3D graphite foam as a bifunctional electrocatalyst for excellent overall water splitting in acidic solution. Nano Energy, 2017, 40, 27-33.	8.2	139
344	Facile synthesis of sponge-like Ni ₃ N/NC for electrocatalytic water oxidation. Chemical Communications, 2017, 53, 9566-9569.	2.2	62
345	3D Selfâ€5upported Feâ€Doped Ni ₂ P Nanosheet Arrays as Bifunctional Catalysts for Overall Water Splitting. Advanced Functional Materials, 2017, 27, 1702513.	7.8	454
346	CoP nanoparticles embedded in P and N co-doped carbon as efficient bifunctional electrocatalyst for water splitting. Journal of Energy Chemistry, 2017, 26, 1223-1230.	7.1	98
347	Ni ₂ P(O)/Fe ₂ P(O) Interface Can Boost Oxygen Evolution Electrocatalysis. ACS Energy Letters, 2017, 2, 2257-2263.	8.8	173
348	Are Metal Chalcogenides, Nitrides, and Phosphides Oxygen Evolution Catalysts or Bifunctional Catalysts?. ACS Energy Letters, 2017, 2, 1937-1938.	8.8	894
349	Transformation of homobimetallic MOFs into nickel–cobalt phosphide/nitrogen-doped carbon polyhedral nanocages for efficient oxygen evolution electrocatalysis. Journal of Materials Chemistry A, 2017, 5, 18839-18844.	5.2	99
350	Facile and fast fabrication of iron-phosphate supported on nickel foam as a highly efficient and stable oxygen evolution catalyst. Journal of Materials Chemistry A, 2017, 5, 18627-18633.	5.2	59
351	WO ₃ Nanoarray: An Efficient Electrochemical Oxygen Evolution Catalyst Electrode Operating in Alkaline Solution. Inorganic Chemistry, 2017, 56, 14743-14746.	1.9	36
352	Amorphous Co–Fe–P nanospheres for efficient water oxidation. Journal of Materials Chemistry A, 2017, 5, 25378-25384.	5.2	100
353	Ru decorated with NiCoP: an efficient and durable hydrogen evolution reaction electrocatalyst in both acidic and alkaline conditions. Chemical Communications, 2017, 53, 13153-13156.	2.2	97
354	Interface Engineering of Ni ₃ N@Fe ₃ N Heterostructure Supported on Carbon Fiber for Enhanced Water Oxidation. Industrial & Engineering Chemistry Research, 2017, 56, 14245-14251.	1.8	35
355	Electronic Structure Reconfiguration toward Pyrite NiS ₂ <i>via</i> Engineered Heteroatom Defect Boosting Overall Water Splitting. ACS Nano, 2017, 11, 11574-11583.	7.3	310
356	Engineering transition metal phosphide nanomaterials as highly active electrocatalysts for water splitting. Dalton Transactions, 2017, 46, 16770-16773.	1.6	28

#	Article	IF	CITATIONS
357	Galvanic-replacement mediated synthesis of copper–nickel nitrides as electrocatalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 24850-24858.	5.2	88
358	A Microribbon Hybrid Structure of CoOxâ€MoC Encapsulated in Nâ€Doped Carbon Nanowire Derived from MOF as Efficient Oxygen Evolution Electrocatalysts. Small, 2017, 13, 1702753.	5.2	69
359	Tuning Mixed Nickel Iron Phosphosulfide Nanosheet Electrocatalysts for Enhanced Hydrogen and Oxygen Evolution. ACS Catalysis, 2017, 7, 8549-8557.	5.5	268
360	Heterostructured Arrays of Ni _{<i>x</i>} P/S/Se Nanosheets on Co _{<i>x</i>} P/S/Se Nanowires for Efficient Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 41347-41353.	4.0	53
361	Increasing Gas Bubble Escape Rate for Water Splitting with Nonwoven Stainless Steel Fabrics. ACS Applied Materials & Interfaces, 2017, 9, 40281-40289.	4.0	56
362	Hierarchical Ni/NiTiO ₃ derived from NiTi LDHs: a bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 24767-24774.	5.2	44
363	Sugar Blowingâ€Induced Porous Cobalt Phosphide/Nitrogenâ€Doped Carbon Nanostructures with Enhanced Electrochemical Oxidation Performance toward Water and Other Small Molecules. Small, 2017, 13, 1700796.	5.2	65
364	Ultrathin Twoâ€Dimensional Nanostructured Materials for Highly Efficient Water Oxidation. Small, 2017, 13, 1700806.	5.2	116
365	Metal–organic framework derived carbon-confined Ni ₂ P nanocrystals supported on graphene for an efficient oxygen evolution reaction. Chemical Communications, 2017, 53, 8372-8375.	2.2	184
366	Improving the intrinsic electrocatalytic hydrogen evolution activity of few-layer NiPS ₃ by cobalt doping. Chemical Communications, 2017, 53, 8199-8202.	2.2	64
367	Ni ₁₂ P ₅ nanoparticles embedded into porous g-C ₃ N ₄ nanosheets as a noble-metal-free hetero-structure photocatalyst for efficient H ₂ production under visible light. Journal of Materials Chemistry A, 2017, 5, 16171-16178.	5.2	183
368	Interface Engineering in Nanostructured Nickel Phosphide Catalyst for Efficient and Stable Water Oxidation. ACS Catalysis, 2017, 7, 5450-5455.	5.5	74
369	Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today, 2017, 15, 26-55.	6.2	560
370	Synthesis of lawn-like NiS2 nanowires on carbon fiber paper as bifunctional electrode for water splitting. International Journal of Hydrogen Energy, 2017, 42, 17038-17048.	3.8	65
371	Porphyrinic Metal–Organic Framework-Templated Fe–Ni–P/Reduced Graphene Oxide for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 23852-23858.	4.0	115
372	Closed Bipolar Electrodes for Spatial Separation of H ₂ and O ₂ Evolution during Water Electrolysis and the Development of High-Voltage Fuel Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 23654-23661.	4.0	53
373	Efficient Activation of Li ₂ S by Transition Metal Phosphides Nanoparticles for Highly Stable Lithium–Sulfur Batteries. ACS Energy Letters, 2017, 2, 1711-1719.	8.8	252
374	Sponge-like nickel phosphide–carbon nanotube hybrid electrodes for efficient hydrogen evolution over a wide pH range. Nano Research, 2017, 10, 415-425.	5.8	73

#	Article	IF	CITATIONS
375	Transition metal–phosphorus-based materials for electrocatalytic energy conversion reactions. Catalysis Science and Technology, 2017, 7, 330-347.	2.1	132
376	Efficient Electrochemical and Photoelectrochemical Water Splitting by a 3D Nanostructured Carbon Supported on Flexible Exfoliated Graphene Foil. Advanced Materials, 2017, 29, 1604480.	11.1	157
377	Metallic NiPS ₃ @NiOOH Core–Shell Heterostructures as Highly Efficient and Stable Electrocatalyst for the Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 229-237.	5.5	233
378	Measurement Techniques for the Study of Thin Film Heterogeneous Water Oxidation Electrocatalysts. Chemistry of Materials, 2017, 29, 120-140.	3.2	473
379	Advances in Transitionâ€Metal Phosphide Applications in Electrochemical Energy Storage and Catalysis. ChemElectroChem, 2017, 4, 20-34.	1.7	155
380	Tuning crystal phase of NiSx through electro-oxidized nickel foam: A novel route for preparing efficient electrocatalysts for oxygen evolution reaction. Applied Surface Science, 2017, 396, 1034-1043.	3.1	57
381	In situ formation of high performance Ni-phytate on Ni-foam for efficient electrochemical water oxidation. Electrochemistry Communications, 2017, 74, 42-47.	2.3	39
382	Self-supported Co-Ni-P ternary nanowire electrodes for highly efficient and stable electrocatalytic hydrogen evolution in acidic solution. Catalysis Today, 2017, 287, 122-129.	2.2	105
383	Hybrid Organic–Inorganic Transitionâ€Metal Phosphonates as Precursors for Water Oxidation Electrocatalysts. Advanced Functional Materials, 2017, 27, 1703158.	7.8	55
384	Iron Hydroxide-Modified Nickel Hydroxylphosphate Single-Wall Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2018, 10, 9407-9414.	4.0	38
385	Tailoring the electrocatalytic activity of bimetallic nickel-iron diselenide hollow nanochains for water oxidation. Nano Energy, 2018, 47, 275-284.	8.2	116
386	A structurally versatile nickel phosphite acting as a robust bifunctional electrocatalyst for overall water splitting. Energy and Environmental Science, 2018, 11, 1287-1298.	15.6	205
387	Fabrication of Nickel–Cobalt Bimetal Phosphide Nanocages for Enhanced Oxygen Evolution Catalysis. Advanced Functional Materials, 2018, 28, 1706008.	7.8	370
388	Controlled Synthesis of Eutectic NiSe/Ni ₃ Se ₂ Selfâ€6upported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Materials Interfaces, 2018, 5, 1701507.	1.9	67
389	Activating CoOOH Porous Nanosheet Arrays by Partial Iron Substitution for Efficient Oxygen Evolution Reaction. Angewandte Chemie, 2018, 130, 2702-2706.	1.6	50
390	A nanoporous metal phosphide catalyst for bifunctional water splitting. Journal of Materials Chemistry A, 2018, 6, 5574-5579.	5.2	106
391	Syntheses of nickel sulfides from 1,2-bis(diphenylphosphino)ethane nickel(II)dithiolates and their application in the oxygen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 5985-5995.	3.8	18
392	Achieving highly efficient electrocatalytic oxygen evolution with ultrathin 2D Fe-doped nickel thiophosphate nanosheets. Nano Energy, 2018, 47, 257-265.	8.2	122

#	Article	IF	CITATIONS
393	Non-Precious Bimetallic CoCr Nanostructures Entrapped in Bamboo-Like Nitrogen-Doped Graphene Tube As a Robust Bifunctional Electrocatalyst for Total Water Splitting. ACS Applied Energy Materials, 2018, 1, 1116-1126.	2.5	41
394	Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide pre-catalysts. Chemical Science, 2018, 9, 3470-3476.	3.7	443
395	Cobalt Iron-Phosphorus Synthesized by Electrodeposition as Highly Active and Stable Bifunctional Catalyst for Full Water Splitting. Journal of the Electrochemical Society, 2018, 165, H271-H276.	1.3	19
396	Surface Engineering of a Nickel Oxide–Nickel Hybrid Nanoarray as a Versatile Catalyst for Both Superior Water and Urea Oxidation. Inorganic Chemistry, 2018, 57, 4693-4698.	1.9	51
397	Hierarchically porous Mo-doped Ni–Fe oxide nanowires efficiently catalyzing oxygen/hydrogen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 8430-8440.	5.2	65
398	Phase-control synthesis and catalytic property of magnetic Ni@NixPy core-shell microstructures. Materials Research Bulletin, 2018, 101, 215-222.	2.7	8
399	A Hierarchical MoP Nanoflake Array Supported on Ni Foam: A Bifunctional Electrocatalyst for Overall Water Splitting. Small Methods, 2018, 2, 1700369.	4.6	106
400	Self-supported NiMo-based nanowire arrays as bifunctional electrocatalysts for full water splitting. Journal of Materials Chemistry A, 2018, 6, 8479-8487.	5.2	134
401	SiO ₂ decoration dramatically enhanced the stability of PtRu electrocatalysts with undetectable deterioration in fuel cell performance. Nanotechnology, 2018, 29, 245401.	1.3	6
402	Self-supported cobalt nitride porous nanowire arrays as bifunctional electrocatalyst for overall water splitting. Electrochimica Acta, 2018, 273, 229-238.	2.6	98
403	Iron doped cobalt sulfide derived boosted electrocatalyst for water oxidation. Applied Surface Science, 2018, 448, 9-15.	3.1	56
404	Cobalt phosphide microsphere as an efficient bifunctional oxygen catalyst for Li-air batteries. Journal of Alloys and Compounds, 2018, 750, 655-658.	2.8	35
405	Self-Supported Stainless Steel Nanocone Array Coated with a Layer of Ni–Fe Oxides/(Oxy)hydroxides as a Highly Active and Robust Electrode for Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 8786-8796.	4.0	64
406	Radially Aligned Hierarchical Nickel/Nickel–Iron (Oxy)hydroxide Nanotubes for Efficient Electrocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 8585-8593.	4.0	69
407	In situ growth of NiTe nanosheet film on nickel foam as electrocatalyst for oxygen evolution reaction. Electrochemistry Communications, 2018, 88, 29-33.	2.3	63
408	Blending Fe 3 O 4 into a Ni/NiO composite for efficient and stable bifunctional electrocatalyst. Electrochimica Acta, 2018, 264, 225-232.	2.6	42
409	Co-W/CeO2 composite coatings for highly active electrocatalysis of hydrogen evolution reaction. Journal of Alloys and Compounds, 2018, 743, 682-690.	2.8	36
410	Preparation of mesoporous Ni2P nanobelts with high performance for electrocatalytic hydrogen evolution and supercapacitor. International Journal of Hydrogen Energy, 2018, 43, 3697-3704.	3.8	73

#	Article	IF	CITATIONS
411	Ultrathin CoNiP@Layered Double Hydroxides Core–Shell Nanosheets Arrays for Largely Enhanced Overall Water Splitting. ACS Applied Energy Materials, 2018, 1, 623-631.	2.5	79
412	Trimetallic NiFeMo for Overall Electrochemical Water Splitting with a Low Cell Voltage. ACS Energy Letters, 2018, 3, 546-554.	8.8	205
413	Al-Induced In Situ Formation of Highly Active Nanostructured Water-Oxidation Electrocatalyst Based on Ni-Phosphide. ACS Catalysis, 2018, 8, 2595-2600.	5.5	67
414	An electrocatalyst with anti-oxidized capability for overall water splitting. Nano Research, 2018, 11, 3411-3418.	5.8	16
415	One-pot synthesis of iron–nickel–selenide nanorods for efficient and durable electrochemical oxygen evolution. Inorganic Chemistry Frontiers, 2018, 5, 814-818.	3.0	32
416	Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation. Nature Communications, 2018, 9, 381.	5.8	322
417	A review of anion-regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis. Inorganic Chemistry Frontiers, 2018, 5, 521-534.	3.0	123
418	Nickel Ditelluride Nanosheet Arrays: A Highly Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem, 2018, 5, 1153-1158.	1.7	51
419	Fabrication and enhanced hydrogen evolution reaction performance of a Cu ₃ BiS ₃ nanorods/TiO ₂ heterojunction film. New Journal of Chemistry, 2018, 42, 4114-4120.	1.4	16
420	Template-Free Synthesis of Hollow Iron Phosphide–Phosphate Composite Nanotubes for Use as Active and Stable Oxygen Evolution Electrocatalysts. ACS Applied Nano Materials, 2018, 1, 617-624.	2.4	66
421	Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on NiCoP Nanowires for Highly Efficient and Stable Overall Water Splitting. Advanced Functional Materials, 2018, 28, 1706847.	7.8	584
422	MoP Nanoflakes as Efficient Electrocatalysts for Rechargeable Li–O ₂ Batteries. ACS Applied Energy Materials, 2018, 1, 331-335.	2.5	26
423	Elucidating Surface Restructuring-Induced Catalytic Reactivity of Cobalt Phosphide Nanoparticles under Electrochemical Conditions. Journal of Physical Chemistry C, 2018, 122, 2848-2853.	1.5	74
424	vacancy dependent electrochromic behaviors of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0001.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi>NiO</mml:mi></mml:mrow><mml:mi mathvariant="normal">x</mml:mi </mml:msub> anodes: As a single layer</mml:math 	3.0	15
425	Activating CoOOH Porous Nanosheet Arrays by Partial Iron Substitution for Efficient Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2018, 57, 2672-2676.	7.2	474
426	Tunable 3D hierarchical Ni ₃ S ₂ superstructures as efficient and stable bifunctional electrocatalysts for both H ₂ and O ₂ generation. Journal of Materials Chemistry A, 2018, 6, 4485-4493.	5.2	88
427	The Role of Active Oxide Species for Electrochemical Water Oxidation on the Surface of 3dâ€Metal Phosphides. Advanced Energy Materials, 2018, 8, 1703290.	10.2	104
428	Defect-rich O-incorporated 1T-MoS2 nanosheets for remarkably enhanced visible-light photocatalytic H2 evolution over CdS: The impact of enriched defects. Applied Catalysis B: Environmental, 2018, 229, 227-236.	10.8	176

#	Article	IF	CITATIONS
429	Iron-Doped NiCoP Porous Nanosheet Arrays as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 571-579.	2.5	99
430	Mo- and Fe-Modified Ni(OH) ₂ /NiOOH Nanosheets as Highly Active and Stable Electrocatalysts for Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 2359-2363.	5.5	290
431	Forest-like NiCoP@Cu ₃ P supported on copper foam as a bifunctional catalyst for efficient water splitting. Journal of Materials Chemistry A, 2018, 6, 2100-2106.	5.2	128
432	Interface engineering of a CeO ₂ –Cu ₃ P nanoarray for efficient alkaline hydrogen evolution. Nanoscale, 2018, 10, 2213-2217.	2.8	106
433	Efficient Hydrogen Evolution Electrocatalysis at Alkaline pH by Interface Engineering of Ni ₂ P–CeO ₂ . Inorganic Chemistry, 2018, 57, 548-552.	1.9	78
434	Ultrasmall NiFe-Phosphate Nanoparticles Incorporated α-Fe ₂ O ₃ Nanoarrays Photoanode Realizing High Efficient Solar Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 2353-2361.	3.2	50
435	Hollow TiO ₂ @Co ₉ S ₈ Core–Branch Arrays as Bifunctional Electrocatalysts for Efficient Oxygen/Hydrogen Production. Advanced Science, 2018, 5, 1700772.	5.6	189
436	Low-ruthenium-content NiRu nanoalloys encapsulated in nitrogen-doped carbon as highly efficient and pH-universal electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 1376-1381.	5.2	163
437	Nickel metal–organic framework implanted on graphene and incubated to be ultrasmall nickel phosphide nanocrystals acts as a highly efficient water splitting electrocatalyst. Journal of Materials Chemistry A, 2018, 6, 1682-1691.	5.2	168
438	Copper oxide nanosheets prepared by molten salt method for efficient electrocatalytic oxygen evolution reaction with low catalyst loading. Electrochimica Acta, 2018, 263, 318-327.	2.6	44
439	Nanosized Metal Phosphides Embedded in Nitrogenâ€Đoped Porous Carbon Nanofibers for Enhanced Hydrogen Evolution at All pH Values. Angewandte Chemie, 2018, 130, 1981-1985.	1.6	58
441	Engineering NiS/Ni ₂ P Heterostructures for Efficient Electrocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 4689-4696.	4.0	312
442	CoP nanoparticles anchored on N,P-dual-doped graphene-like carbon as a catalyst for water splitting in non-acidic media. Nanoscale, 2018, 10, 2603-2612.	2.8	96
443	Bimetallic Ni–Fe phosphide nanocomposites with a controlled architecture and composition enabling highly efficient electrochemical water oxidation. Journal of Materials Chemistry A, 2018, 6, 2231-2238.	5.2	97
444	Highly ordered 1D NiCo2O4 nanorods on graphene: An efficient dual-functional hybrid materials for electrochemical energy conversion and storage applications. Electrochimica Acta, 2018, 263, 147-157.	2.6	57
445	Interweaved Nickel Phosphide Sponge as an Electrode for Flexible Supercapattery and Water Splitting Applications. ACS Applied Energy Materials, 2018, 1, 78-92.	2.5	62
446	Enhancement Effect of Borate Doping on the Oxygen Evolution Activity of α-Nickel Hydroxide. ACS Applied Nano Materials, 2018, 1, 751-758.	2.4	39
447	Cu ₃ P/CuO Coreâ€Shell Nanorod Arrays as Highâ€Performance Electrocatalysts for Water Oxidation. ChemElectroChem, 2018, 5, 2064-2068.	1.7	20

#	Article	IF	CITATIONS
448	Highly-active oxygen evolution electrocatalyzed by an Fe-doped NiCr ₂ O ₄ nanoparticle film. Chemical Communications, 2018, 54, 5462-5465.	2.2	157
449	Phase-segregated NiP _x @FeP _y O _z core@shell nanoparticles: ready-to-use nanocatalysts for electro- and photo-catalytic water oxidation through <i>in situ</i> activation by structural transformation and spontaneous ligand removal. Chemical Science, 2018, 9, 4830-4836.	3.7	21
450	Electrodeposited-film electrodes derived from a precursor dinitrosyl iron complex for electrocatalytic water splitting. Dalton Transactions, 2018, 47, 7128-7134.	1.6	10
451	Colloidal Synthesis of Mo–Ni Alloy Nanoparticles as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. Advanced Materials Interfaces, 2018, 5, 1800359.	1.9	42
452	Hybrid 2D Dualâ€Metal–Organic Frameworks for Enhanced Water Oxidation Catalysis. Advanced Functional Materials, 2018, 28, 1801554.	7.8	550
453	NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires with surface rich high valence state metal oxide as an efficient electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 2018, 392, 23-32.	4.0	123
454	Ni/Ni ₃ C Core/Shell Hierarchical Nanospheres with Enhanced Electrocatalytic Activity for Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 17827-17834.	4.0	65
455	Dimensional construction and morphological tuning of heterogeneous MoS ₂ /NiS electrocatalysts for efficient overall water splitting. Journal of Materials Chemistry A, 2018, 6, 9833-9838.	5.2	114
456	Unconventional noble metal-free catalysts for oxygen evolution in aqueous systems. Journal of Materials Chemistry A, 2018, 6, 8147-8158.	5.2	66
457	Ultrathin dendritic IrTe nanotubes for an efficient oxygen evolution reaction in a wide pH range. Journal of Materials Chemistry A, 2018, 6, 8855-8859.	5.2	54
458	Ternary hybrids as efficient bifunctional electrocatalysts derived from bimetallic metal–organic-frameworks for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 5789-5796.	5.2	102
459	1T@2H-MoSe2 nanosheets directly arrayed on Ti plate: An efficient electrocatalytic electrode for hydrogen evolution reaction. Nano Research, 2018, 11, 4587-4598.	5.8	56
460	Ni ₂ P hollow microspheres for electrocatalytic oxygen evolution and reduction reactions. Catalysis Science and Technology, 2018, 8, 2289-2293.	2.1	42
461	Facile fabrication of a 3D network composed of N-doped carbon-coated core–shell metal oxides/phosphides for highly efficient water splitting. Sustainable Energy and Fuels, 2018, 2, 1085-1092.	2.5	40
462	Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Research, 2018, 11, 3509-3518.	5.8	167
463	Molybdenum Carbideâ€Đecorated Metallic Cobalt@Nitrogenâ€Đoped Carbon Polyhedrons for Enhanced Electrocatalytic Hydrogen Evolution. Small, 2018, 14, e1704227.	5.2	114
464	Application of nickel (II) thermo-responsive affinity polymer to porcine circovirus type 2 (PCV2) cap protein purification and interaction analysis by X-ray photoelectron spectroscopy (XPS). Process Biochemistry, 2018, 69, 216-223.	1.8	3
465	Ni ₃ S ₂ nanowires grown on nickel foam as an efficient bifunctional electrocatalyst for water splitting with greatly practical prospects. Nanotechnology, 2018, 29, 245402	1.3	35

# 466	ARTICLE Ternary nickel iron phosphide supported on nickel foam as a high-efficiency electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2018, 43, 7299-7306.	IF 3.8	Citations
467	Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy and Environmental Science, 2018, 11, 872-880.	15.6	773
468	Cobaltâ^'Iron Pyrophosphate Porous Nanosheets as Highly Active Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem, 2018, 5, 36-43.	1.7	36
469	Electrochemical water oxidation: The next five years. Current Opinion in Electrochemistry, 2018, 7, 31-35.	2.5	41
470	A NiCo ₂ O ₄ Shell on a Hollow Ni Nanorod Array Core for Water Splitting with Enhanced Electrocatalytic Performance. ChemNanoMat, 2018, 4, 124-131.	1.5	34
471	Eutecticâ€Derived Mesoporous Niâ€Feâ€O Nanowire Network Catalyzing Oxygen Evolution and Overall Water Splitting. Advanced Energy Materials, 2018, 8, 1701347.	10.2	281
472	Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting. Nano Research, 2018, 11, 1664-1675.	5.8	129
473	Engineering multi-stage nickel oxide rod-on-sheet nanoarrays on Ni foam: A superior catalytic electrode for ultrahigh-performance electrochemical sensing of glucos. Sensors and Actuators B: Chemical, 2018, 255, 416-423.	4.0	33
474	Initial Stages in the Formation of Nickel Phosphides. Journal of Physical Chemistry B, 2018, 122, 672-678.	1.2	12
475	Generalized Synthesis of Ultrathin Cobaltâ€Based Nanosheets from Metallophthalocyanineâ€Modulated Selfâ€Assemblies for Complementary Water Electrolysis. Small, 2018, 14, 1702896.	5.2	34
476	Electrodeposition of Nickel Nanoparticles for the Alkaline Hydrogen Evolution Reaction: Correlating Electrocatalytic Behavior and Chemical Composition. ChemSusChem, 2018, 11, 948-958.	3.6	25
477	Synergistic Effect of Inactive Iron Oxide Core on Active Nickel Phosphide Shell for Significant Enhancement in Oxygen Evolution Reaction Activity. ACS Energy Letters, 2018, 3, 141-148.	8.8	74
478	A precious metal-free solar water splitting cell with a bifunctional cobalt phosphide electrocatalyst and doubly promoted bismuth vanadate photoanode. Journal of Materials Chemistry A, 2018, 6, 1266-1274.	5.2	51
479	Nanosized Metal Phosphides Embedded in Nitrogenâ€Doped Porous Carbon Nanofibers for Enhanced Hydrogen Evolution at All pH Values. Angewandte Chemie - International Edition, 2018, 57, 1963-1967.	7.2	277
480	Growth and Characterization of 3D Flower‣ike βâ€NiS on Carbon Cloth: A Dexterous and Flexible Multifunctional Electrode for Supercapattery and Waterâ€Splitting Applications. Advanced Materials Interfaces, 2018, 5, 1701056.	1.9	53
481	Electropolymerization of Aniline on Nickel-Based Electrocatalysts Substantially Enhances Their Performance for Hydrogen Evolution. ACS Applied Energy Materials, 2018, 1, 3-8.	2.5	50
482	High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction. ACS Nano, 2018, 12, 158-167.	7.3	321
483	Co/CoP embedded in a hairy nitrogen-doped carbon polyhedron as an advanced tri-functional electrocatalyst. Materials Horizons, 2018, 5, 108-115.	6.4	184

#	Article	IF	CITATIONS
484	Preparation of TiO ₂ /Bi ₂ WO ₆ nanostructured heterojunctions on carbon fibers as a weaveable visible-light photocatalyst/photoelectrode. Environmental Science: Nano, 2018, 5, 327-337.	2.2	80
485	Scalable Fabrication of Highly Active and Durable Membrane Electrodes toward Water Oxidation. Small, 2018, 14, 1702109.	5.2	20
486	Rapidly catalysis of oxygen evolution through sequential engineering of vertically layered FeNi structure. Nano Energy, 2018, 43, 359-367.	8.2	49
487	Oxygen Vacancies Confined in Nickel Molybdenum Oxide Porous Nanosheets for Promoted Electrocatalytic Urea Oxidation. ACS Catalysis, 2018, 8, 1-7.	5.5	372
488	The effect of phosphating time on the electrocatalytic activity of nickel phosphide nanorod arrays grown on Ni foam. Journal of Materials Research, 2018, 33, 556-567.	1.2	18
489	Facile sonochemical synthesis of amorphous NiFe-(oxy)hydroxide nanoparticles as superior electrocatalysts for oxygen evolution reaction. Ultrasonics Sonochemistry, 2018, 40, 552-557.	3.8	23
490	Toward noble-metal-free visible-light-driven photocatalytic hydrogen evolution: Monodisperse sub–15 nm Ni2P nanoparticles anchored on porous g-C3N4 nanosheets to engineer 0D-2D heterojunction interfaces. Applied Catalysis B: Environmental, 2018, 221, 47-55.	10.8	251
491	Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Research, 2018, 11, 1358-1368.	5.8	134
492	Rapid synthesis of Co ₃ O ₄ nanosheet arrays on Ni foam by <i>in situ</i> electrochemical oxidization of air-plasma engraved Co(OH) ₂ for efficient oxygen evolution. Chemical Communications, 2018, 54, 12698-12701.	2.2	31
493	Ultra-fast pyrolysis of ferrocene to form Fe/C heterostructures as robust oxygen evolution electrocatalysts. Journal of Materials Chemistry A, 2018, 6, 21577-21584.	5.2	50
494	Hollow cobalt phosphide octahedral pre-catalysts with exceptionally high intrinsic catalytic activity for electro-oxidation of water and methanol. Journal of Materials Chemistry A, 2018, 6, 20646-20652.	5.2	95
495	Ultrafine bimetallic phosphide nanoparticles embedded in carbon nanosheets: two-dimensional metal–organic framework-derived non-noble electrocatalysts for the highly efficient oxygen evolution reaction. Nanoscale, 2018, 10, 19774-19780.	2.8	31
496	N-Doped carbon shelled bimetallic phosphates for efficient electrochemical overall water splitting. Nanoscale, 2018, 10, 22787-22791.	2.8	29
497	Chainmail catalyst of ultrathin P-doped carbon shell-encapsulated nickel phosphides on graphene towards robust and efficient hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 24107-24113.	5.2	44
498	A comparative study of NiCo ₂ O ₄ catalyst supported on Ni foam and from solution residuals fabricated by a hydrothermal approach for electrochemical oxygen evolution reaction. Chemical Communications, 2018, 54, 13151-13154.	2.2	59
499	Feâ€Niâ€Mo Nitride Porous Nanotubes for Full Water Splitting and Znâ€Air Batteries. Advanced Energy Materials, 2018, 8, 1802327.	10.2	227
500	Recent advances in energy chemistry of precious-metal-free catalysts for oxygen electrocatalysis. Chinese Chemical Letters, 2018, 29, 1757-1767.	4.8	63
501	Rationality in the new oxygen evolution catalyst development. Current Opinion in Electrochemistry, 2018, 12, 218-224.	2.5	24

#	Article	IF	CITATIONS
502	WS(1â~'x)Sex Nanoparticles Decorated Three-Dimensional Graphene on Nickel Foam: A Robust and Highly Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Nanomaterials, 2018, 8, 929.	1.9	24
503	Direct Observation of Structural Evolution of Metal Chalcogenide in Electrocatalytic Water Oxidation. ACS Nano, 2018, 12, 12369-12379.	7.3	366
504	Phosphateâ€Based Electrocatalysts for Water Splitting: Recent Progress. ChemElectroChem, 2018, 5, 3822-3834.	1.7	98
505	Bimetal Prussian Blue as a Continuously Variable Platform for Investigating the Composition–Activity Relationship of Phosphides-Based Electrocatalysts for Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 35904-35910.	4.0	28
506	Palladium Phosphide as a Stable and Efficient Electrocatalyst for Overall Water Splitting. Angewandte Chemie - International Edition, 2018, 57, 14862-14867.	7.2	233
507	Layered Trichalcogenidophosphate: A New Catalyst Family for Water Splitting. Nano-Micro Letters, 2018, 10, 67.	14.4	65
508	Palladium Phosphide as a Stable and Efficient Electrocatalyst for Overall Water Splitting. Angewandte Chemie, 2018, 130, 15078-15083.	1.6	20
509	Graphene layers-wrapped FeNiP nanoparticles embedded in nitrogen-doped carbon nanofiber as an active and durable electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2018, 290, 649-656.	2.6	59
510	Layered TiO ₂ Nanosheet‣upported NiCo ₂ O ₄ Nanoparticles as Bifunctional Electrocatalyst for Overall Water Splitting. ChemElectroChem, 2018, 5, 4000-4007.	1.7	18
511	O2 plasma and cation tuned nickel phosphide nanosheets for highly efficient overall water splitting. Nano Energy, 2018, 54, 82-90.	8.2	116
512	In Situ Fabrication of Heterostructure on Nickel Foam with Tuned Composition for Enhancing Waterâ€ S plitting Performance. Small, 2018, 14, e1803666.	5.2	100
513	Homogeneous core–shell NiCo2S4 nanorods as flexible electrode for overall water splitting. International Journal of Hydrogen Energy, 2018, 43, 20627-20635.	3.8	55
514	N-doped carbon coated FeNiP nanoparticles based hollow microboxes for overall water splitting in alkaline medium. International Journal of Hydrogen Energy, 2018, 43, 22226-22234.	3.8	60
515	Serpentine Ni ₃ Ge ₂ O ₅ (OH) ₄ Nanosheets with Tailored Layers and Size for Efficient Oxygen Evolution Reactions. Small, 2018, 14, e1803015.	5.2	24
516	Self-Templating Construction of Porous CoSe ₂ Nanosheet Arrays as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 15374-15382.	3.2	89
517	Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis. Accounts of Chemical Research, 2018, 51, 2857-2866.	7.6	190
518	Harvesting Electronic Waste for the Development of Highly Efficient Ecoâ€Design Electrodes for Electrocatalytic Water Splitting. Advanced Energy Materials, 2018, 8, 1802615.	10.2	80
519	Bimetallic MnCo selenide yolk shell structures for efficient overall water splitting. Electrochimica Acta, 2018, 290, 82-89.	2.6	49

#	Article	IF	CITATIONS
520	Ultrasmall Ru/Cuâ€doped RuO ₂ Complex Embedded in Amorphous Carbon Skeleton as Highly Active Bifunctional Electrocatalysts for Overall Water Splitting. Small, 2018, 14, e1803009.	5.2	151
521	Highly efficient overall water splitting driven by all-inorganic perovskite solar cells and promoted by bifunctional bimetallic phosphide nanowire arrays. Journal of Materials Chemistry A, 2018, 6, 20076-20082.	5.2	51
522	Efficient strategy for significantly decreasing overpotentials of hydrogen generation via oxidizing small molecules at flexible bifunctional CoSe electrodes. Journal of Power Sources, 2018, 401, 238-244.	4.0	44
523	Emerging Materials in Heterogeneous Electrocatalysis Involving Oxygen for Energy Harvesting. ACS Applied Materials & Interfaces, 2018, 10, 33737-33767.	4.0	52
524	Electrosynthesis of Well-Defined Metal–Organic Framework Films and the Carbon Nanotube Network Derived from Them toward Electrocatalytic Applications. ACS Applied Materials & Interfaces, 2018, 10, 34494-34501.	4.0	42
525	Phase and Morphology Transformation of MnO ₂ Induced by Ionic Liquids toward Efficient Water Oxidation. ACS Catalysis, 2018, 8, 10137-10147.	5.5	102
526	Mixed-Node Metal–Organic Frameworks as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Energy Letters, 2018, 3, 2520-2526.	8.8	252
527	Ni _{0.33} Co _{0.67} MoS ₄ nanosheets as a bifunctional electrolytic water catalyst for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 19555-19562.	5.2	50
528	Constructing a hexagonal copper-coin-shaped NiCoSe ₂ @NiO@CoNi ₂ S ₄ @CoS ₂ hybrid nanoarray on nickel foam as a robust oxygen evolution reaction electrocatalyst. Journal of Materials Chemistry A, 2018, 6, 18641-18648.	5.2	65
529	Synergistic modulation in MX ₂ (whereÂM = Mo or W or V, and X = S or Se) for an enhanced hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 21847-21858.	5.2	39
530	Low-Cost Nickel Phosphide as an Efficient Bifunctional Cathode Catalyst for Li-O ₂ Batteries. Journal of the Electrochemical Society, 2018, 165, A2904-A2908.	1.3	11
531	A highly efficient photoelectrochemical cell using cobalt phosphide-modified nanoporous hematite photoanode for solar-driven water splitting. Journal of Catalysis, 2018, 366, 275-281.	3.1	38
532	Carbon-encapsulated NiFe nanoparticles as a bifunctional electrocatalyst for high-efficiency overall water splitting. Journal of Catalysis, 2018, 366, 266-274.	3.1	54
533	Improving the performance of water splitting electrodes by composite plating with nano-SiO2. Electrochimica Acta, 2018, 281, 60-68.	2.6	6
534	Confined bimetallic phosphide within P, N co-doped carbon layers towards boosted bifunctional oxygen catalysis. Journal of Materials Chemistry A, 2018, 6, 11281-11287.	5.2	40
535	NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for Rechargeable Zn–Air Batteries: The Effect of Surface S Residues. Advanced Materials, 2018, 30, e1800757.	11.1	219
536	Value added transformation of ubiquitous substrates into highly efficient and flexible electrodes for water splitting. Nature Communications, 2018, 9, 2014.	5.8	126
537	Electrochemical oxygen evolution reaction catalyzed by a novel nickel–cobalt-fluoride catalyst. Chemical Communications, 2018, 54, 6204-6207.	2.2	77

#	Article	IF	CITATIONS
538	Construction of a hierarchical NiFe layered double hydroxide with a 3D mesoporous structure as an advanced electrocatalyst for water oxidation. Inorganic Chemistry Frontiers, 2018, 5, 1795-1799.	3.0	15
539	Metal phosphonate coordination networks and frameworks as precursors of electrocatalysts for the hydrogen and oxygen evolution reactions. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	17
540	Metal–Organic Framework-Derived CoWP@C Composite Nanowire Electrocatalyst for Efficient Water Splitting. ACS Energy Letters, 2018, 3, 1434-1442.	8.8	141
541	Ultrathin Amorphous Iron–Nickel Boride Nanosheets for Highly Efficient Electrocatalytic Oxygen Production. Chemistry - A European Journal, 2018, 24, 18502-18511.	1.7	82
542	Facile synthesis of Co-CoOx/N-doped carbon nanotubes hybrids as efficient and bifunctional catalysts for hydrogen and oxygen evolution. Journal of Materials Science: Materials in Electronics, 2018, 29, 10744-10752.	1.1	14
543	The balance of electric field and interfacial catalysis in promoting water dissociation in bipolar membranes. Energy and Environmental Science, 2018, 11, 2235-2245.	15.6	100
544	Phase-controlled synthesis and the phase-dependent HER and OER performances of nickel selenide nanosheets prepared by an electrochemical deposition route. CrystEngComm, 2018, 20, 3344-3352.	1.3	73
545	Uniquely integrated Fe-doped Ni(OH) ₂ nanosheets for highly efficient oxygen and hydrogen evolution reactions. Nanoscale, 2018, 10, 10620-10628.	2.8	142
546	Electrodeposited P Co nanoparticles in deep eutectic solvents and their performance in water splitting. International Journal of Hydrogen Energy, 2018, 43, 10448-10457.	3.8	22
547	Coreâ€Shell Structured NiCo ₂ O ₄ @FeOOH Nanowire Arrays as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. ChemCatChem, 2018, 10, 4119-4125.	1.8	34
548	P vacancies-enriched 3D hierarchical reduced cobalt phosphide as a precursor template for defect engineering for efficient water oxidation. Journal of Materials Chemistry A, 2018, 6, 14939-14948.	5.2	125
549	Highly active and dual-function self-supported multiphase NiS–NiS ₂ –Ni ₃ S ₂ /NF electrodes for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 14207-14214.	5.2	91
550	A Polyoxometalate-Based Metal–Organic Framework-Derived FeP/MoP Hybrid Encapsulated in N/P Dual-Doped Carbon as Efficient Electrocatalyst for Hydrogen Evolution. Crystal Growth and Design, 2018, 18, 4265-4269.	1.4	29
551	Skutterudite-Type Ternary Co _{1–<i>x</i>} Ni _{<i>x</i>} P ₃ Nanoneedle Array Electrocatalysts for Enhanced Hydrogen and Oxygen Evolution. ACS Energy Letters, 2018, 3, 1744-1752.	8.8	160
552	High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nature Communications, 2018, 9, 2551.	5.8	812
553	Nickel-iron phosphides nanorods derived from bimetallic-organic frameworks for hydrogen evolution reaction. Applied Surface Science, 2018, 457, 1081-1086.	3.1	86
554	Mn doping of cobalt oxynitride coupled with N-rGO nanosheets hybrid as a highly efficient electrocatalyst for oxygen reduction and oxygen evolution reaction. Electrochimica Acta, 2018, 283, 548-559.	2.6	32
555	Moâ€Doped Ni ₃ S ₂ Nanowires as Highâ€Performance Electrocatalysts for Overall Water Splitting. ChemElectroChem, 2018, 5, 2564-2570.	1.7	38

#	Article	IF	CITATIONS
556	Assembling Ni–Co phosphides/carbon hollow nanocages and nanosheets with carbon nanotubes into a hierarchical necklace-like nanohybrid for electrocatalytic oxygen evolution reaction. Nanoscale, 2018, 10, 13555-13564.	2.8	81
557	Synthesis of porous and metallic CoB nanosheets towards a highly efficient electrocatalyst for rechargeable Na–O ₂ batteries. Energy and Environmental Science, 2018, 11, 2833-2838.	15.6	33
558	Boosting Electrocatalytic Hydrogen-Evolving Activity of Co/CoO Heterostructured Nanosheets via Coupling Photogenerated Carriers with Photothermy. ACS Sustainable Chemistry and Engineering, 2018, 6, 11206-11210.	3.2	22
559	Ultrathin PtPdâ€Based Nanorings with Abundant Step Atoms Enhance Oxygen Catalysis. Advanced Materials, 2018, 30, e1802136.	11.1	107
560	Selfâ€Assemble and In Situ Formation of Ni _{1â^'} <i>_x</i> Fe <i>_x</i> PS ₃ Nanomosaicâ€Decorated MXene Hybrids for Overall Water Splitting. Advanced Energy Materials, 2018, 8, 1801127.	10.2	204
561	Porous Ni2P/C microrods derived from microwave-prepared MOF-74-Ni and its electrocatalysis for hydrogen evolution reaction. Materials Letters, 2018, 231, 94-97.	1.3	37
562	Carbonâ€Rich Nanomaterials: Fascinating Hydrogen and Oxygen Electrocatalysts. Advanced Materials, 2018, 30, e1800528.	11.1	135
563	Recent Progresses in Electrocatalysts for Water Electrolysis. Electrochemical Energy Reviews, 2018, 1, 483-530.	13.1	285
564	Componentâ€Tunable Rutileâ€Anatase TiO ₂ /Reduced Graphene Oxide Nanocomposites for Enhancement of Electrocatalytic Oxygen Evolution. ChemNanoMat, 2018, 4, 1133-1139.	1.5	13
565	CoP porous hexagonal nanoplates in situ grown on RGO as active and durable electrocatalyst for hydrogen evolution. Electrochimica Acta, 2018, 284, 534-541.	2.6	29
566	Carbon-Supported Iron Phosphides: Highest Intrinsic Oxygen Evolution Activity of the Iron Triad. ACS Applied Energy Materials, 2018, 1, 3593-3597.	2.5	9
567	Phase Exploration and Identification of Multinary Transition-Metal Selenides as High-Efficiency Oxygen Evolution Electrocatalysts through Combinatorial Electrodeposition. ACS Catalysis, 2018, 8, 8273-8289.	5.5	76
568	Full Water Splitting Electrocatalyzed by NiWO ₄ Nanowire Array. ACS Sustainable Chemistry and Engineering, 2018, 6, 9555-9559.	3.2	124
569	Tailored transition metal-doped nickel phosphide nanoparticles for the electrochemical oxygen evolution reaction (OER). Chemical Communications, 2018, 54, 8630-8633.	2.2	73
570	Analysis of Trends and Emerging Technologies in Water Electrolysis Research Based on a Computational Method: A Comparison with Fuel Cell Research. Sustainability, 2018, 10, 478.	1.6	40
571	Hierarchically Structured CuCo ₂ S ₄ Nanowire Arrays as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 11877-11883.	3.2	105
572	Bifunctionality from Synergy: CoP Nanoparticles Embedded in Amorphous CoOx Nanoplates with Heterostructures for Highly Efficient Water Electrolysis. Advanced Science, 2018, 5, 1800514.	5.6	124
573	Sulfur-Doped Nickel Phosphide Nanoplates Arrays: A Monolithic Electrocatalyst for Efficient Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces, 2018, 10, 26303-26311.	4.0	97

#	Article	IF	CITATIONS
574	Fabrication of Fe-doped Co2P nanoparticles as efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation. Electrochimica Acta, 2018, 283, 1490-1497.	2.6	27
575	Catalysis by design: development of a bifunctional water splitting catalyst through an operando measurement directed optimization cycle. Chemical Science, 2018, 9, 5322-5333.	3.7	73
576	FeCoNi sulphide-derived nanodots as electrocatalysts for efficient oxygen evolution reaction. Functional Materials Letters, 2018, 11, 1850058.	0.7	4
577	Study of oxygen evolution reaction on amorphous Au ₁₃ @Ni ₁₂₀ P ₅₀ nanocluster. Physical Chemistry Chemical Physics, 2018, 20, 14545-14556.	1.3	7
578	Electrochemical Oxidation of 5-Hydroxymethylfurfural with NiFe Layered Double Hydroxide (LDH) Nanosheet Catalysts. ACS Catalysis, 2018, 8, 5533-5541.	5.5	340
579	Hierarchical Design of NiOOH@Amorphous Ni–P Bilayer on a 3D Mesh Substrate for High-Efficiency Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 30273-30282.	4.0	27
580	One-Pot Synthesis of NiCo ₂ S ₄ Hollow Spheres via Sequential Ion-Exchange as an Enhanced Oxygen Bifunctional Electrocatalyst in Alkaline Solution. ACS Applied Materials & Interfaces, 2018, 10, 29521-29531.	4.0	113
581	Cytomembraneâ€Structureâ€Inspired Active Ni–N–O Interface for Enhanced Oxygen Evolution Reaction. Advanced Materials, 2018, 30, e1803367.	11.1	112
582	Highly efficient ferromagnetic Co B O catalyst for hydrogen generation. International Journal of Hydrogen Energy, 2018, 43, 17164-17171.	3.8	22
583	Feâ€CoP Electrocatalyst Derived from a Bimetallic Prussian Blue Analogue for Largeâ€Currentâ€Density Oxygen Evolution and Overall Water Splitting. Advanced Science, 2018, 5, 1800949.	5.6	318
584	Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction. Chinese Journal of Catalysis, 2018, 39, 1575-1593.	6.9	205
585	Operando Spectroscopic Identification of Active Sites in NiFe Prussian Blue Analogues as Electrocatalysts: Activation of Oxygen Atoms for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 11286-11292.	6.6	328
586	Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting – A review. Journal of Power Sources, 2018, 400, 31-68.	4.0	418
587	CoO/CoP Heterostructured Nanosheets with an O–P Interpenetrated Interface as a Bifunctional Electrocatalyst for Na–O ₂ Battery. ACS Catalysis, 2018, 8, 8953-8960.	5.5	98
588	Freeâ€Sustaining Threeâ€Dimensional S235 Steelâ€Based Porous Electrocatalyst for Highly Efficient and Durable Oxygen Evolution. ChemSusChem, 2018, 11, 3661-3671.	3.6	24
589	Coupling of Nickel Boride and Ni(OH) ₂ Nanosheets with Hierarchical Interconnected Conductive Porous Structure Synergizes the Oxygen Evolution Reaction. ChemCatChem, 2018, 10, 4555-4561.	1.8	23
590	Electrochemical oxygen evolution reaction efficiently boosted by thermal-driving core–shell structure formation in nanostructured FeNi/S, N-doped carbon hybrid catalyst. Nanoscale, 2018, 10, 16911-16918.	2.8	70
591	Enhanced catalytic activity of electrodeposited Ni-Cu-P toward oxygen evolution reaction. Applied Catalysis B: Environmental, 2018, 237, 409-415.	10.8	116

#	Article	IF	CITATIONS
592	Bifunctional Hybrid Ni/Ni ₂ P Nanoparticles Encapsulated by Graphitic Carbon Supported with N, S Modified 3D Carbon Framework for Highly Efficient Overall Water Splitting. Advanced Materials Interfaces, 2018, 5, 1800473.	1.9	40
593	Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electrochemical overall-water-splitting activity. Nano Energy, 2018, 51, 26-36.	8.2	378
594	NiPS ₃ Nanosheet–Graphene Composites as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Nano, 2018, 12, 5297-5305.	7.3	104
595	Effect of pretreatment on catalytic activity of cobalt sulfide thin film for oxygen evolution reaction. Materials Letters, 2018, 228, 418-420.	1.3	7
596	Construction of hierarchical FeP/Ni ₂ P hollow nanospindles for efficient oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 14103-14111.	5.2	109
597	Hierarchical Nickel–Cobaltâ€Based Transition Metal Oxide Catalysts for the Electrochemical Conversion of Biomass into Valuable Chemicals. ChemSusChem, 2018, 11, 2547-2553.	3.6	130
598	Co0.5Ni0.5P nanoparticles embedded in carbon layers for efficient electrochemical water splitting. Journal of Alloys and Compounds, 2018, 764, 88-95.	2.8	29
599	N-doped reduced graphene oxide supported mixed Ni2P CoP realize efficient overall water electrolysis. Electrochimica Acta, 2018, 282, 626-633.	2.6	43
600	In-situ electrochemical activation designed hybrid electrocatalysts for water electrolysis. Science Bulletin, 2018, 63, 853-876.	4.3	107
601	Selfâ€Supported Hierarchical Shell@Core Ni ₃ S ₂ @Ni Foam Composite Electrocatalyst with High Efficiency and Longâ€Term Stability for Methanol Oxidation. ChemElectroChem, 2018, 5, 2376-2382.	1.7	12
602	Boosting water oxidation electrocatalysts with surface engineered amorphous cobalt hydroxide nanoflakes. Nanoscale, 2018, 10, 12991-12996.	2.8	55
603	Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. Energy Storage Materials, 2019, 16, 243-250.	9.5	244
604	DFT Study on the Hydrogen Evolution Reaction for Different Facets of Co ₂ P. ChemElectroChem, 2019, 6, 260-267.	1.7	42
605	LiCl as Phaseâ€Transfer Catalysts to Synthesize Thin Co ₂ P Nanosheets for Oxygen Evolution Reaction. ChemSusChem, 2019, 12, 1911-1915.	3.6	22
606	A 3D free-standing thin film based on N, P-codoped hollow carbon fibers embedded with MoP quantum dots as high efficient oxygen electrode for Li-O2 batteries. Energy Storage Materials, 2019, 17, 226-233.	9.5	57
607	Silicaâ€Free Synthesis of Mesoporous Co ₃ O ₄ /CoO _x P _y as a Highly Active Oxygen Evolution Reaction Catalyst. ChemNanoMat, 2019, 5, 1390-1397.	1.5	10
608	Fe-doping effect on CoTe catalyst with greatly boosted intrinsic activity for electrochemical oxygen evolution reaction. Electrochimica Acta, 2019, 321, 134656.	2.6	44
609	Electrosynthesis, activation, and applications of nickel-iron oxyhydroxide in (photo-)electrochemical water splitting at near neutral condition. Electrochimica Acta, 2019, 321, 134667.	2.6	9

#	Article	IF	CITATIONS
610	Novel one-step synthesis of core@shell iron–nickel alloy nanoparticles coated by carbon layers for efficient oxygen evolution reaction electrocatalysis. Journal of Power Sources, 2019, 438, 226988.	4.0	40
611	Phosphorization engineering ameliorated the electrocatalytic activity for overall water splitting on Ni ₃ S ₂ nanosheets. Dalton Transactions, 2019, 48, 13466-13471.	1.6	32
612	Morphological and Electronic Tuning of Ni ₂ P through Iron Doping toward Highly Efficient Water Splitting. ACS Catalysis, 2019, 9, 8882-8892.	5.5	227
613	Hydrogen evolution activity tuning <i>via</i> two-dimensional electron accumulation at buried interfaces. Journal of Materials Chemistry A, 2019, 7, 20696-20705.	5.2	11
614	Synthesis and Characterization of Fe3+ and CeO2 Co-decorated NiOOH Electrocatalysts Supported by Nickel Foam for the Oxygen Evolution Reaction. International Journal of Electrochemical Science, 2019, 14, 6532-6545.	0.5	13
615	The Role of Nonâ€Metallic and Metalloid Elements on the Electrocatalytic Activity of Cobalt and Nickel Catalysts for the Oxygen Evolution Reaction. ChemCatChem, 2019, 11, 5842-5854.	1.8	85
616	Continuous Network of Phase-Tuned Nickel Sulfide Nanostructures for Electrocatalytic Water Splitting. ACS Applied Nano Materials, 2019, 2, 5061-5070.	2.4	48
617	Amorphous nickel phosphide as a noble metal-free cathode for electrochemical dechlorination. Water Research, 2019, 165, 114930.	5.3	59
618	Constructing Schottky junction between 2D semiconductor and metallic nickel phosphide for highly efficient catalytic hydrogen evolution. Applied Surface Science, 2019, 495, 143528.	3.1	35
619	Hydrothermally synthesized nickel molybdenum selenide composites as cost-effective and efficient trifunctional electrocatalysts for water splitting reactions. International Journal of Hydrogen Energy, 2019, 44, 22796-22805.	3.8	42
620	Preparation of Yolk–Shell‣tructured Co _{<i>x</i>} Fe _{1â^'<i>x</i>} P with Enhanced OER Performance. ChemSusChem, 2019, 12, 4461-4470.	3.6	53
621	Bonding state synergy of the NiF ₂ /Ni ₂ P hybrid with the co-existence of covalent and ionic bonds and the application of this hybrid as a robust catalyst for the energy-relevant electrooxidation of water and urea. Nanoscale, 2019, 11, 16017-16025.	2.8	92
622	Surface evolution and reconstruction of oxygen-abundant FePi/NiFeP synergy in NiFe phosphides for efficient water oxidation. Journal of Materials Chemistry A, 2019, 7, 18925-18931.	5.2	37
623	Polymorph nickel titanate nanofibers as bifunctional electrocatalysts towards hydrogen and oxygen evolution reactions. Dalton Transactions, 2019, 48, 12684-12698.	1.6	9
624	High-Efficiency Electrocatalytic Water Oxidation on Trimetal-Based Fe–Co–Cr Oxide. ACS Applied Energy Materials, 2019, 2, 5584-5590.	2.5	7
625	An earth-abundant, amorphous cobalt-iron-borate (Co-Fe-Bi) prepared on Ni foam as highly efficient and durable electrocatalysts for oxygen evolution. Applied Surface Science, 2019, 495, 143462.	3.1	12
626	Constructing Bifunctional 3D Holey and Ultrathin CoP Nanosheets for Efficient Overall Water Splitting. ACS Applied Materials & amp; Interfaces, 2019, 11, 29879-29887.	4.0	50
627	Ca ²⁺ -doped ultrathin cobalt hydroxyl oxides derived from coordination polymers as efficient electrocatalysts for the oxidation of water. Journal of Materials Chemistry A, 2019, 7, 19415-19422.	5.2	28

#	Article	IF	CITATIONS
628	Simple and cost effective fabrication of 3D porous core–shell Ni nanochains@NiFe layered double hydroxide nanosheet bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 21722-21729.	5.2	129
629	Interfacing Epitaxial Dinickel Phosphide to 2D Nickel Thiophosphate Nanosheets for Boosting Electrocatalytic Water Splitting. ACS Nano, 2019, 13, 7975-7984.	7.3	171
630	Recent Progress on Surface Reconstruction of Earthâ€Abundant Electrocatalysts for Water Oxidation. Small, 2019, 15, e1901980.	5.2	158
631	Hydrothermally synthesized Iron Phosphate Hydroxide thin film electrocatalyst for electrochemical water splitting. Electrochimica Acta, 2019, 319, 118-128.	2.6	19
632	A review of transition metalâ€based bifunctional oxygen electrocatalysts. Journal of the Chinese Chemical Society, 2019, 66, 829-865.	0.8	82
633	An Fe-doped NiTe bulk crystal as a robust catalyst for the electrochemical oxygen evolution reaction. Chemical Communications, 2019, 55, 9347-9350.	2.2	61
634	Surface-Modified Hollow Ternary NiCo ₂ P _{<i>x</i>} Catalysts for Efficient Electrochemical Water Splitting and Energy Storage. ACS Applied Materials & Interfaces, 2019, 11, 39798-39808.	4.0	21
635	Interface Engineering of an RGO/MoS ₂ /Pd 2D Heterostructure for Electrocatalytic Overall Water Splitting in Alkaline Medium. ACS Applied Materials & Interfaces, 2019, 11, 42094-42103.	4.0	62
636	Water Oxidation Catalysts for Artificial Photosynthesis. Advanced Materials, 2019, 31, e1902069.	11.1	215
637	Identification of Key Reversible Intermediates in Selfâ€Reconstructed Nickelâ€Based Hybrid Electrocatalysts for Oxygen Evolution. Angewandte Chemie - International Edition, 2019, 58, 17458-17464.	7.2	255
638	Reduced graphene oxideâ€based materials for electrochemical energy conversion reactions. , 2019, 1, 85-108.		108
639	Adjustable Ternary FeCoNi Nanohybrids for Enhanced Oxygen Evolution Reaction. Chemistry - A European Journal, 2019, 25, 15361-15366.	1.7	7
640	Mixed-metal MOF-derived Co-doped Ni3C/Ni NPs embedded in carbon matrix as an efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 24572-24579.	3.8	63
641	Nanobundles of Iron Phosphide Fabricated by Direct Phosphorization of Metal–Organic Frameworks as an Efficient Hydrogenâ€Evolving Electrocatalyst. Chemistry - A European Journal, 2019, 26, 4001.	1.7	13
642	Amorphous CoFeP/NC hybrids as highly efficient electrocatalysts for water oxidation. International Journal of Hydrogen Energy, 2019, 44, 30196-30207.	3.8	30
643	Electrochemically accessing ultrathin Co (oxy)-hydroxide nanosheets and <i>operando</i> identifying their active phase for the oxygen evolution reaction. Energy and Environmental Science, 2019, 12, 739-746.	15.6	163
644	Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 764-774.	5.2	123
645	Tuning Electron Density Endows Fe _{1–<i>x</i>} Co _{<i>x</i>} P with Exceptional Capability of Electrooxidation of Organic Pollutants. Environmental Science & Technology, 2019, 53, 13878-13887.	4.6	59

#	Article	IF	CITATIONS
646	Solid‣tate Conversion Synthesis of Advanced Electrocatalysts for Water Splitting. Chemistry - A European Journal, 2020, 26, 3961-3972.	1.7	8
647	Cu2-xSe@CuO core-shell assembly grew on copper foam for efficient oxygen evolution. International Journal of Hydrogen Energy, 2019, 44, 31979-31986.	3.8	17
648	NiMoFe and NiMoFeP as Complementary Electrocatalysts for Efficient Overall Water Splitting and Their Application in PVâ€Electrolysis with STH 12.3%. Small, 2019, 15, e1905501.	5.2	55
649	Supported Transition Metal Phosphides: Activity Survey for HER, ORR, OER, and Corrosion Resistance in Acid and Alkaline Electrolytes. ACS Catalysis, 2019, 9, 11515-11529.	5.5	245
650	Plasma-assisted synthesis of three-dimensional hierarchical NiFeOx/NiFeP electrocatalyst for highly enhanced water oxidation in alkaline media. International Journal of Hydrogen Energy, 2019, 44, 26118-26127.	3.8	29
651	Novel Composite Based on Bimetallic AuNi-Embedded Nano X Zeolite/MWCNT as a Superior Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 19384-19395.	3.2	9
652	The Synergetic Effect of Ni and Fe Bi-metal Single Atom Catalysts on Graphene for Highly Efficient Oxygen Evolution Reaction. Frontiers in Materials, 2019, 6, .	1.2	20
653	Amorphous Fe–Ni–P–B–O Nanocages as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Nano, 2019, 13, 12969-12979.	7.3	151
654	Identification of Key Reversible Intermediates in Selfâ€Reconstructed Nickelâ€Based Hybrid Electrocatalysts for Oxygen Evolution. Angewandte Chemie, 2019, 131, 17619-17625.	1.6	45
655	Cobalt Phosphide Ultrathin and Freestanding Sheets Prepared through Microwave Chemical Vapor Deposition: A Highly Efficient Oxygen Evolution Reaction Catalyst. ChemElectroChem, 2019, 6, 5469-5478.	1.7	16
656	Fully Conjugated Covalent Organic Polymer with Carbon-Encapsulated Ni ₂ P for Highly Sustained Photocatalytic H ₂ Production from Seawater. ACS Applied Materials & Interfaces, 2019, 11, 41313-41320.	4.0	71
657	Precursorâ€Transformation Strategy Preparation of CuP x Nanodots–Decorated CoP 3 Nanowires Hybrid Catalysts for Boosting pHâ€Universal Electrocatalytic Hydrogen Evolution. Small, 2019, 15, 1904681.	5.2	25
658	Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nature Communications, 2019, 10, 3899.	5.8	355
659	Coupling NiSe2-Ni2P heterostructure nanowrinkles for highly efficient overall water splitting. Journal of Catalysis, 2019, 377, 600-608.	3.1	222
660	Self-Supported Nonprecious MXene/Ni ₃ S ₂ Electrocatalysts for Efficient Hydrogen Generation in Alkaline Media. ACS Applied Energy Materials, 2019, 2, 6931-6938.	2.5	62
661	3D hollow Co–Fe–P nanoframes immobilized on N,P-doped CNT as an efficient electrocatalyst for overall water splitting. Nanoscale, 2019, 11, 17031-17040.	2.8	85
662	Hybridizing amorphous NiOx nanoflakes and Mn-doped Ni2P nanosheet arrays for enhanced overall water electrocatalysis. Sustainable Energy and Fuels, 2019, 3, 3093-3100.	2.5	8
663	One-step hydrothermal synthesis of cobalt–vanadium based nanocomposites as bifunctional catalysts for overall water splitting. Nanoscale, 2019, 11, 18238-18245.	2.8	28

#	Article	IF	CITATIONS
664	Amorphous NiMS (M: Co, Fe or Mn) holey nanosheets derived from crystal phase transition for enhanced oxygen evolution in water splitting. Electrochimica Acta, 2019, 323, 134756.	2.6	35
665	Metal–Organic Framework-Derived Cu-Doped Co ₉ S ₈ Nanorod Array with Less Low-Valence Co Sites as Highly Efficient Bifunctional Electrodes for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 16917-16926.	3.2	129
666	Phosphorization Treatment Improves the Catalytic Activity and Durability of Platinum Catalysts toward Oxygen Reduction Reaction. Chemistry of Materials, 2019, 31, 8205-8211.	3.2	24
667	A new 3D 8-fold interpenetrating 66-dia topological Co-MOF: Syntheses, crystal structure, magnetic properties and electrocatalytic hydrogen evolution reaction. Journal of Solid State Chemistry, 2019, 279, 120929.	1.4	24
668	<i>In situ</i> synthesis of FeP-decorated Ti–Fe ₂ O ₃ : an effective strategy to improve the interfacial charge transfer in the photoelectrochemical water oxidation reaction. Catalysis Science and Technology, 2019, 9, 5812-5818.	2.1	24
669	Deep Reconstruction of Nickel-Based Precatalysts for Water Oxidation Catalysis. ACS Energy Letters, 2019, 4, 2585-2592.	8.8	137
670	Surface treated nickel phosphide nanosheet with oxygen as highly efficient bifunctional electrocatalysts for overall water splitting. Applied Surface Science, 2019, 496, 143741.	3.1	7
671	One-Step Synthesis of Rod-Shaped NiFe-MOF as a Highly Efficient Oxygen Evolution Catalyst. Nano, 2019, 14, 1950101.	0.5	8
672	Defect engineering of nickel hydroxide nanosheets by Ostwald ripening for enhanced selective electrocatalytic alcohol oxidation. Green Chemistry, 2019, 21, 578-588.	4.6	71
673	Carved nanoframes of cobalt–iron bimetal phosphide as a bifunctional electrocatalyst for efficient overall water splitting. Chemical Science, 2019, 10, 464-474.	3.7	238
674	Concentrated-acid triggered superfast generation of porous amorphous cobalt oxide toward efficient water oxidation catalysis in alkaline solution. Chemical Communications, 2019, 55, 1797-1800.	2.2	19
675	Constructing organic superacids from superhalogens is a rational route as verified by DFT calculations. Physical Chemistry Chemical Physics, 2019, 21, 2804-2815.	1.3	15
676	Arising synergetic and antagonistic effects in the design of Ni- and Ru-based water splitting electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 639-646.	5.2	23
677	One-step construction of core/shell nanoarrays with a holey shell and exposed interfaces for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 1196-1205.	5.2	42
678	Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 5069-5089.	5.2	422
679	Cobalt Phosphides Nanocrystals Encapsulated by Pâ€Doped Carbon and <i>Married</i> with Pâ€Doped Graphene for Overall Water Splitting. Small, 2019, 15, e1804546.	5.2	110
680	Nickel phosphide polymorphs with an active (001) surface as excellent catalysts for water splitting. CrystEngComm, 2019, 21, 1143-1149.	1.3	19
681	Hybridizing NiCo ₂ O ₄ and Amorphous Ni _{<i>x</i>} Co _{<i>y</i>} Layered Double Hydroxides with Remarkably Improved Activity toward Efficient Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 4784-4791.	3.2	70
#	Article	IF	CITATIONS
-----	--	------	-----------
682	Self-Assembled Ni ₃ S ₂ Nanosheets with Mesoporous Structure Tightly Held on Ni Foam as a Highly Efficient and Long-Term Electrocatalyst for Water Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 5430-5439.	3.2	48
683	N ⁺ -ion irradiation engineering towards the efficient oxygen evolution reaction on NiO nanosheet arrays. Journal of Materials Chemistry A, 2019, 7, 4729-4733.	5.2	48
684	Engineering NiO/NiFe LDH Intersection to Bypass Scaling Relationship for Oxygen Evolution Reaction via Dynamic Tridimensional Adsorption of Intermediates. Advanced Materials, 2019, 31, e1804769.	11.1	264
685	Prussian blue analogues-derived bimetallic phosphide hollow nanocubes grown on Ni foam as water splitting electrocatalyst. Journal of Materials Science, 2019, 54, 7087-7095.	1.7	31
686	In pursuit of advanced materials from single-source precursors based on metal carbonyls. Dalton Transactions, 2019, 48, 2248-2262.	1.6	4
687	High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces. Energy and Environmental Science, 2019, 12, 684-692.	15.6	169
688	Artesunate enhances adriamycin cytotoxicity by inhibiting glycolysis in adriamycin-resistant chronic myeloid leukemia K562/ADR cells. RSC Advances, 2019, 9, 1004-1014.	1.7	3
689	Light-induced water oxidation by polymorphs of the Zn–Co–Ni oxide spinel catalyst: a comparative study. Sustainable Energy and Fuels, 2019, 3, 786-792.	2.5	7
690	A highly efficient and durable water splitting system: platinum sub-nanocluster functionalized nickel–iron layered double hydroxide as the cathode and hierarchical nickel–iron selenide as the anode. Journal of Materials Chemistry A, 2019, 7, 2831-2837.	5.2	65
691	Polyoxometalate-assisted formation of CoSe/MoSe ₂ heterostructures with enhanced oxygen evolution activity. Journal of Materials Chemistry A, 2019, 7, 3317-3326.	5.2	94
692	Recent progress in the hybrids of transition metals/carbon for electrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 14380-14390.	5.2	111
693	Prompt Electrodeposition of Ni Nanodots on Ni Foam to Construct a High-Performance Water-Splitting Electrode: Efficient, Scalable, and Recyclable. Nano-Micro Letters, 2019, 11, 41.	14.4	24
694	Polarized Electronic Configuration in Transition Metal–Fluoride Oxide Hollow Nanoprism for Highly Efficient and Robust Water Splitting. ACS Applied Energy Materials, 2019, 2, 3999-4007.	2.5	24
695	Electrochemical water oxidation by simple manganese salts. Scientific Reports, 2019, 9, 7749.	1.6	19
696	Dual tuning of nickel sulfide nanoflake array electrocatalyst through nitrogen doping and carbon coating for efficient and stable water splitting. Catalysis Science and Technology, 2019, 9, 3099-3108.	2.1	32
697	Negative Charging of Transitionâ€Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water. Angewandte Chemie, 2019, 131, 11922-11926.	1.6	22
698	Porous Nitrogen Selfâ€Doped Carbon Wrapped Iron Phosphide Hollow Spheres as Efficient Bifunctional Electrocatalysts for Water Splitting. ChemElectroChem, 2019, 6, 3437-3444.	1.7	13
699	Nickel Nitride Particles Supported on 2D Activated Graphene–Black Phosphorus Heterostructure: An Efficient Electrocatalyst for the Oxygen Evolution Reaction. Small, 2019, 15, e1901530.	5.2	61

#	Article	IF	CITATIONS
700	A Fully Reversible Water Electrolyzer Cell Made Up from FeCoNi (Oxy)hydroxide Atomic Layers. Advanced Energy Materials, 2019, 9, 1901312.	10.2	106
701	Self-ZIF template-directed synthesis of a CoS nanoflake array as a Janus electrocatalyst for overall water splitting. Inorganic Chemistry Frontiers, 2019, 6, 2090-2095.	3.0	42
702	Facile Synthesis of Monodispersed α-Ni(OH)2 Microspheres Assembled by Ultrathin Nanosheets and Its Performance for Oxygen Evolution Reduction. Frontiers in Materials, 2019, 6, .	1.2	30
703	Facile preparation of large-area self-supported porous nickel phosphide nanosheets for efficient electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 17974-17984.	3.8	24
704	In situ iron coating on nanocatalysts for efficient and durable oxygen evolution reaction. Nano Energy, 2019, 63, 103855.	8.2	26
705	Phosphorous doped cobalt-iron sulfide/carbon nanotube as active and robust electrocatalysts for water splitting. Electrochimica Acta, 2019, 318, 892-900.	2.6	43
706	Nobleâ€Metalâ€Free Colloidalâ€Copper Based Low Overpotential Water Oxidation Electrocatalyst. ChemCatChem, 2019, 11, 6022-6030.	1.8	22
707	Highâ€Yield Electrochemical Production of Largeâ€Sized and Thinly Layered NiPS ₃ Flakes for Overall Water Splitting. Small, 2019, 15, e1902427.	5.2	62
708	Pt-like hydrogen evolution on a V ₂ O ₅ /Ni(OH) ₂ electrocatalyst. Journal of Materials Chemistry A, 2019, 7, 15794-15800.	5.2	31
709	Construction of alternating layered quasi-three-dimensional electrode Ag NWs/CoO for water splitting: A discussion of catalytic mechanism. Electrochimica Acta, 2019, 317, 468-477.	2.6	22
710	Designing Highly Efficient and Longâ€Term Durable Electrocatalyst for Oxygen Evolution by Coupling B and P into Amorphous Porous NiFeâ€Based Material. Small, 2019, 15, e1901020.	5.2	71
711	Free-standing S, N co-doped graphene/Ni foam as highly efficient and stable electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2019, 317, 408-415.	2.6	19
712	Surface Pseudocapacitive Mechanism of Molybdenum Phosphide for Highâ€Energy and Highâ€Power Sodiumâ€Ion Capacitors. Advanced Energy Materials, 2019, 9, 1900967.	10.2	62
713	Zn–Ni–P Nanoparticles Decorated g-C3N4 Nanosheets Applicated as Photoanode in Photovoltaic Fuel Cells. Catalysis Letters, 2019, 149, 2397-2407.	1.4	12
714	High-efficiency bifunctional electrocatalyst based on 3D freestanding Cu foam in situ armored CoNi alloy nanosheet arrays for overall water splitting. Journal of Power Sources, 2019, 427, 184-193.	4.0	47
715	The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes. Chemical Communications, 2019, 55, 8744-8763.	2.2	246
716	Negative Charging of Transitionâ€Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water. Angewandte Chemie - International Edition, 2019, 58, 11796-11800.	7.2	155
717	Modulating the electronic structure of ultrathin layered double hydroxide nanosheets with fluorine: an efficient electrocatalyst for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 14483-14488.	5.2	73

#	ARTICLE	IF	Citations
718	Electrodeposited Ni Co P hierarchical nanostructure as a cost-effective and durable electrocatalyst with superior activity for bifunctional water splitting. Journal of Power Sources, 2019, 429, 156-167.	4.0	120
719	Two-dimensional bimetallic phosphide ultrathin nanosheets as non-noble electrocatalysts for a highly efficient oxygen evolution reaction. Nanoscale, 2019, 11, 9654-9660.	2.8	53
720	Dispersive non-noble metal phosphide embedded in alumina arrays derived from layered double hydroxide precursor toward efficient oxygen evolution reaction and biomass upgrading. Journal of Materials Chemistry A, 2019, 7, 13695-13704.	5.2	36
721	A Simple Synthetic Strategy toward Defectâ€Rich Porous Monolayer NiFe‣ayered Double Hydroxide Nanosheets for Efficient Electrocatalytic Water Oxidation. Advanced Energy Materials, 2019, 9, 1900881.	10.2	363
722	Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. Journal of Power Sources, 2019, 430, 104-111.	4.0	164
723	Unique Ni Crystalline Core/Ni Phosphide Amorphous Shell Heterostructured Electrocatalyst for Hydrazine Oxidation Reaction of Fuel Cells. ACS Applied Materials & Interfaces, 2019, 11, 19048-19055.	4.0	59
724	Beyond 1Tâ€phase? Synergistic Electronic Structure and Defects Engineering in 2Hâ€MoS _{2x} Se _{2(1â€x)} Nanosheets for Enhanced Hydrogen Evolution Reaction and Sodium Storage. ChemCatChem, 2019, 11, 3200-3211.	1.8	21
725	Facile Synthesis of 3D NiCoP@NiCoPO _{<i>x</i>} Core–Shell Nanostructures with Boosted Catalytic Activity toward Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 4188-4194.	2.5	47
726	Synthesis from a layered double hydroxide precursor for a highly efficient oxygen evolution reaction. Inorganic Chemistry Frontiers, 2019, 6, 1793-1798.	3.0	21
727	Functional macroporous iron-phosphorous films by electrodeposition on colloidal crystal templates. Electrochimica Acta, 2019, 313, 211-222.	2.6	6
728	Arousing the Reactive Fe Sites in Pyrite (FeS ₂) via Integration of Electronic Structure Reconfiguration and in Situ Electrochemical Topotactic Transformation for Highly Efficient Oxygen Evolution Reaction. Inorganic Chemistry, 2019, 58, 7615-7627.	1.9	53
729	Fabrication of CNTs encapsulated nickel-nickel phosphide nanoparticles on graphene for remarkable hydrogen evolution reaction performance. Journal of Electroanalytical Chemistry, 2019, 846, 113142.	1.9	15
730	Respective influence of stoichiometry and NiOOH formation in hydrogen and oxygen evolution reactions of nickel selenides. Applied Surface Science, 2019, 487, 1152-1158.	3.1	47
731	Hierarchically porous nickel–cobalt phosphide nanoneedle arrays loaded micro-carbon spheres as an advanced electrocatalyst for overall water splitting application. Applied Catalysis B: Environmental, 2019, 253, 235-245.	10.8	105
732	Synergistic coupling of CoFe-LDH arrays with NiFe-LDH nanosheet for highly efficient overall water splitting in alkaline media. Applied Catalysis B: Environmental, 2019, 253, 131-139.	10.8	503
733	The versatility of copper tin sulfide. Journal of Materials Chemistry A, 2019, 7, 17118-17182.	5.2	42
734	A Freestanding Singleâ€Wall Carbon Nanotube Film Decorated with Nâ€Doped Carbonâ€Encapsulated Ni Nanoparticles as a Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Science, 2019, 6, 1802177.	5.6	56
735	Coupling a Low Loading of IrP ₂ , PtP ₂ , or Pd ₃ P with Heteroatom-Doped Nanocarbon for Overall Water-Splitting Cells and Zinc–Air Batteries. ACS Applied Materials &: Interfaces, 2019, 11, 16461-16473.	4.0	38

ARTICLE IF CITATIONS # An excellent OER electrocatalyst of cubic SrCoO<sub $>3\hat{a}^{1}(<)$ sub> prepared by a simple F-doping strategy. 736 5.2 112 Journal of Materials Chemistry A, 2019, 7, 12538-12546. Featherlike NiCoP Holey Nanoarrys for Efficient and Stable Seawater Splitting. ACS Applied Energy 2.5 Materials, 2019, 2, 3910-3917. Nickel doped cobalt - hollow nanoparticles as an efficient electrocatalyst for hydrogen evolution 738 3.8 16 from neutral water. International Journal of Hydrogen Energy, 2019, 44, 14869-14876. Porous amorphous NiFeOx/NiFeP framework with dual electrocatalytic functions for water 4.0 electrolysis. Journal of Power Sources, 2019, 428, 76-81. Three-Dimensional Dendritic Cu–Co–P Electrode by One-Step Electrodeposition on a Hydrogen Bubble Template for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 740 3.2 100 10734-10741. Phase controllable synthesis of Ni2+ post-modified CoP nanowire for enhanced oxygen evolution. Nano Energy, 2019, 62, 136-143. 8.2 Efficient Oxygen Evolution Catalysis Triggered by Nickel Phosphide Nanoparticles Compositing with Reduced Graphene Oxide with Controlled Architecture. ACS Sustainable Chemistry and Engineering, 742 3.2 34 2019, 7, 9566-9573. GeSe@SnS: stacked Janus structures for overall water splitting. Journal of Materials Chemistry A, 743 5.2 66 2019, 7, 12060-12067. Anionâ€Modulated HER and OER Activities of 3D Niâ€"Vâ€Based Interstitial Compound Heterojunctions for 744 11.1 479 Highâ€Efficiency and Stable Overall Water Splitting. Advanced Materials, 2019, 31, e1901174. Hydrogen evolution reaction activity related to the facet-dependent electrocatalytic performance of 745 1.7 NiCoP from first principles. RSC Advances, 2019, 9, 11755-11761. Nickel Nanocrystal Assemblies as Efficient Electrocatalysts for Hydrogen Evolution from pHâ€Neutral 746 1.7 16 Aqueous Solution. ChemElectroChem, 2019, 6, 2100-2106. Identifying high-efficiency oxygen evolution electrocatalysts from Co–Ni–Cu based selenides through 5.2 combinatorial electrodeposition. Journal of Materials Chémistry A, 2019, 7, 9877-9889. Active Site Identification and Evaluation Criteria of In Situ Grown CoTe and NiTe Nanoarrays for 748 4.6 78 Hydrogen Evolution and Oxygen Evolution Reactions. Small Methods, 2019, 3, 1900113. A self-templating method for metalâ \in "organic frameworks to construct multi-shelled bimetallic phosphide hollow microspheres as highly efficient electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 8602-8608. 749 5.2 2D Layered Double Hydroxides for Oxygen Evolution Reaction: From Fundamental Design to 750 10.2 467 Application. Advanced Energy Materials, 2019, 9, 1803358. Facile Preparation of 1T/2Hâ€Mo(S_{1â€x}Se_x)₂ Nanoparticles for 1.8 124 Boosting Hydrogen Evolution Reaction. ChemCatChem, 2019, 11, 2217-2222. Hydrogen production by water reduction on Si photocathode coupled with Ni2P. International 752 3.8 8 Journal of Hydrogen Energy, 2019, 44, 7241-7251. Plasma enabled non-thermal phosphorization for nickel phosphide hydrogen evolution catalysts. 2.2 Chemical Communications, 2019, 55, 4202-4205.

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
754	Amorphous Fe Co Ni oxide for oxygen evolution reaction. Materials Today Energy, 201	9, 12, 311-317.	2.5	38
755	Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel- nanotube array. Nano Energy, 2019, 60, 894-902.	molybdenum	8.2	250
756	Ambient Fast Synthesis and Active Sites Deciphering of Hierarchical Foam‣ike Trime Framework Nanostructures as a Platform for Highly Efficient Oxygen Evolution Electro Advanced Materials, 2019, 31, e1901139.	tal–Organic catalysis.	11.1	374
757	Hydrogelâ€Derived Honeycomb Ni ₃ S ₄ /N,Pâ€C as an Efficier Catalyst. Chemistry - A European Journal, 2019, 25, 7561-7568.	t Oxygen Evolution	1.7	38
758	Heterogeneous Ni-Fe-P integrated with nickel foam as an efficient and durable electroc water oxidation. International Journal of Hydrogen Energy, 2019, 44, 11684-11694.	atalyst for	3.8	14
759	A novel particle-in-nanoplate architecture of iron nickel phosphide intertwined with car nanotubes for efficient water oxidation and high-performance sodium-ion batteries. Jou and Compounds, 2019, 791, 1220-1230.	bon urnal of Alloys	2.8	20
760	Electrochemical oxygen evolution reaction efficiently catalyzed by a novel porous iron-cobalt-fluoride nanocube easily derived from 3-dimensional Prussian blue analogue Power Sources, 2019, 424, 131-137.	e. Journal of	4.0	79
761	An orderly assembled g-C3N4, rGO and Ni2P photocatalyst for efficient hydrogen evolu International Journal of Hydrogen Energy, 2019, 44, 10316-10327.	ution.	3.8	50
762	A conductive PVDF-Ni membrane with superior rejection, permeance and antifouling al assisted in-situ aeration for dye separation. Journal of Membrane Science, 2019, 581, 4	oility via electric 101-412.	4.1	107
763	Microwave-assisted ultrafast synthesis of adjustable bimetal phosphide/graphene hete from MOFs for efficient electrochemical water splitting. Journal of Materials Chemistry 14526-14535.	rostructures A, 2019, 7,	5.2	88
764	Morphology ontrolled Metal Sulfides and Phosphides for Electrochemical Water Sp Advanced Materials, 2019, 31, e1806682.	litting.	11.1	500
765	Tree-Like NiS2/MoS2-RGO Nanocomposites as pH Universal Electrocatalysts for Hydro Reaction. Catalysis Letters, 2019, 149, 1197-1210.	gen Evolution	1.4	33
766	Bifunctional cobalt phosphide nanoparticles with convertible surface structure for effic electrocatalytic water splitting in alkaline solution. Journal of Catalysis, 2019, 371, 262	sient 2-269.	3.1	45
767	Amorphous film of cerium doped cobalt oxide as a highly efficient electrocatalyst for o evolution reaction. Journal of Materials Chemistry A, 2019, 7, 7526-7532.	xygen	5.2	72
768	High-Index-Faceted Ni3S2 Branch Arrays as Bifunctional Electrocatalysts for Efficient V Nano-Micro Letters, 2019, 11, 12.	Jater Splitting.	14.4	81
769	Monolithic electrode integrated of ultrathin NiFeP on 3D strutted graphene for bifunct efficient overall water splitting. Nano Energy, 2019, 58, 870-876.	ionally	8.2	166
770	Mo-doped Ni ₂ P hollow nanostructures: highly efficient and durable bifund electrocatalysts for alkaline water splitting. Journal of Materials Chemistry A, 2019, 7, 2	rtional 7636-7643.	5.2	110
771	A new metal–organic open framework enabling facile synthesis of carbon encapsula metal phosphide/sulfide nanoparticle electrocatalysts. Journal of Materials Chemistry A 7168-7178.	ted transition , 2019, 7,	5.2	50

#	Article	IF	CITATIONS
772	Nitrogen and sulfur-codoped porous carbon derived from a BSA/ionic liquid polymer complex: multifunctional electrode materials for water splitting and supercapacitors. RSC Advances, 2019, 9, 5189-5196.	1.7	8
773	Electrochemically Fabricated Niâ^'P, Niâ^'S and Niâ^'Se Materials for Overall Water Splitting: Investigating the Concept of Bifunctional Electrocatalysis. ChemElectroChem, 2019, 6, 2630-2637.	1.7	23
774	Recent Advances in the Development of Molecular Catalystâ€Based Anodes for Water Oxidation toward Artificial Photosynthesis. ChemSusChem, 2019, 12, 1775-1793.	3.6	60
775	Predictive fabrication of Ni phosphide embedded in carbon nanofibers as active and stable electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 7451-7458.	5.2	24
776	Electronically Double‣ayered Metal Boride Hollow Nanoprism as an Excellent and Robust Water Oxidation Electrocatalysts. Advanced Energy Materials, 2019, 9, 1803799.	10.2	74
777	Holey nanospheres of amorphous bimetallic phosphide electrodeposited on 3D porous Ni foam for efficient oxygen evolution. Applied Surface Science, 2019, 479, 540-547.	3.1	31
778	Promoting Electrocatalytic Oxygen Evolution over Transition-Metal Phosphide-Based Nanocomposites via Architectural and Electronic Engineering. ACS Applied Materials & Interfaces, 2019, 11, 46825-46838.	4.0	34
779	S-Edge-rich Mo _x S _y arrays vertically grown on carbon aerogels as superior bifunctional HER/OER electrocatalysts. Nanoscale, 2019, 11, 20284-20294.	2.8	32
780	Engineering the coupling interface of rhombic dodecahedral NiCoP/C@FeOOH nanocages toward enhanced water oxidation. Nanoscale, 2019, 11, 19959-19968.	2.8	48
781	Confined carburization-engineered synthesis of ultrathin nickel oxide/nickel heterostructured nanosheets for enhanced oxygen evolution reaction. Nanoscale, 2019, 11, 22261-22269.	2.8	18
782	Fe ions modulated formation of hollow NiFe oxyphosphide spheres with enhanced oxygen evolution performance. Chemical Communications, 2019, 55, 14371-14374.	2.2	9
783	Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. Energy and Environmental Science, 2019, 12, 3348-3355.	15.6	234
784	An Fe stabilized metallic phase of NiS ₂ for the highly efficient oxygen evolution reaction. Nanoscale, 2019, 11, 23217-23225.	2.8	66
785	Binary nickel iron phosphide composites with oxidized surface groups as efficient electrocatalysts for the oxygen evolution reaction. Sustainable Energy and Fuels, 2019, 3, 3518-3524.	2.5	17
786	Water splitting catalysis beginning with FeCo2S4@Ni(OH)2: Investigation of the true catalyst with favorable stability. International Journal of Hydrogen Energy, 2019, 44, 31902-31915.	3.8	12
787	Coating of Ni on Fe (oxy)hydroxide: Superior Catalytic Activity for Oxygen-Involved Reaction During Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 19832-19838.	3.2	17
788	Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media. RSC Advances, 2019, 9, 31563-31571.	1.7	151
789	Au@Co ₂ P core/shell nanoparticles as a nano-electrocatalyst for enhancing the oxygen evolution reaction. RSC Advances, 2019, 9, 40811-40818.	1.7	7

#	Article	IF	CITATIONS
790	Facile fabrication of a hierarchical NiCoFeP hollow nanoprism for efficient oxygen evolution in the Zn–air battery. Journal of Materials Chemistry A, 2019, 7, 24964-24972.	5.2	65
791	Coupling FeNi alloys and hollow nitrogen-enriched carbon frameworks leads to high-performance oxygen electrocatalysts for rechargeable zinc–air batteries. Sustainable Energy and Fuels, 2019, 3, 136-141.	2.5	34
792	Electrodeposited nickel–iron–carbon–molybdenum film as efficient bifunctional electrocatalyst for overall water splitting in alkaline solution. International Journal of Hydrogen Energy, 2019, 44, 1336-1344.	3.8	25
793	Electrodeposited Copper–Cobalt–Phosphide: A Stable Bifunctional Catalyst for Both Hydrogen and Oxygen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 3092-3100.	3.2	62
794	Exceptional Performance of Hierarchical Ni–Fe (hydr)oxide@NiCu Electrocatalysts for Water Splitting. Advanced Materials, 2019, 31, e1806769.	11.1	124
795	Hydrogen evolution reaction catalyzed by nickel/nickel phosphide nanospheres synthesized through electrochemical methods. Electrochimica Acta, 2019, 298, 229-236.	2.6	27
796	Ordered distributed nickel sulfide nanoparticles across graphite nanosheets for efficient oxygen evolution reaction electrocatalyst. International Journal of Hydrogen Energy, 2019, 44, 1544-1554.	3.8	20
797	Phosphorus-Doped FeNi Alloys/NiFe ₂ O ₄ Imbedded in Carbon Network Hollow Bipyramid as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 2285-2295.	3.2	39
798	Component-controllable cobalt telluride nanoparticles encapsulated in nitrogen-doped carbon frameworks for efficient hydrogen evolution in alkaline conditions. Applied Catalysis B: Environmental, 2019, 244, 568-575.	10.8	60
799	A heterostructure of layered double hydroxide wrapped in few-layer carbon with iridium doping for efficient oxygen evolution. Electrochimica Acta, 2019, 296, 590-597.	2.6	16
800	Defectâ€Induced Pt–Co–Se Coordinated Sites with Highly Asymmetrical Electronic Distribution for Boosting Oxygenâ€Involving Electrocatalysis. Advanced Materials, 2019, 31, e1805581.	11.1	168
801	Enabling highly efficient, flexible and rechargeable quasi-solid-state zn-air batteries via catalyst engineering and electrolyte functionalization. Energy Storage Materials, 2019, 20, 234-242.	9.5	115
802	Modulated electrochemical oxygen evolution catalyzed by MoS ₂ nanoflakes from atomic layer deposition. Nanotechnology, 2019, 30, 095402.	1.3	22
803	Boosting oxygen evolution by surface nitrogen doping and oxygen vacancies in hierarchical NiCo/NiCoP hybrid nanocomposite. Electrochimica Acta, 2019, 296, 259-267.	2.6	48
804	MoS ₂ /NiS Yolk–Shell Microsphereâ€Based Electrodes for Overall Water Splitting and Asymmetric Supercapacitor. Small, 2019, 15, e1803639.	5.2	229
805	Nobleâ€Metalâ€Free Electrocatalysts for Oxygen Evolution. Small, 2019, 15, e1804201.	5.2	388
806	Cobalt/Molybdenum Phosphide and Oxide Heterostructures Encapsulated in N-Doped Carbon Nanocomposite for Overall Water Splitting in Alkaline Media. ACS Applied Materials & Interfaces, 2019, 11, 6890-6899.	4.0	91
807	Effective Fabrication and Electrochemical Oxygen Evolution Reaction Activity of Gold Multipod Nanoparticle Core–Cobalt Sulfide Shell Nanohybrids. ACS Applied Nano Materials, 2019, 2, 678-688.	2.4	16

#	Article	IF	CITATIONS
808	Tracking Structural Selfâ€Reconstruction and Identifying True Active Sites toward Cobalt Oxychloride Precatalyst of Oxygen Evolution Reaction. Advanced Materials, 2019, 31, e1805127.	11.1	211
809	Functional Electrocatalysts Derived from Prussian Blue and its Analogues for Metalâ€Air Batteries: Progress and Prospects. Batteries and Supercaps, 2019, 2, 290-310.	2.4	36
810	Solid-phase hot-pressing of POMs-ZIFs precursor and derived phosphide for overall water splitting. Applied Catalysis B: Environmental, 2019, 245, 528-535.	10.8	120
811	Three-Dimensional Porous Cobalt Phosphide Nanocubes Encapsulated in a Graphene Aerogel as an Advanced Anode with High Coulombic Efficiency for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 5373-5379.	4.0	78
812	Nanosheet-like Co ₃ (OH) ₂ (HPO ₄) ₂ as a Highly Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 3083-3091.	3.2	39
813	Helical cobalt borophosphates to master durable overall water-splitting. Energy and Environmental Science, 2019, 12, 988-999.	15.6	179
814	Ironâ€Doped Nickel Molybdate with Enhanced Oxygen Evolution Kinetics. Chemistry - A European Journal, 2019, 25, 280-284.	1.7	38
815	Recent Advances in Metalâ€Organic Framework Derivatives as Oxygen Catalysts for Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 272-289.	2.4	121
816	Modes of Fe Incorporation in Co–Fe (Oxy)hydroxide Oxygen Evolution Electrocatalysts. ChemSusChem, 2019, 12, 2015-2021.	3.6	55
817	Engineering ordered dendrite-like nickel selenide as electrocatalyst. Electrochimica Acta, 2019, 295, 92-98.	2.6	40
818	The role of conductivity and phase structure in enhancing catalytic activity of CoSe for hydrogen evolution reaction. Electrochimica Acta, 2019, 294, 142-147.	2.6	57
819	One-step and scalable synthesis of Ni2P nanocrystals encapsulated in N,P-codoped hierarchically porous carbon matrix using a bipyridine and phosphonate linked nickel metal–organic framework as highly efficient electrocatalysts for overall water splitting. Electrochimica Acta, 2019, 297, 755-766.	2.6	44
820	Semisacrificial Template Growth of Self‣upporting MOF Nanocomposite Electrode for Efficient Electrocatalytic Water Oxidation. Advanced Functional Materials, 2019, 29, 1807418.	7.8	224
821	Boosting Photoelectrochemical Water Oxidation with Cobalt Phosphide Nanosheets on Porous BiVO ₄ . ACS Sustainable Chemistry and Engineering, 2019, 7, 769-778.	3.2	36
822	A Nanosized CoNi Hydroxide@Hydroxysulfide Core–Shell Heterostructure for Enhanced Oxygen Evolution. Advanced Materials, 2019, 31, e1805658.	11.1	203
823	Hierarchical Bimetallic Selenide Nanosheetâ€Constructed Nanotubes for Efficient Electrocatalytic Water Oxidation. ChemElectroChem, 2019, 6, 331-335.	1.7	15
824	Black phosphorus supported Ni2P co-catalyst on graphitic carbon nitride enabling simultaneous boosting charge separation and surface reaction. Applied Catalysis B: Environmental, 2019, 242, 422-430.	10.8	120
825	Synthesis of one-dimensional RuO2 nanorod for hydrogen and oxygen evolution reaction: An efficient and stable electrocatalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560, 141-148.	2.3	33

#	Article	IF	CITATIONS
826	Co1-xS embedded in porous carbon derived from metal organic framework as a highly efficient electrocatalyst for oxygen evolution reaction. Chinese Chemical Letters, 2019, 30, 229-233.	4.8	36
827	Bi-metallic cobalt-nickel phosphide nanowires for electrocatalysis of the oxygen and hydrogen evolution reactions. Catalysis Today, 2020, 358, 196-202.	2.2	46
828	Borate crosslinking synthesis of structure tailored carbon-based bifunctional electrocatalysts directly from guar gum hydrogels for efficient overall water splitting. Carbon, 2020, 157, 153-163.	5.4	30
829	Electron density modulation of Fe1-xCoxP nanosheet arrays by iron incorporation for highly efficient water splitting. Nano Energy, 2020, 67, 104174.	8.2	87
830	Hierarchical three-dimensional framework interface assembled from oxygen-doped cobalt phosphide layer-shelled metal nanowires for efficient electrocatalytic water splitting. Applied Catalysis B: Environmental, 2020, 261, 118268.	10.8	87
831	Self-supported Ni2P nanosheets on low-cost three-dimensional Fe foam as a novel electrocatalyst for efficient water oxidation. Journal of Energy Chemistry, 2020, 42, 71-76.	7.1	44
832	Tuning catalytic performance by controlling reconstruction process in operando condition. Applied Catalysis B: Environmental, 2020, 260, 118103.	10.8	68
833	Highly efficient Ni nanotube arrays and Ni nanotube arrays coupled with NiFe layered-double-hydroxide electrocatalysts for overall water splitting. Journal of Power Sources, 2020, 448, 227434.	4.0	41
834	In-situ formed NiS/Ni coupled interface for efficient oxygen evolution and hydrogen evolution. Journal of Materials Science and Technology, 2020, 42, 10-16.	5.6	52
835	Metal Borideâ€Based Catalysts for Electrochemical Waterâ€Splitting: A Review. Advanced Functional Materials, 2020, 30, 1906481.	7.8	268
836	MOF-derived nitrogen-doped CoO@CoP arrays as bifunctional electrocatalysts for efficient overall water splitting. Electrochimica Acta, 2020, 330, 135210.	2.6	64
837	Facile synthesis of nickel cobalt selenide hollow nanospheres as efficient bifunctional electrocatalyst for rechargeable Zn-air battery. Science China Materials, 2020, 63, 347-355.	3.5	32
838	Coral-like hierarchical architecture self-assembled by cobalt hexacyanoferrate nanocrystals and N-doped carbon nanoplatelets as efficient electrocatalyst for oxygen evolution reaction. Journal of Colloid and Interface Science, 2020, 558, 190-199.	5.0	21
839	Enhanced photocatalytic hydrogen evolution under visible light irradiation by p-type MoS2/n-type Ni2P doped g-C3N4. Applied Surface Science, 2020, 504, 144448.	3.1	42
840	CoP/Nâ€Doped Carbon Nanowire Derived from Coâ€Based Coordination Polymer as Efficient Electrocatalyst toward Oxygen Evolution Reaction. Energy Technology, 2020, 8, 1901419.	1.8	5
841	Nanostructured core–shell metal borides–oxides as highly efficient electrocatalysts for photoelectrochemical water oxidation. Nanoscale, 2020, 12, 3121-3128.	2.8	29
842	Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. Small, 2020, 16, e1906133.	5.2	328
843	Fabrication of practical catalytic electrodes using insulating and eco-friendly substrates for overall water splitting. Energy and Environmental Science, 2020, 13, 102-110.	15.6	98

#	Article	IF	CITATIONS
844	Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences. Microchemical Journal, 2020, 154, 104623.	2.3	116
845	Understanding the Role of Nanoscale Heterointerfaces in Core/Shell Structures for Water Splitting: Covalent Bonding Interaction Boosts the Activity of Binary Transition-Metal Sulfides. ACS Applied Materials & Interfaces, 2020, 12, 6250-6261.	4.0	42
846	Facile Preparation Process of NiCoP–NiCoSe ₂ Nano-Bilayer Films for Oxygen Evolution Reaction with High Efficiency and Long Duration. ACS Sustainable Chemistry and Engineering, 2020, 8, 1240-1251.	3.2	29
847	Room-temperature synthesis of Ni _{1â^'x} Fe _x (oxy)hydroxides: structure–activity relationship for the oxygen evolution reaction. Sustainable Energy and Fuels, 2020, 4, 932-939.	2.5	6
848	Hierarchical hollow nanotubes of NiFeV-layered double hydroxides@CoVP heterostructures towards efficient, pH-universal electrocatalytical nitrogen reduction reaction to ammonia. Applied Catalysis B: Environmental, 2020, 265, 118559.	10.8	252
849	Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions. Journal of Alloys and Compounds, 2020, 821, 153542.	2.8	191
850	Highly reversible water splitting cell building from hierarchical 3D nickel manganese oxyphosphide nanosheets. Nano Energy, 2020, 69, 104432.	8.2	74
851	Low-Cost Ni ₂ P/Ni _{0.96} S Heterostructured Bifunctional Electrocatalyst toward Highly Efficient Overall Urea-Water Electrolysis. ACS Applied Materials & Interfaces, 2020, 12, 2225-2233.	4.0	93
852	Plasmonâ€Induced Hot Carrier Separation across Dual Interface in Gold–Nickel Phosphide Heterojunction for Photocatalytic Water Splitting. Advanced Functional Materials, 2020, 30, 1908239.	7.8	43
853	Pyrite-type cobalt phosphosulphide bifunctional catalyst for aqueous and gel-based rechargeable zinc-air batteries. Journal of Power Sources, 2020, 450, 227661.	4.0	23
854	Stable Fe ₂ P ₂ S ₆ Nanocrystal Catalyst for Highâ€Efficiency Water Electrolysis. Small Methods, 2020, 4, 1900632.	4.6	29
855	Active copper(II) and copper(I) reviving repeatedly in situ on copper wire electrode for full water splitting at ultra-low potential. Applied Surface Science, 2020, 505, 144653.	3.1	5
856	Boronâ€Modified Electron Transfer in Metallic 1T MoSe ₂ for Enhanced Inherent Activity on Per atalytic Site toward Hydrogen Evolution. Advanced Materials Interfaces, 2020, 7, 1901560.	1.9	22
857	Hybrid 0D/2D Ni2P quantum dot loaded TiO2(B) nanosheet photothermal catalysts for enhanced hydrogen evolution. Applied Surface Science, 2020, 505, 144099.	3.1	47
858	Self-growth Ni2P nanosheet arrays with cationic vacancy defects as a highly efficient bifunctional electrocatalyst for overall water splitting. Journal of Colloid and Interface Science, 2020, 561, 638-646.	5.0	52
859	Highly dispersed Ni ₂ P nanoparticles on N,P-codoped carbon for efficient cross-dehydrogenative coupling to access alkynyl thioethers. Green Chemistry, 2020, 22, 651-656.	4.6	16
860	Surface/interface engineering N-doped carbon/NiS ₂ nanosheets for efficient electrocatalytic H ₂ O splitting. Nanoscale, 2020, 12, 3370-3376.	2.8	21
861	Self-supported Hierarchical Fe(PO3)2@Cu3P nanotube arrays for efficient hydrogen evolution in alkaline media. Journal of Alloys and Compounds, 2020, 820, 153185.	2.8	23

#		IF	CITATIONS
" 862	Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review. Journal of Alloys and Compounds, 2020, 819, 153346.	2.8	253
863	Fabrication of Hollow CoP/TiO <i>_x</i> Heterostructures for Enhanced Oxygen Evolution Reaction. Small, 2020, 16, e1905075.	5.2	117
864	Self-supported Ni2P nanotubes coated with FeP nanoparticles electrocatalyst (FeP@Ni2P/NF) for oxygen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 565-573.	3.8	17
865	Hydrogen Evolution by Ni ₂ P Catalysts Derived from Phosphine MOFs. ACS Applied Energy Materials, 2020, 3, 176-183.	2.5	31
866	Double Metal Diphosphide Pair Nanocages Coupled with P-Doped Carbon for Accelerated Oxygen and Hydrogen Evolution Kinetics. ACS Applied Materials & Interfaces, 2020, 12, 727-733.	4.0	93
867	Red phosphorus as self-template to hierarchical nanoporous nickel phosphides toward enhanced electrocatalytic activity for oxygen evolution reaction. Electrochimica Acta, 2020, 332, 135500.	2.6	20
868	Highly Dispersed Single-Phase Ni ₂ P Nanoparticles on N,P-Codoped Porous Carbon for Efficient Synthesis of <i>N</i> -Heterocycles. ACS Sustainable Chemistry and Engineering, 2020, 8, 267-277.	3.2	45
869	Interfacial Electronic Modulation of Multishelled CoP Hollow Spheres via Surface Reconstruction for High-Efficient Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 309-318.	2.5	26
870	Spontaneous Formation of >90% Optically Transmissive, Electrochemically Active CoP Films for Photoelectrochemical Hydrogen Evolution. Journal of Physical Chemistry Letters, 2020, 11, 14-20.	2.1	8
871	Surface Activation and Reconstruction of Non-Oxide-Based Catalysts Through in Situ Electrochemical Tuning for Oxygen Evolution Reactions in Alkaline Media. ACS Catalysis, 2020, 10, 463-493.	5.5	196
872	Oxygen Evolution on Metalâ€oxyâ€hydroxides: Beneficial Role of Mixing Fe, Co, Ni Explained via Bifunctional Edge/acceptor Route. ChemCatChem, 2020, 12, 1436-1442.	1.8	21
873	Bamboo-like nitrogen-doped carbon nanotubes encapsulated with NiFeP nanoparticles and their efficient catalysis in the oxygen evolution reaction. Electrochimica Acta, 2020, 331, 135360.	2.6	23
874	3D Carbon Materials for Efficient Oxygen and Hydrogen Electrocatalysis. Advanced Energy Materials, 2020, 10, 1902494.	10.2	97
875	Vanadium Doped Nickel Phosphide Nanosheets Selfâ€Assembled Microspheres as a Highâ€Efficiency Oxygen Evolution Catalyst. ChemCatChem, 2020, 12, 917-925.	1.8	22
876	Hybrid Co@Ni12P5/PPy microspheres with dual synergies for high performance oxygen evolution. Journal of Catalysis, 2020, 391, 357-365.	3.1	19
877	Stoichiometry control and phosphorus doping as strategies for the enhancement of nickel iron spinel oxides as electrocatalysts for water oxidation. International Journal of Hydrogen Energy, 2020, 45, 30404-30414.	3.8	2
878	Boosting oxygen evolution reactivity by modulating electronic structure and honeycomb-like architecture in Ni2P/N,P-codoped carbon hybrids. Green Energy and Environment, 2021, 6, 866-874.	4.7	12
879	Is nickel phosphide an efficient catalyst for the oxygen-evolution reaction at low overpotentials?. New Journal of Chemistry, 2020, 44, 19630-19641.	1.4	22

#	Article	IF	CITATIONS
880	Anion Etching for Accessing Rapid and Deep Self-Reconstruction of Precatalysts for Water Oxidation. Matter, 2020, 3, 2124-2137.	5.0	177
881	Boron-Doped Graphene Oxide-Supported Nickel Nitride Nanoparticles for Electrocatalytic Oxygen Evolution in Alkaline Electrolytes. ACS Applied Nano Materials, 2020, 3, 9924-9930.	2.4	21
882	Constructing Ni–Mo2C Nanohybrids Anchoring on Highly Porous Carbon Nanotubes as Efficient Multifunctional Electrocatalysts. Nano, 2020, 15, 2050135.	0.5	4
883	Hierarchical Cu3P-based nanoarrays on nickel foam as efficient electrocatalysts for overall water splitting. Green Energy and Environment, 2022, 7, 236-245.	4.7	15
884	Recent advances in nanostructured transition metal phosphides: synthesis and energy-related applications. Energy and Environmental Science, 2020, 13, 4564-4582.	15.6	268
885	N-Doped carbon coating enhances the bifunctional oxygen reaction activity of CoFe nanoparticles for a highly stable Zn–air battery. Journal of Materials Chemistry A, 2020, 8, 21189-21198.	5.2	63
886	Bonding Fe(hafc)2TDMA onto the surface of nickel metal organic frameworks for highly efficient oxygen evolution reaction. Materials Letters, 2020, 277, 128339.	1.3	2
887	Construction of FeCo2O4@N-Doped Carbon Dots Nanoflowers as Binder Free Electrode for Reduction and Oxidation of Water. Materials, 2020, 13, 3119.	1.3	18
888	Active Site Engineering in Porous Electrocatalysts. Advanced Materials, 2020, 32, e2002435.	11.1	304
889	Hierarchical Highly Wrinkled Trimetallic NiFeCu Phosphide Nanosheets on Nanodendrite Ni ₃ S ₂ /Ni Foam as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 36268-36276.	4.0	44
890	High-efficiency Ni–P catalysts in amorphous and crystalline states for the hydrogen evolution reaction. Sustainable Energy and Fuels, 2020, 4, 4733-4742.	2.5	15
891	Pulse Electrodeposition of a Superhydrophilic and Binder-Free Ni–Fe–P Nanostructure as Highly Active and Durable Electrocatalyst for Both Hydrogen and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2020, 12, 53719-53730.	4.0	76
892	Rational Design of Niâ€Based Electrocatalysts by Modulation of Iron Ions and Carbon Nanotubes for Enhanced Oxygen Evolution Reaction. Advanced Sustainable Systems, 2020, 4, 2000227.	2.7	4
893	Amorphous NiFe phosphides supported on nanoarray-structured nitrogen-doped carbon paper for high-performance overall water splitting. Electrochimica Acta, 2020, 357, 136873.	2.6	23
894	Electrodeposition-fabricated catalysts for polymer electrolyte water electrolysis. Korean Journal of Chemical Engineering, 2020, 37, 1275-1294.	1.2	6
895	Why Do We Use the Materials and Operating Conditions We Use for Heterogeneous (Photo)Electrochemical Water Splitting?. ACS Catalysis, 2020, 10, 11177-11234.	5.5	89
896	Iridium nanorods as a robust and stable bifunctional electrocatalyst for pH-universal water splitting. Applied Catalysis B: Environmental, 2020, 279, 119394.	10.8	90
897	NiCoP nanoparticles encapsulated in cross-linked graphene aerogel to efficient hydrogen evolution reaction. Journal of Materials Science: Materials in Electronics, 2020, 31, 13521-13530.	1.1	8

ARTICLE IF CITATIONS # Surface engineering of RhOOH nanosheets promotes hydrogen evolution in alkaline. Nano Energy, 898 8.2 27 2020, 78, 105224. Hydrothermally/electrochemically decorated FeSe on Ni-foam electrode: An efficient bifunctional electrocatalysts for overall water splitting in an alkaline medium. International Journal of Hydrogen 3.8 Energy, 2020, 45, 27182-27192. Experimental studies on the effects of sheet resistance and wettability of catalyst layer on 900 electro-catalytic activities for oxygen evolution reaction in proton exchange membrane electrolysis 3.8 14 cells. International Journal of Hydrogen Energy, 2020, 45, 26595-26603. Ruâ€Doping Enhanced Electrocatalysis of Metal–Organic Framework Nanosheets toward Overall Water Splitting. Chemistry - A European Journal, 2020, 26, 17091-17096. NiCo2O4@Ni2P nanorods grown on nickel nanorod arrays as a bifunctional catalyst for efficient 902 2.5 20 overall water splitting. Materials Today Energy, 2020, 17, 100490. Effect of Vanadium Doping on the Catalytic Activity of MoO2 Thin Films in Hydrogen Evolution Reaction. Journal of Nanoscience and Nanotechnology, 2020, 20, 5533-5538. Promising functional two-dimensional lamellar metal thiophosphates: synthesis strategies, properties 904 6.4 26 and applications. Materials Horizons, 2020, 7, 3131-3160. Hybrid CoP2â€"Ptâ€"FTO nanoarchitecture for bifunctional electrocatalysts in H2 generation by water 905 1.9 splitting. Materials Today Sustainability, 2020, 9, 100045. Retention of anions in cobalt hydroxide with Ni substitution to emphasize the role of anions and 906 cations for high current density in oxygen evolution reactions. Dalton Transactions, 2020, 49, 7 1.6 16962-16969. Highly active and stable electrocatalytic transition metal phosphides (<scp> Ni ₂ P </scp>) Tj ETQq1 1 0.784314 rgBT /0 2.2 current density. International Journal of Energy Research, 2020, 44, 11894-11907. Full Bulkâ€Structure Reconstruction into Amorphorized Cobalt–Iron Oxyhydroxide Nanosheet 908 4.6 38 Electrocatalysts for Greatly Improved Electrocatalytic Activity. Small Methods, 2020, 4, 2000546. Reconstructionâ€Determined Alkaline Water Electrolysis at Industrial Temperatures. Advanced 909 11.1 Materials, 2020, 32, e2001136. The Construction of Hydrangea-like Vanadium-Doped Iron Nickel Phosphide as an Enhanced Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Energy Materials, 2020, 3, 910 2.5 12 9449-9458. Bifunctional water-electrolysis-catalysts meeting band-diagram analysis: case study of $\hat{a} \in \mathbb{C} \mathbb{P} \hat{a} \in \mathbb$ 5.2 Nickel doped MoS2 nanoparticles as precious-metal free bifunctional electrocatalysts for glucose 912 3.8 21 assisted electrolytic H2 generation. International Journal of Hydrogen Energy, 2020, 45, 32940-32948. Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall 194 water splitting. Journal of Materials Chemistry A, 2020, 8, 19196-19245. Colloidal synthetic methods of amorphous molybdenum phosphide nanoparticles for hydrogen 914 1.2 7 evolution reaction catalysts. Korean Journal of Chemical Engineering, 2020, 37, 1419-1426. Noble-metal-free catalyst with enhanced hydrogen evolution reaction activity based on granulated 5.8 Co-doped Ni-Mo phosphide nanorod arrays. Nano Research, 2020, 13, 3321-3329.

#	Article	IF	CITATIONS
916	Rapid and Controllable Synthesis of Nanocrystallized Nickel obalt Boride Electrode Materials via a Mircoimpinging Stream Reaction for High Performance Supercapacitors. Small, 2020, 16, e2003342.	5.2	39
917	Selective C ₃ -C ₄ Keto-Alcohol Production from Cellulose Hydrogenolysis over Ni-WO <i>_x</i> /C Catalysts. ACS Catalysis, 2020, 10, 10646-10660.	5.5	39
918	MOFâ€Mediated Fabrication of a Porous 3D Superstructure of Carbon Nanosheets Decorated with Ultrafine Cobalt Phosphide Nanoparticles for Efficient Electrocatalysis and Zinc–Air Batteries. Angewandte Chemie, 2020, 132, 21544-21550.	1.6	25
919	Transitionâ€Metal Phosphides: Activity Origin, Energyâ€Related Electrocatalysis Applications, and Synthetic Strategies. Advanced Functional Materials, 2020, 30, 2004009.	7.8	309
920	MOFâ€Mediated Fabrication of a Porous 3D Superstructure of Carbon Nanosheets Decorated with Ultrafine Cobalt Phosphide Nanoparticles for Efficient Electrocatalysis and Zinc–Air Batteries. Angewandte Chemie - International Edition, 2020, 59, 21360-21366.	7.2	188
921	Surface <i>in situ</i> self-reconstructing hierarchical structures derived from ferrous carbonate as efficient bifunctional iron-based catalysts for oxygen and hydrogen evolution reactions. Journal of Materials Chemistry A, 2020, 8, 18367-18375.	5.2	23
922	Significantly Improved Water Oxidation of CoP Catalysts by Electrochemical Activation. ACS Sustainable Chemistry and Engineering, 2020, 8, 17851-17859.	3.2	55
923	Hierarchical Microspheres Composed of Mn-Doped CoP Nanosheets for Enhanced Oxygen Evolution. ACS Applied Nano Materials, 2020, 3, 10702-10707.	2.4	16
924	Complete Reconstruction of Hydrate Pre-Catalysts for Ultrastable Water Electrolysis in Industrial-Concentration Alkali Media. Cell Reports Physical Science, 2020, 1, 100241.	2.8	117
925	Electrocatalytic activity sites for the oxygen evolution reaction on binary cobalt and nickel phosphides. RSC Advances, 2020, 10, 39909-39915.	1.7	18
926	Two-Dimensional Materials and Composites as Potential Water Splitting Photocatalysts: A Review. Catalysts, 2020, 10, 464.	1.6	30
927	Photoinduced Surface Activation of Semiconductor Photocatalysts under Reaction Conditions: A Commonly Overlooked Phenomenon in Photocatalysis. ACS Catalysis, 2020, 10, 5941-5948.	5.5	39
928	A facile synthesis of Ru/N–C as an efficient and cost-effective electrocatalyst for hydrogen evolution. New Journal of Chemistry, 2020, 44, 7962-7967.	1.4	4
929	Synergistic effect of metallic nickel and cobalt oxides with nitrogen-doped carbon nanospheres for highly efficient oxygen evolution. Chinese Journal of Catalysis, 2020, 41, 1782-1789.	6.9	44
930	Engineering of a highly stable metal-organic Co-film for efficient electrocatalytic water oxidation in acidic media. Materials Today Energy, 2020, 17, 100437.	2.5	9
931	Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels, 2020, 34, 6634-6695.	2.5	100
932	Electronic structure inspired a highly robust electrocatalyst for the oxygen-evolution reaction. Chemical Communications, 2020, 56, 8071-8074.	2.2	15
933	Improving catalysis for electrochemical water splitting using a phosphosulphide surface. Inorganic Chemistry Frontiers, 2020, 7, 2388-2395.	3.0	28

#	Article	IF	CITATIONS
934	Triggering water splitting to hydrogen and oxygen by phase chemistry in nanoscale nickel electrocatalysts. Journal of Alloys and Compounds, 2020, 843, 156011.	2.8	5
935	Recent Advances in Transition Metal Phosphide Electrocatalysts for Water Splitting under Neutral pH Conditions. ChemElectroChem, 2020, 7, 3578-3589.	1.7	63
936	Interface Catalysts of Ni/Co ₂ N for Hydrogen Electrochemistry. ACS Applied Materials & Interfaces, 2020, 12, 29357-29364.	4.0	8
937	Boosting the Oxygen Evolution Electrocatalysis Performance of Iron Phosphide via Architectural Design and Electronic Modulation. ACS Sustainable Chemistry and Engineering, 2020, 8, 9206-9216.	3.2	15
938	<i>In situ</i> semi-transformation from heterometallic MOFs to Fe–Ni LDH/MOF hierarchical architectures for boosted oxygen evolution reaction. Nanoscale, 2020, 12, 14514-14523.	2.8	94
939	CoP ₂ Nanoparticles Deposited on Nanometer-Thick Pt-Coated Fluorine-Doped Tin Oxide Substrates as Electrocatalysts for Simultaneous Hydrogen Evolution and Oxygen Evolution. ACS Applied Nano Materials, 2020, 3, 6507-6515.	2.4	12
940	Highly porous Ni–P electrode synthesized by an ultrafast electrodeposition process for efficient overall water electrolysis. Journal of Materials Chemistry A, 2020, 8, 12069-12079.	5.2	56
941	Graphene Quantum Dotsâ€Based Advanced Electrode Materials: Design, Synthesis and Their Applications in Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials, 2020, 10, 2001275.	10.2	109
942	First-Principles Mechanistic Insights into the Hydrogen Evolution Reaction on Ni2P Electrocatalyst in Alkaline Medium. Catalysts, 2020, 10, 307.	1.6	8
943	Self-Standing 3D Core–Shell Nanohybrids Based on Amorphous Co–Fe–B _i Nanosheets Grafted on NiCo ₂ O ₄ Nanowires for Efficient and Durable Water Oxidation. ACS Applied Energy Materials, 2020, 3, 4338-4347.	2.5	11
944	Self-assembled RuO2@IrOx core-shell nanocomposite as high efficient anode catalyst for PEM water electrolyzer. Applied Surface Science, 2020, 514, 145943.	3.1	37
945	Electrodepositing Ru on carbon cloth supported Co(OH)2 nanosheet array for active overall water electrolysis. Journal of the Taiwan Institute of Chemical Engineers, 2020, 109, 71-78.	2.7	15
946	Electrochemical Phase Evolution of Metalâ€Based Preâ€Catalysts for Highâ€Rate Polysulfide Conversion. Angewandte Chemie - International Edition, 2020, 59, 9011-9017.	7.2	164
947	Undoped SnO ₂ as a Support for Ni Species to Boost Oxygen Generation through Alkaline Water Electrolysis. ACS Applied Materials & Interfaces, 2020, 12, 18407-18420.	4.0	17
948	Molecularly Thin Nitride Sheets Stabilized by Titanium Carbide as Efficient Bifunctional Electrocatalysts for Fiber-Shaped Rechargeable Zinc-Air Batteries. Nano Letters, 2020, 20, 2892-2898.	4.5	68
949	Electrochemical Phase Evolution of Metalâ€Based Preâ€Catalysts for Highâ€Rate Polysulfide Conversion. Angewandte Chemie, 2020, 132, 9096-9102.	1.6	42
950	Intermetallic borides: structures, synthesis and applications in electrocatalysis. Inorganic Chemistry Frontiers, 2020, 7, 2248-2264.	3.0	94
951	Design and construction of bi-metal MOF-derived yolk–shell Ni ₂ P/ZnP ₂ hollow microspheres for efficient electrocatalytic oxygen evolution. Materials Chemistry Frontiers, 2020, 4, 1366-1374.	3.2	37

#	Article	IF	CITATIONS
952	Establishing Performance Baselines for the Oxygen Evolution Reaction in Alkaline Electrolytes. Journal of the Electrochemical Society, 2020, 167, 044503.	1.3	28
953	In-situ grafting of N-doped carbon nanotubes with Ni encapsulation onto MOF-derived hierarchical hybrids for efficient electrocatalytic hydrogen evolution. Carbon, 2020, 163, 178-185.	5.4	56
954	Encapsulating hollow (Co,Fe)P nanoframes into N,P-codoped graphene aerogel for highly efficient water splitting. Journal of Power Sources, 2020, 456, 228015.	4.0	40
955	2D Fe-doped NiO nanosheets with grain boundary defects for the advanced oxygen evolution reaction. Dalton Transactions, 2020, 49, 6355-6362.	1.6	32
956	Prussian blue analogue-derived porous bimetallic oxides Fe3O4–NiO/NF as urea oxidation electrocatalysis. Chemical Papers, 2020, 74, 4473-4480.	1.0	12
957	A High Faraday Efficiency NiMoO ₄ Nanosheet Array Catalyst by Adjusting the Hydrophilicity for Overall Water Splitting. Chemistry - A European Journal, 2020, 26, 12067-12074.	1.7	49
958	A Surfaceâ€Oxideâ€Rich Activation Layer (SOAL) on Ni ₂ Mo ₃ N for a Rapid and Durable Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 18036-18041.	7.2	77
959	Assembling Nickel Oxide Nanoparticles into Porous Polyhedra: Highly Active Electrocatalysts for Alkaline Water Oxidation. ChemistrySelect, 2020, 5, 7311-7314.	0.7	2
960	Phase selective synthesis of nickel silicide nanocrystals in molten salts for electrocatalysis of the oxygen evolution reaction. Nanoscale, 2020, 12, 15209-15213.	2.8	22
961	MOF-Derived Sulfide-Based Electrocatalyst and Scaffold for Boosted Hydrogen Production. ACS Applied Materials & Interfaces, 2020, 12, 33595-33602.	4.0	123
962	A Surfaceâ€Oxideâ€Rich Activation Layer (SOAL) on Ni 2 Mo 3 N for a Rapid and Durable Oxygen Evolution Reaction. Angewandte Chemie, 2020, 132, 18192-18197.	1.6	4
963	Integration of Cobalt Metal–Organic Frameworks into an Interpenetrated Prussian Blue Analogue to Derive Dual Metal–Organic Framework-Assisted Cobalt Iron Derivatives for Enhancing Electrochemical Total Water Splitting. Journal of Physical Chemistry C, 2020, 124, 14465-14476.	1.5	38
964	Multi-shelled cobalt–nickel oxide/phosphide hollow spheres for an efficient oxygen evolution reaction. Dalton Transactions, 2020, 49, 10918-10927.	1.6	6
965	Prepation of perovskite oxides/(CoFe)P2 heterointerfaces to improve oxygen evolution activity of La0.8Sr1.2Co0.2Fe0.8O4+l´ layered perovskite oxide. International Journal of Hydrogen Energy, 2020, 45, 22959-22964.	3.8	18
966	0.03 V Electrolysis Voltage Driven Hydrazine Assisted Hydrogen Generation on NiCo phosphide Nanowires Supported NiCoHydroxide Nanosheets. ChemElectroChem, 2020, 7, 3089-3097.	1.7	10
967	Spinel-type ternary multimetal hybrid oxides with porous hierarchical structure grown on Ni foam as large-current-density water oxidation electrocatalyst. Journal of Alloys and Compounds, 2020, 838, 155662.	2.8	13
968	Advanced Catalytic Materials for Ethanol Oxidation in Direct Ethanol Fuel Cells. Catalysts, 2020, 10, 166.	1.6	95
969	Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives. ACS Catalysis, 2020, 10, 4019-4047.	5.5	379

#	Article	IF	CITATIONS
970	In situ growth of 3D walnut-like nano-architecture Mo-Ni2P@NiFe LDH/NF arrays for synergistically enhanced overall water splitting. Journal of Energy Chemistry, 2020, 49, 189-197.	7.1	65
971	Insights into the Formation, Chemical Stability, and Activity of Transient Ni _{<i>y</i>} P@NiO <i>x</i> Corea€"Shell Heterostructures for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 2304-2309.	2.5	20
972	Crystal phase tuning and valence engineering in non-noble catalysts for outstanding overall water splitting. Journal of Materials Chemistry A, 2020, 8, 4524-4532.	5.2	13
973	Versatile Route To Fabricate Precious-Metal Phosphide Electrocatalyst for Acid-Stable Hydrogen Oxidation and Evolution Reactions. ACS Applied Materials & Interfaces, 2020, 12, 11737-11744.	4.0	37
974	Overall water-splitting reaction efficiently catalyzed by a novel bi-functional Ru/Ni ₃ N–Ni electrode. Chemical Communications, 2020, 56, 2352-2355.	2.2	71
975	CoNi-based metal–organic framework nanoarrays supported on carbon cloth as bifunctional electrocatalysts for efficient water-splitting. New Journal of Chemistry, 2020, 44, 1694-1698.	1.4	21
976	On the Electronic and Optical Properties of Metal–Organic Frameworks: Case Study of MIL-125 and MIL-125-NH ₂ . Journal of Physical Chemistry C, 2020, 124, 4065-4072.	1.5	50
977	Developing Indium-based Ternary Spinel Selenides for Efficient Solid Flexible Zn-Air Batteries and Water Splitting. ACS Applied Materials & amp; Interfaces, 2020, 12, 8115-8123.	4.0	38
978	Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Research, 2020, 13, 447-454.	5.8	77
979	Facile preparation of self-assembled Ni/Co phosphates composite spheres with highly efficient HER electrocatalytic performances. Applied Surface Science, 2020, 509, 145383.	3.1	65
980	In Situ Growth of Ru Nanoparticles on (Fe,Ni)(OH) ₂ to Boost Hydrogen Evolution Activity at High Current Density in Alkaline Media. Small Methods, 2020, 4, 1900796.	4.6	82
981	Tuning the oxygen evolution electrocatalysis on NiFe-layered double hydroxides via sulfur doping. Chinese Journal of Catalysis, 2020, 41, 847-852.	6.9	53
982	Synthesis of transparent Zr-doped ZnFe2O4 nanocorals photoanode and its surface modification via Al2O3/Co–Pi for efficient solar water splitting. Applied Surface Science, 2020, 513, 145528.	3.1	29
983	Construction of an iron and oxygen co-doped nickel phosphide based on MOF derivatives for highly efficient and long-enduring water splitting. Journal of Materials Chemistry A, 2020, 8, 4570-4578.	5.2	86
984	Open-mouth N-doped carbon nanoboxes embedded with mixed metal phosphide nanoparticles as high-efficiency catalysts for electrolytic water splitting. Nanoscale, 2020, 12, 5848-5856.	2.8	32
985	Ultrathin Ni(0)â€Embedded Ni(OH) ₂ Heterostructured Nanosheets with Enhanced Electrochemical Overall Water Splitting. Advanced Materials, 2020, 32, e1906915.	11.1	259
986	Highâ€Valence Nickel Singleâ€Atom Catalysts Coordinated to Oxygen Sites for Extraordinarily Activating Oxygen Evolution Reaction. Advanced Science, 2020, 7, 1903089.	5.6	182
987	Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent Advances and Future Perspectives. Nano-Micro Letters, 2020, 12, 21.	14.4	159

#	Article	IF	CITATIONS
988	Electronic modulation of nickel phosphide by iron doping and its assembly on a graphene framework for efficient electrocatalytic water oxidation. Journal of Alloys and Compounds, 2020, 824, 153913.	2.8	15
989	Unraveling the electrocatalytically active sites and stability of Co & Co oxides on nanocarbon for oxygen evolution reaction in acid solution. Journal of Energy Chemistry, 2020, 49, 8-13.	7.1	16
990	Phosphorus vacancies enriched Ni2P nanosheets as efficient electrocatalyst for high-performance Li–O2 batteries. Electrochimica Acta, 2020, 337, 135795.	2.6	39
991	Ruthenium doped Ni2P nanosheet arrays for active hydrogen evolution in neutral and alkaline water. Sustainable Energy and Fuels, 2020, 4, 1883-1890.	2.5	11
992	Strategies for Semiconductor/Electrocatalyst Coupling toward Solarâ€Driven Water Splitting. Advanced Science, 2020, 7, 1902102.	5.6	110
993	Facile synthesis of cobalt phosphide nanoparticles as highly active electrocatalysts for hydrogen evolution reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600, 124925.	2.3	13
994	Ti-Mesh supported porous CoS ₂ nanosheet self-interconnected networks with high oxidation states for efficient hydrogen production <i>via</i> urea electrolysis. Nanoscale, 2020, 12, 11573-11581.	2.8	47
995	Ultrafine-Grained Porous Ir-Based Catalysts for High-Performance Overall Water Splitting in Acidic Media. ACS Applied Energy Materials, 2020, 3, 3736-3744.	2.5	26
996	Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting. Nanoscale, 2020, 12, 9327-9351.	2.8	88
997	NiSe ₂ -anchored N, S-doped graphene/Ni foam as a free-standing bifunctional electrocatalyst for efficient water splitting. Nanoscale, 2020, 12, 9866-9872.	2.8	37
998	Self‣upported 3 D Ultrathin Cobalt–Nickel–Boron Nanoflakes as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemSusChem, 2020, 13, 3662-3670.	3.6	25
999	Recent advances of nonprecious and bifunctional electrocatalysts for overall water splitting. Sustainable Energy and Fuels, 2020, 4, 3211-3228.	2.5	63
1000	Ni3Fe nanoparticles enclosed by B-doped carbon for efficient bifunctional performances of oxygen and hydrogen evolution reactions. Journal of Alloys and Compounds, 2020, 835, 155267.	2.8	46
1001	Sandwich‧tructured Feâ€Ni ₂ P/MoS <i>_x</i> /NF Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Materials Interfaces, 2020, 7, 1901926.	1.9	27
1002	Recent Progress in Electrocatalysts for Acidic Water Oxidation. Advanced Energy Materials, 2020, 10, 2000478.	10.2	162
1003	Self-Epitaxial Hetero-Nanolayers and Surface Atom Reconstruction in Electrocatalytic Nickel Phosphides. ACS Applied Materials & amp; Interfaces, 2020, 12, 21616-21622.	4.0	9
1004	Dynamic electrocatalyst with current-driven oxyhydroxide shell for rechargeable zinc-air battery. Nature Communications, 2020, 11, 1952.	5.8	185
1005	Uniform Loading of Nickel Phosphide Nanoparticles in Hierarchical Carbonized Wood Channel for Efficient Electrocatalytic Hydrogen Evolution. Journal of Chemistry, 2020, 2020, 1-6.	0.9	3

ARTICLE IF CITATIONS Catalytic activity and underlying atomic rearrangement in monolayer CoOOH towards HER and OER. 1006 3.8 30 International Journal of Hydrogen Energy, 2020, 45, 23900-23907. Hierarchically devising NiFeO H catalyst with surface Fe active sites for efficient oxygen evolution 2.2 reaction. Catalysis Today, 2021, 364, 140-147. A Glass eramic with Accelerated Surface Reconstruction toward the Efficient Oxygen Evolution 1008 7.2 164 Reaction. Angewandte Chemie - International Edition, 2021, 60, 3773-3780. NiFe hydroxide pillared by metaborate for efficient oxygen evolution reaction. Electrochimica Acta, 2021, 366, 137427. Insights into efficient transition metal-nitrogen/carbon oxygen reduction electrocatalysts. Journal 1010 7.1 56 of Energy Chemistry, 2021, 56, 470-485. Plasma enhanced atomic-layer-deposited nickel oxide on Co3O4 arrays as highly active electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 2021, 481, 228925. 4.0 Hollow cobalt-nickel phosphide nanocages for efficient electrochemical overall water splitting. 1012 3.5 33 Science China Materials, 2021, 64, 861-869. Laser patterned and bifunctional Ni@N-doped carbon nanotubes as electrocatalyst and photothermal conversion layer for water splitting driven by thermoelectric device. Applied Catalysis B: 10.8 39 Environmental, 2021, 283, 119647 Construction of Mo2C/W2C heterogeneous electrocatalyst for efficient hydrogen evolution 1014 3.8 11 reaction. International Journal of Hydrogen Energy, 2021, 46, 9699-9706. Bimetallic chalcogenide nanocrystallites as efficient electrocatalyst for overall water splitting. 2.8 Journal of Alloys and Compounds, 2021, 852, 156736. Preparation of Ni(Zn)Cr-LDH/LDO coated magnetic-graphene composites using simulative 1016 electroplating wastewaters for oxygen evolution reaction. Colloids and Surfaces A: Physicochemical 2.3 6 and Engineering Aspects, 2021, 611, 125839. The effect of P vacancies on the activity of cobalt phosphide nanorods as oxygen evolution 10.8 115 electrocatalyst in alkali. Applied Catalysis B: Environmental, 2021, 284, 119693. Recent progress on synthetic strategies and applications of transition metal phosphides in energy 1018 2.3 131 storage and conversion. Ceramics International, 2021, 47, 4404-4425. Nanocarbon-based metal-free and non-precious metal bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. Journal of Energy Chemistry, 2021, 58, 610-628. 1019 7.1 Novel three-dimensional Ni2P-MoS2 heteronanosheet arrays for highly efficient electrochemical 1020 2.8 15 overall water splitting. Journal of Alloys and Compounds, 2021, 856, 158094. Recent Advances in Electrocatalysis of Oxygen Evolution Reaction using Nobleâ€Metal, Transitionâ€Metal, 68 and Carbonâ€Based Materials. ĆhemElectroChem, 2021, 8, 447-483. Recent development on metal phthalocyanines based materials for energy conversion and storage 1022 9.5 69 applications. Coordination Chemistry Reviews, 2021, 431, 213678. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for 5.6 overall water splitting. Journal of Materials Science and Technology, 2021, 77, 108-116.

#	Article	IF	CITATIONS
1024	PBA derived FeCoP nanoparticles decorated on NCNFs as efficient electrocatalyst for water splitting. International Journal of Hydrogen Energy, 2021, 46, 2225-2235.	3.8	36
1025	Solvothermal preparation of nickel-iron phosphides hollow nanospheres derived from metal-organic frameworks for water oxidation reaction. Applied Surface Science, 2021, 540, 148336.	3.1	17
1026	Porous and wrinkle treatment of commercial Ni foam and its application for high-efficiency oxygen evolution reaction electrode. International Journal of Hydrogen Energy, 2021, 46, 4890-4902.	3.8	3
1027	Facile synthesis and electrochemical performances of three dimensional Ni3S2 as bifunctional electrode for overall water splitting. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 263, 114875.	1.7	8
1028	NiCoP nanorod arrays as high-performance bifunctional electrocatalyst for overall water splitting at high current densities. Journal of Power Sources, 2021, 484, 229269.	4.0	71
1029	Fe-doped NiCoP/Prussian blue analog hollow nanocubes as an efficient electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2021, 367, 137492.	2.6	56
1030	Photocatalytic Oxygen Evolution from Water Splitting. Advanced Science, 2021, 8, 2002458.	5.6	98
1032	Origin of the electrocatalytic oxygen evolution activity of nickel phosphides: in-situ electrochemical oxidation and Cr doping to achieve high performance. Science Bulletin, 2021, 66, 708-719.	4.3	55
1033	Self-supported Ni3Se2@NiFe layered double hydroxide bifunctional electrocatalyst for overall water splitting. Journal of Colloid and Interface Science, 2021, 587, 79-89.	5.0	89
1034	Nanocatalyst Design for Longâ€Term Operation of Proton/Anion Exchange Membrane Water Electrolysis. Advanced Energy Materials, 2021, 11, 2003188.	10.2	89
1035	A Glassâ€Ceramic with Accelerated Surface Reconstruction toward the Efficient Oxygen Evolution Reaction. Angewandte Chemie, 2021, 133, 3817-3824.	1.6	28
1036	Co–Mo–P carbon nanospheres derived from metal–organic frameworks as a high-performance electrocatalyst towards efficient water splitting. Journal of Materials Chemistry A, 2021, 9, 1143-1149.	5.2	36
1037	Substitutionally Dispersed Highâ€Oxidation CoO <i>_x</i> Clusters in the Lattice of Rutile TiO ₂ Triggering Efficient CoTi Cooperative Catalytic Centers for Oxygen Evolution Reactions. Advanced Functional Materials, 2021, 31, 2009610.	7.8	82
1038	Controllable synthesis of one-dimensional NiS2 nanotube and nanorod arrays on nickel foams for efficient electrocatalytic water splitting. International Journal of Hydrogen Energy, 2021, 46, 50-60.	3.8	9
1039	Iron-doped cobalt nitride nanoparticles (Fe–Co3N): An efficient electrocatalyst for water oxidation. International Journal of Hydrogen Energy, 2021, 46, 2086-2094.	3.8	21
1040	Colloidal Ni ₂ P Nanocrystals Encapsulated in Heteroatom-Doped Graphene Nanosheets: A Synergy of 0D@2D Heterostructure Toward Overall Water Splitting. Chemistry of Materials, 2021, 33, 234-245.	3.2	57
1041	In-situ phase transition induced nanoheterostructure for overall water splitting. Chemical Engineering Journal, 2021, 409, 128156.	6.6	19
1042	Carbon supported nickel phosphide as efficient electrocatalyst for hydrogen and oxygen evolution reactions. International Journal of Hydrogen Energy, 2021, 46, 622-632.	3.8	39

#	Article	IF	Citations
1043	Engineering nanointerface of molybdenum-based heterostructures to boost the electrocatalytic hydrogen evolution reaction. Journal of Energy Chemistry, 2021, 58, 370-376.	7.1	18
1044	Vanadium doped cobalt phosphide nanorods array as a bifunctional electrode catalyst for efficient and stable overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 599-608.	3.8	25
1045	Strategies to Develop Earthâ€Abundant Heterogeneous Oxygen Evolution Reaction Catalysts for pHâ€Neutral or pHâ€Nearâ€Neutral Electrolytes. Small Methods, 2021, 5, e2000719.	4.6	31
1046	Phase-dependent electrocatalytic activity of colloidally synthesized WP and α-WP ₂ electrocatalysts for hydrogen evolution reaction. New Journal of Chemistry, 2021, 45, 15594-15606.	1.4	10
1048	Constructing NiSe ₂ @MoS ₂ nano-heterostructures on a carbon fiber paper for electrocatalytic oxygen evolution. RSC Advances, 2021, 11, 26928-26936.	1.7	9
1049	Self-Supported Phosphorus-Doped Vertically Aligned Graphene Arrays Integrated with FeCoNiP Nanoparticles as Bifunctional Electrocatalysts for Water-Splitting Over a Wide pH Range. Electronic Materials Letters, 2021, 17, 87-101.	1.0	17
1050	Metal–organic framework (MOF) derived flower-shaped CoSe ₂ nanoplates as a superior bifunctional electrocatalyst for both oxygen and hydrogen evolution reactions. Sustainable Energy and Fuels, 2021, 5, 4992-5000.	2.5	22
1051	Nitrogen-Doped Mixed-Phase Cobalt Nanocatalyst Derived from a Trinuclear Mixed-Valence Cobalt(III)/Cobalt(II) Complex for High-Performance Oxygen Evolution Reaction. Inorganic Chemistry, 2021, 60, 2333-2346.	1.9	9
1052	Electrochemical oxidation of boron-doped nickel–iron layered double hydroxide for facile charge transfer in oxygen evolution electrocatalysts. RSC Advances, 2021, 11, 8198-8206.	1.7	10
1053	Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis. Chemical Society Reviews, 2021, 50, 7539-7586.	18.7	177
1054	Electrochemical behavior of a Ni ₃ N OER precatalyst in Fe-purified alkaline media: the impact of self-oxidation and Fe incorporation. Materials Advances, 2021, 2, 2299-2309.	2.6	28
1055	Facile synthesis of bimetallic-based CoMoO ₄ /MoO ₂ /CoP oxidized/phosphide nanorod arrays electroplated with FeOOH for efficient overall seawater splitting. CrystEngComm, 2021, 23, 6778-6791.	1.3	4
1056	Ni(<scp>ii</scp>) dithiolate anion composites with two-dimensional materials for electrochemical oxygen evolution reactions (OERs). New Journal of Chemistry, 2021, 45, 16264-16270.	1.4	7
1057	Surface reconstruction induced <i>in situ</i> phosphorus doping in nickel oxides for an enhanced oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 6432-6441.	5.2	38
1058	Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chemical Society Reviews, 2021, 50, 8428-8469.	18.7	452
1059	Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chemical Society Reviews, 2021, 50, 7745-7778.	18.7	385
1060	2D-structured V-doped Ni(Co,Fe) phosphides with enhanced charge transfer and reactive sites for highly efficient overall water splitting electrocatalysts. Journal of Materials Chemistry A, 2021, 9, 12203-12213.	5.2	45
1061	A bifunctional hexa-filamentous microfibril multimetallic foam: an unconventional high-performance electrode for total water splitting under industrial operation conditions. Journal of Materials Chemistry A, 2021, 9, 4971-4983.	5.2	20

#	Article	IF	CITATIONS
1062	<i>In situ</i> transformation of Fe-doped Ni ₁₂ P ₅ into low-crystallized NiFe ₂ O ₄ with high-spin Fe ⁴⁺ for efficient electrocatalytic water oxidation. Journal of Materials Chemistry A, 2021, 9, 10289-10296.	5.2	10
1063	Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions. Green Chemistry, 2021, 23, 4228-4254.	4.6	191
1064	Enhanced oxygen evolution catalytic activity of NiS ₂ by coupling with ferrous phosphite and phosphide. Sustainable Energy and Fuels, 2021, 5, 1801-1808.	2.5	7
1065	Earthâ€Abundant Amorphous Electrocatalysts for Electrochemical Hydrogen Production: A Review. Advanced Energy and Sustainability Research, 2021, 2, 2000071.	2.8	30
1066	Constructing urchin-like Ni ₃ S ₂ @Ni ₃ B on Ni plate as a highly efficient bifunctional electrocatalyst for water splitting reaction. Nanoscale, 2021, 13, 17953-17960.	2.8	6
1067	Understanding the Structural Evolution of a Nickel Chalcogenide Electrocatalyst Surface for Water Oxidation. Energy & amp; Fuels, 2021, 35, 4387-4403.	2.5	33
1068	One-step synthesis of carbon-encapsulated nickel phosphide nanoparticles with efficient bifunctional catalysis on oxygen evolution and reduction. International Journal of Hydrogen Energy, 2021, 46, 8519-8530.	3.8	21
1070	Carbon-supported layered double hydroxide nanodots for efficient oxygen evolution: Active site identification and activity enhancement. Nano Research, 2021, 14, 3329-3336.	5.8	14
1071	Hollow FeCo-FeCoP@C nanocubes embedded in nitrogen-doped carbon nanocages for efficient overall water splitting. Journal of Energy Chemistry, 2021, 53, 1-8.	7.1	37
1072	Oxygen Evolution Catalysts at Transition Metal Oxide Photoanodes: Their Differing Roles for Solar Water Splitting. Advanced Energy Materials, 2021, 11, 2003111.	10.2	51
1073	Super-Hydrophilic Hierarchical Ni-Foam-Graphene-Carbon Nanotubes-Ni ₂ P–CuP ₂ Nano-Architecture as Efficient Electrocatalyst for Overall Water Splitting. ACS Nano, 2021, 15, 5586-5599.	7.3	216
1074	Tuning Overall Water Splitting on an Electrodeposited NiCoFeP Films. ChemElectroChem, 2021, 8, 539-546.	1.7	14
1075	Effects of Annealing Temperature on the Oxygen Evolution Reaction Activity of Copper–Cobalt Oxide Nanosheets. Nanomaterials, 2021, 11, 657.	1.9	13
1076	Recent development on self-supported transition metal-based catalysts for water electrolysis at large current density. Applied Materials Today, 2021, 22, 100913.	2.3	42
1077	Impact of Surface Hydrophilicity on Electrochemical Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 11940-11947.	4.0	65
1078	Crystalline-amorphous Ni3P@Nix(POy)z core–shell heterostructures as corrosion-resistant and high-efficiency microwave absorbents. Applied Surface Science, 2021, 542, 148608.	3.1	13
1079	Noble metal-free electrocatalytic materials for water splitting in alkaline electrolyte. EnergyChem, 2021, 3, 100053.	10.1	68
1080	Facile modified polyol synthesis of FeCo nanoparticles with oxyhydroxide surface layer as efficient oxygen evolution reaction electrocatalysts. International Journal of Hydrogen Energy, 2021, 46, 15398-15409.	3.8	16

#	Article	IF	CITATIONS
1081	A CoNâ€based OER Electrocatalyst Capable in Neutral Medium: Atomic Layer Deposition as Rational Strategy for Fabrication. Advanced Functional Materials, 2021, 31, 2101324.	7.8	46
1082	Self-templating construction of hollow Fe-CoxP nanospheres for oxygen evolution reaction. Chemical Engineering Journal, 2021, 409, 128227.	6.6	39
1083	Porous Structure Engineering of Iridium Oxide Nanoclusters on Atomic Scale for Efficient pHâ€Universal Overall Water Splitting. Small, 2021, 17, e2100121.	5.2	40
1084	One-Pot Synthesis of B/P-Codoped Co-Mo Dual-Nanowafer Electrocatalysts for Overall Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 20024-20033.	4.0	52
1085	Isolating the Electrocatalytic Activity of a Confined NiFe Motif within Zirconium Phosphate. Advanced Energy Materials, 2021, 11, 2003545.	10.2	21
1086	In situ growth of ZIF67 at the edge of nanosheet transformed into yolk-shell CoSe2 for high efficiency urea electrolysis. Journal of Power Sources, 2021, 491, 229592.	4.0	33
1087	Efficient suppression of surface charge recombination by CoP-Modified nanoporous BiVO4 for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2021, 46, 15517-15525.	3.8	27
1088	Spinel type Fe3O4 polyhedron supported on nickel foam as an electrocatalyst for water oxidation reaction. Journal of Alloys and Compounds, 2021, 863, 158742.	2.8	17
1089	Unveiling the role of surface P–O group in P-doped Co3O4 for electrocatalytic oxygen evolution by On-chip micro-device. Nano Energy, 2021, 83, 105748.	8.2	46
1090	NiCoFeP Nanofibers as an Efficient Electrocatalyst for Oxygen Evolution Reaction and Zinc–Air Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2000104.	2.8	18
1091	Induction of Co ₂ P Growth on a MXene (Ti ₃ C ₂ T _{<i>x</i>})-Modified Self-Supporting Electrode for Efficient Overall Water Splitting. Journal of Physical Chemistry Letters, 2021, 12, 4841-4848.	2.1	47
1092	Comprehensive Understandings into Complete Reconstruction of Precatalysts: Synthesis, Applications, and Characterizations. Advanced Materials, 2021, 33, e2007344.	11.1	198
1093	Electrochemical Construction of Low-Crystalline CoOOH Nanosheets with Short-Range Ordered Grains to Improve Oxygen Evolution Activity. ACS Catalysis, 2021, 11, 6104-6112.	5.5	103
1094	CoP-anchored high N-doped carbon@graphene sheet as bifunctional electrocatalyst for efficient overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 18224-18232.	3.8	18
1095	Self-supported three-dimensional macroporous amorphous NiFe bimetallic-organic frameworks for enhanced water oxidation. Applied Surface Science, 2021, 550, 149323.	3.1	34
1096	Top-down preparation of Ni–Pd–P@graphitic carbon core-shell nanostructure as a non-Pt catalyst for enhanced electrocatalytic reactions. International Journal of Hydrogen Energy, 2021, 46, 22499-22507.	3.8	6
1097	Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Advanced Materials, 2021, 33, e2007100.	11.1	781
1098	Design Engineering, Synthesis Protocols, and Energy Applications of MOF-Derived Electrocatalysts. Nano-Micro Letters, 2021, 13, 132.	14.4	134

#	Article	IF	CITATIONS
1099	Selective Electrocatalytic Reduction of Nitrate to Ammonia with Nickel Phosphide. ACS Applied Materials & Material	4.0	62
1100	Structure-regulated Ru particles decorated P-vacancy-rich CoP as a highly active and durable catalyst for NaBH4 hydrolysis. Journal of Colloid and Interface Science, 2021, 591, 221-228.	5.0	50
1101	Elemental Engineering of High-Charge-Density Boron in Nickel as Multifunctional Electrocatalysts for Hydrogen Oxidation and Water Splitting. ACS Applied Energy Materials, 2021, 4, 5434-5442.	2.5	23
1102	Reâ€Looking into the Active Moieties of Metal Xâ€ides (X― = Phosphâ€; Sulfâ€; Nitrâ€; and Carbâ€) Tov Oxygen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2102918.	vard 7.8	68
1103	Defect-Rich Fe-Doped CoP Nanosheets as Efficient Oxygen Evolution Electrocatalysts. Energy & Fuels, 2021, 35, 10890-10897.	2.5	17
1104	Fe(II) Redox Chemistry in the Environment. Chemical Reviews, 2021, 121, 8161-8233.	23.0	242
1105	Dualâ€Ðoping and Synergism toward Highâ€Performance Seawater Electrolysis. Advanced Materials, 2021, 33, e2101425.	11.1	161
1106	MOF-derived cobalt phosphide as highly efficient electrocatalysts for hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2021, 892, 115300.	1.9	25
1107	Selfâ€Supporting Electrodes for Gasâ€Involved Key Energy Reactions. Advanced Functional Materials, 2021, 31, 2104620.	7.8	39
1108	Advances in Understanding the Electrocatalytic Reconstruction Chemistry of Coordination Compounds. Small, 2021, 17, e2100629.	5.2	10
1109	Electronic Coupling of Single Atom and FePS ₃ Boosts Water Electrolysis. Energy and Environmental Materials, 2022, 5, 899-905.	7.3	16
1110	Boosting the activity of FeOOH via integration of ZIF-12 and graphene to efficiently catalyze the oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 25050-25059.	3.8	7
1111	Surface Chemistry of Metal Phosphide Nanocrystals. Annual Review of Materials Research, 2021, 51, 541-564.	4.3	10
1112	Activity Origin and Catalyst Design Principles for Electrocatalytic Oxygen Evolution on Layered Transition Metal Oxide with Halogen Doping. Small Structures, 2021, 2, 2100069.	6.9	30
1113	Progress and challenges pertaining to the earthly-abundant electrocatalytic materials for oxygen evolution reaction. Sustainable Materials and Technologies, 2021, 28, e00252.	1.7	12
1114	Highly Active and Durable FeNiCo Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts Derived from Fluoride Precursors. ACS Sustainable Chemistry and Engineering, 2021, 9, 9465-9473.	3.2	16
1115	Crystal and electronic facet analysis of ultrafine Ni2P particles by solid-state NMR nanocrystallography. Nature Communications, 2021, 12, 4334.	5.8	17
1116	A Highlyâ€Efficient Oxygen Evolution Electrocatalyst Derived from a Metalâ€Organic Framework and Ketjenblack Carbon Material. ChemPlusChem, 2021, 86, 1106-1115.	1.3	10

#	Article	IF	CITATIONS
1117	Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule, 2021, 5, 1704-1731.	11.7	416
1118	Ammonia Etching to Generate Oxygen Vacancies on CuMn ₂ O ₄ for Highly Efficient Electrocatalytic Oxidation of 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2021, 9, 11790-11797.	3.2	26
1119	High surface area NiCoP nanostructure as efficient water splitting electrocatalyst for the oxygen evolution reaction. Materials Research Bulletin, 2021, 140, 111312.	2.7	16
1120	Type-II GeC/ZnTe heterostructure with high-efficiency of photoelectrochemical water splitting. Applied Physics Letters, 2021, 119, .	1.5	17
1121	Prussian blue analogs derived Fe-Ni-P@nitrogen-doped carbon composites as sulfur host for high-performance lithium-sulfur batteries. Journal of Colloid and Interface Science, 2021, 595, 51-58.	5.0	38
1122	Heterogeneous Fe-Ni-P nanosheet arrays as a potential anode for sodium ion batteries. Journal of Electroanalytical Chemistry, 2021, 895, 115420.	1.9	10
1123	Direct Observation of Oxygen Evolution and Surface Restructuring on Mn ₂ O ₃ Nanocatalysts Using <i>In Situ</i> and <i>Ex Situ</i> Transmission Electron Microscopy. Nano Letters, 2021, 21, 7012-7020.	4.5	19
1124	Direct epitaxial growth of nickel phosphide nanosheets on nickel foam as self-support electrode for efficient non-enzymatic glucose sensing. Nanotechnology, 2021, 32, 435501.	1.3	8
1125	Amorphous nanomaterials in electrocatalytic water splitting. Chinese Journal of Catalysis, 2021, 42, 1287-1296.	6.9	92
1126	Coral-Like Ni2P-Ni5P4 Polymorphs as Noble Metal-Free Catalysts for Efficient Water Splitting. ECS Journal of Solid State Science and Technology, 2021, 10, 085004.	0.9	1
1127	Metamorphosis of Heterostructured Surfaceâ€Mounted Metal–Organic Frameworks Yielding Record Oxygen Evolution Mass Activities. Advanced Materials, 2021, 33, e2103218.	11.1	43
1128	Electrodeposited amorphous cobalt-nickel-phosphide-derived films as catalysts for electrochemical overall water splitting. Chemical Engineering Journal, 2021, 420, 129686.	6.6	59
1129	Self‣upported Electrocatalysts for Practical Water Electrolysis. Advanced Energy Materials, 2021, 11, 2102074.	10.2	161
1130	Co3O4–C@FeMoP on nickel foam as bifunctional electrocatalytic electrode for high-performance alkaline water splitting. International Journal of Hydrogen Energy, 2021, 46, 32846-32857.	3.8	14
1131	Recent development in electrocatalysts for hydrogen production through water electrolysis. International Journal of Hydrogen Energy, 2021, 46, 32284-32317.	3.8	236
1132	Facile oneâ€ s tep synthesis of Ru doped NiCoP nanoparticles as highly efficient electrocatalysts for oxygen evolution reaction. Chemistry - an Asian Journal, 2021, 16, 3630-3635.	1.7	5
1133	Ultrarapid synthesis Ni-Cu bifunctional electrocatalyst by self-etching electrodeposition for high-performance water splitting reaction. Applied Surface Science, 2021, 561, 150030.	3.1	23
1134	Electrodeposited of ultrathin VOx-doped NiFe layer on porous NiCo phosphide for efficient overall water splitting. Applied Physics Letters, 2021, 119, .	1.5	6

#	Article	IF	CITATIONS
1135	Electrocatalysts for the oxygen evolution reaction in alkaline and neutral media. A comparative review. Journal of Power Sources, 2021, 507, 230072.	4.0	93
1136	General and scalable preparation of Prussian blue analogues on arbitrary conductive substrates and their derived metal phosphides as highly efficient and ultra-long-life bifunctional electrocatalysts for overall water splitting. Chemical Engineering Journal, 2021, 420, 129972.	6.6	17
1137	Fe2P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting. Journal of Materials Science and Technology, 2022, 105, 266-273.	5.6	29
1138	Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews, 2021, 121, 13174-13212.	23.0	262
1139	Tuning hydrogen binding energy by interfacial charge transfer enables pH-universal hydrogen evolution catalysis of metal phosphides. Chemical Engineering Journal, 2022, 430, 132699.	6.6	16
1140	Non-precious electrocatalysts for oxygen evolution reaction in anion exchange membrane water electrolysis: A mini review. Electrochemistry Communications, 2021, 131, 107118.	2.3	46
1141	Interfacial electron rearrangement: Ni activated Ni(OH)2 for efficient hydrogen evolution. Journal of Energy Chemistry, 2021, 61, 236-242.	7.1	47
1142	Au-Ru alloy nanofibers as a highly stable and active bifunctional electrocatalyst for acidic water splitting. Applied Surface Science, 2021, 563, 150293.	3.1	25
1143	Micro-indented-mechanically-engineered Ni-Fe-Mo-Cu alloying electrocatalyst for oxygen evolution reaction: A cost-effective approach for green hydrogen production. Electrochimica Acta, 2021, 400, 139345.	2.6	5
1144	Corrosion of monometallic iron- and nickel-based electrocatalysts for the alkaline oxygen evolution reaction: A review. Journal of Power Sources, 2021, 510, 230387.	4.0	21
1145	A self-supporting bifunctional catalyst electrode made of amorphous and porous CoP3 nanoneedle array: exhaling during overall water splitting. Electrochimica Acta, 2021, 393, 138986.	2.6	7
1146	CoFeP hierarchical nanoarrays supported on nitrogen-doped carbon nanofiber as efficient electrocatalyst for water splitting. Journal of Colloid and Interface Science, 2021, 602, 619-626.	5.0	52
1147	Self-template synthesis of hollow Fe-doped CoP prisms with enhanced oxygen evolution reaction activity. Journal of Energy Chemistry, 2021, 62, 415-422.	7.1	60
1148	High-efficient and durable overall water splitting performance by interfacial engineering of Fe-doped urchin-like Ni2P/Ni3S2 heterostructure. Chemical Engineering Journal, 2021, 424, 130434.	6.6	49
1149	Rational construction of Au@Co2N0.67 nanodots-interspersed 3D interconnected N-graphene hollow sphere network for efficient water splitting and Zn-air battery. Nano Energy, 2021, 89, 106420.	8.2	26
1150	Electrosynthesized Ni-P nanospheres with high activity and selectivity towards photoelectrochemical plastics reforming. Applied Catalysis B: Environmental, 2021, 296, 120351.	10.8	41
1151	P, N-codoped carbon nanofibers confined ultra-small bimetallic NiCoP for highly efficient overall water splitting. Applied Surface Science, 2021, 570, 151247.	3.1	13
1152	Mechanistic insights into the promotional effect of Ni substitution in non-noble metal carbides for highly enhanced water splitting. Applied Catalysis B: Environmental, 2021, 298, 120560.	10.8	41

#	Article	IF	CITATIONS
1153	Co-doped Ni3S2 porous nanocones as high-performance bifunctional electrocatalysts in water splitting. Chemical Engineering Journal, 2021, 425, 130455.	6.6	42
1154	A novel cubic Ni2P/FeP electrocatalyst with cruciform surfaces for hydrogen evolution reaction. Materials Today Communications, 2021, 29, 102731.	0.9	1
1155	Gram-Scale production of Cu3P-Cu2O Janus nanoparticles into nitrogen and phosphorous doped porous carbon framework as bifunctional electrocatalysts for overall water splitting. Chemical Engineering Journal, 2022, 427, 130946.	6.6	88
1156	Fe and Co dual-doped Ni3S4 nanosheet with enriched high-valence Ni sites for efficient oxygen evolution reaction. Chemical Engineering Journal, 2022, 427, 130742.	6.6	59
1157	Oxygen evolution reaction (OER) at nanostructured metal oxide electrocatalysts in water electrolyzers. , 2021, , 61-81.		2
1158	Construction of a self-supporting Ni ₂ P–WO ₃ heterostructure for highly efficient hydrogen evolution under both caustic and acidic conditions. Sustainable Energy and Fuels, 2021, 5, 2884-2892.	2.5	6
1159	Cobalt pyrophosphate (Co ₂ P ₂ O ₇) derived from an open-framework cobalt phosphite: a durable electroactive material for electrochemical energy conversion and storage application. Sustainable Energy and Fuels, 2021, 5, 3729-3736.	2.5	12
1160	Selfâ€Anti‧tacking 2D Metal Phosphide Loop‧heet Heterostructures by Edgeâ€Topological Regulation for Highly Efficient Water Oxidation. Small, 2021, 17, e2006860.	5.2	16
1161	Ni ₂ P nanoflakes for the high-performing urea oxidation reaction: linking active sites to a UOR mechanism. Nanoscale, 2021, 13, 1759-1769.	2.8	106
1162	Constructing Atomic Heterometallic Sites in Ultrathin Nickel-Incorporated Cobalt Phosphide Nanosheets via a Boron-Assisted Strategy for Highly Efficient Water Splitting. Nano Letters, 2021, 21, 823-832.	4.5	91
1163	Electrochemical integration of amorphous NiFe (oxy)hydroxides on surface-activated carbon fibers for high-efficiency oxygen evolution in alkaline anion exchange membrane water electrolysis. Journal of Materials Chemistry A, 2021, 9, 14043-14051.	5.2	127
1164	Integrating a metal framework with Co-confined carbon nanotubes as trifunctional electrocatalysts to boost electron and mass transfer approaching practical applications. Nanoscale, 2021, 13, 12651-12658.	2.8	2
1165	An over 20% solar-to-hydrogen efficiency system comprising a self-reconstructed NiCoFe-based hydroxide nanosheet electrocatalyst and monolithic perovskite/silicon tandem solar cell. Journal of Materials Chemistry A, 2021, 9, 14085-14092.	5.2	29
1166	Highly sensitive non-enzymatic electrochemical glucose sensor surpassing water oxidation interference. Journal of Materials Chemistry B, 2021, 9, 8399-8405.	2.9	23
1167	A Cr-FeOOH@Ni–P/NF binder-free electrode as an excellent oxygen evolution reaction electrocatalyst. Nanoscale, 2021, 13, 17003-17010.	2.8	17
1168	A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media. Inorganic Chemistry Frontiers, 2021, 8, 3007-3011.	3.0	143
1169	Two-dimensional layered double hydroxides as a platform for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 9389-9430.	5.2	83
1170	Physically Adsorbed Metal Ions in Porous Supports as Electrocatalysts for Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1909889.	7.8	32

#	Article	IF	CITATIONS
1171	An Efficient and Earthâ€Abundant Oxygenâ€Evolving Electrocatalyst Based on Amorphous Metal Borides. Advanced Energy Materials, 2018, 8, 1701475.	10.2	292
1172	Recent Advances in Nonâ€Precious Metalâ€Based Electrodes for Alkaline Water Electrolysis. ChemNanoMat, 2020, 6, 336-355.	1.5	92
1173	3D mesoporous rose-like nickel-iron selenide microspheres as advanced electrocatalysts for the oxygen evolution reaction. Nano Research, 2018, 11, 2149-2158.	5.8	57
1174	A novel nickel-based honeycomb electrode with microtapered holes and abundant multivacancies for highly efficient overall water splitting. Applied Catalysis B: Environmental, 2020, 276, 119141.	10.8	35
1175	Na+-induced in situ reconstitution of metal phosphate enabling efficient electrochemical water oxidation in neutral and alkaline media. Chemical Engineering Journal, 2020, 398, 125537.	6.6	17
1176	3D porous flower-like heterostructure of Fe doped Ni2P nanoparticles anchored on Al2O3 nanosheets as an ultrastable high-efficiency electrocatalyst. Electrochimica Acta, 2020, 349, 136417.	2.6	16
1177	A Review on Advanced FeNi-Based Catalysts for Water Splitting Reaction. Energy & Fuels, 2020, 34, 13491-13522.	2.5	158
1178	Stress-Induced Electronic Structure Modulation of Manganese-Incorporated Ni ₂ P Leading to Enhanced Activity for Water Splitting. ACS Applied Energy Materials, 2020, 3, 1271-1278.	2.5	24
1179	Dynamic Structure Evolution of Composition Segregated Iridium-Nickel Rhombic Dodecahedra toward Efficient Oxygen Evolution Electrocatalysis. ACS Nano, 2018, 12, 7371-7379.	7.3	75
1180	Bamboo-like nitrogen-doped porous carbon nanofibers encapsulated nickel–cobalt alloy nanoparticles composite material derived from the electrospun fiber of a bimetal–organic framework as efficient bifunctional oxygen electrocatalysts. Nanoscale, 2020, 12, 5942-5952.	2.8	59
1181	Fabrication of a 3D self-supporting Ni–P/Ni ₂ P/CC composite and its robust hydrogen evolution reaction properties in alkaline solution. New Journal of Chemistry, 2020, 44, 8183-8190.	1.4	12
1182	Cu–Co bimetallic nanospheres embedded in graphene as excellent anode catalysts for electrocatalytic oxygen evolution reaction. Micro and Nano Letters, 2019, 14, 466-469.	0.6	2
1183	N ₂ plasma-activated NiO nanosheet arrays with enhanced water splitting performance. Nanotechnology, 2020, 31, 455709.	1.3	18
1184	Flower-like S-doped-Ni ₂ P mesoporous nanosheet-derived self-standing electrocatalytic electrode for boosting hydrogen evolution. Nanotechnology, 2020, 31, 465401.	1.3	6
1185	Self-supported Cu ₃ P nanowire electrode as an efficient electrocatalyst for the oxygen evolution reaction. RSC Advances, 2021, 11, 34137-34143.	1.7	10
1186	High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni ₂ P nanoarray under ambient conditions. Journal of Materials Chemistry A, 2021, 9, 24268-24275.	5.2	68
1187	Efficient <scp>Mnâ€Ni o</scp> nanocomposite–based electrocatalyst for oxygen evolution reaction in alkaline media. Journal of the Chinese Chemical Society, 2021, 68, 2254-2263.	0.8	3
1188	Research Progress of Oxygen Evolution Reaction Catalysts for Electrochemical Water Splitting. ChemSusChem, 2021, 14, 5359-5383.	3.6	70

#	Article	IF	CITATIONS
1189	Surface Reconstruction of Cobalt Species on Amorphous Cobalt Silicate-Coated Fluorine-Doped Hematite for Efficient Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 47572-47580.	4.0	50
1190	Online Electrochemistry–Mass Spectrometry Evaluation of the Acidic Oxygen Evolution Reaction at Supported Catalysts. ACS Catalysis, 2021, 11, 12745-12753.	5.5	18
1191	One-Step Synthesis of Bifunctional Nickel Phosphide Nanowires as Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. Frontiers in Chemistry, 2021, 9, 773018.	1.8	7
1192	Electrochemical Production of 2,5-Furandicarboxylic from 5-Hydroxymethylfurfural Using Ultrathin Co(OH) ₂ on ZIF-67. ACS Applied Energy Materials, 2021, 4, 12909-12916.	2.5	9
1193	Stable Water Oxidation Catalysts Based on in-situ Electrochemical Transition of Nickel Phosphate. Catalysis Letters, 0, , 1.	1.4	0
1194	Resorcinol/Formaldehyde polymer derived carbon protected CoSe 2 nanocubes: A nonâ€precious, efficient, and durable electrocatalyst for oxygen evolution reaction. Electrochemical Science Advances, 0, , e2100064.	1.2	0
1195	A fast and in-depth self-reconstruction of anion ligands optimized CoFe-based pre-catalysts for water oxidation. Green Energy and Environment, 2023, 8, 812-819.	4.7	5
1196	RuO2 active particles supported on Ni12P5 as excellent electrocatalysts for Li O2 batteries. Solid State Ionics, 2021, 372, 115773.	1.3	2
1197	Structure-Activity Relationships in Ni-Fe Oxyhydroxide Oxygen Evolution Electrocatalysts. ECS Meeting Abstracts. 2016	0.0	0
1198	Ru-Doped Platelet-Like Ni2P Nanostructure for Electrocatalytic HER and ORR Applications. , 0, , .		0
1198 1199	Ru-Doped Platelet-Like Ni2P Nanostructure for Electrocatalytic HER and ORR Applications. , 0, , . Interface Engineering of CoP ₃ /Ni ₂ P for Boosting the Wide pH Range Water-Splitting Activity. ACS Applied Materials & amp; Interfaces, 2021, 13, 52598-52609.	4.0	0 20
1198 1199 1200	Ru-Doped Platelet-Like Ni2P Nanostructure for Electrocatalytic HER and ORR Applications. , 0, , . Interface Engineering of CoP ₃ /Ni ₂ P for Boosting the Wide pH Range Water-Splitting Activity. ACS Applied Materials & amp; Interfaces, 2021, 13, 52598-52609. Nickel Iron Phosphide/Phosphate as an Oxygen Bifunctional Electrocatalyst for High-Power-Density Rechargeable Znâ€"Air Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 52487-52497.	4.0 4.0	0 20 28
1198 1199 1200 1202	Ru-Doped Platelet-Like Ni2P Nanostructure for Electrocatalytic HER and ORR Applications. , 0, , . Interface Engineering of CoP ₃ /Ni ₂ P for Boosting the Wide pH Range Water-Splitting Activity. ACS Applied Materials & amp; Interfaces, 2021, 13, 52598-52609. Nickel Iron Phosphide/Phosphate as an Oxygen Bifunctional Electrocatalyst for High-Power-Density Rechargeable Znâ€"Air Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 52487-52497. Recent advances of anion regulated NiFe-based electrocatalysts for water oxidation. Sustainable Energy and Fuels, 2021, 5, 6298-6309.	4.0 4.0 2.5	0 20 28 7
1198 1199 1200 1202 1203	Ru-Doped Platelet-Like Ni2P Nanostructure for Electrocatalytic HER and ORR Applications. , 0, , . Interface Engineering of CoP ₃ /Ni ₂ P for Boosting the Wide pH Range Water-Splitting Activity. ACS Applied Materials & amp; Interfaces, 2021, 13, 52598-52609. Nickel Iron Phosphide/Phosphate as an Oxygen Bifunctional Electrocatalyst for High-Power-Density Rechargeable Znâ€"Air Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 52487-52497. Recent advances of anion regulated NiFe-based electrocatalysts for water oxidation. Sustainable Energy and Fuels, 2021, 5, 6298-6309. Co-anion exchange prepared 2D structure Ni(Co,Fe)PS for efficient overall water electrolysis. Applied Surface Science, 2022, 576, 151720.	4.0 4.0 2.5 3.1	0 20 28 7 9
 1198 1199 1200 1202 1203 1204 	Ru-Doped Platelet-Like Ni2P Nanostructure for Electrocatalytic HER and ORR Applications. , 0, , . Interface Engineering of CoP ₃ /Ni ₂ P for Boosting the Wide pH Range Water-Splitting Activity. ACS Applied Materials & amp; Interfaces, 2021, 13, 52598-52609. Nickel Iron Phosphide/Phosphate as an Oxygen Bifunctional Electrocatalyst for High-Power-Density Rechargeable Zna€"Air Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 52487-52497. Recent advances of anion regulated NiFe-based electrocatalysts for water oxidation. Sustainable Energy and Fuels, 2021, 5, 6298-6309. Co-anion exchange prepared 2D structure Ni(Co,Fe)PS for efficient overall water electrolysis. Applied Surface Science, 2022, 576, 151720. A new hyperbranched water-splitting technique based on Co3O4/MoS2 nano composite catalyst for High-Performance of hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 2124-2133.	4.0 4.0 2.5 3.1 3.8	0 20 28 7 9
 1198 1199 1200 1202 1203 1204 1205 	Ru-Doped Platelet-Like Ni2P Nanostructure for Electrocatalytic HER and ORR Applications. , 0, , . Interface Engineering of CoP ₃ /Ni ₂ P for Boosting the Wide pH Range Water-Splitting Activity. ACS Applied Materials & amp; Interfaces, 2021, 13, 52598-52609. Nickel Iron Phosphide/Phosphate as an Oxygen Bifunctional Electrocatalyst for High-Power-Density Rechargeable Znâ€"Air Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 52487-52497. Recent advances of anion regulated NiFe-based electrocatalysts for water oxidation. Sustainable Energy and Fuels, 2021, 5, 6298-6309. Co-anion exchange prepared 2D structure Ni(Co,Fe)PS for efficient overall water electrolysis. Applied Surface Science, 2022, 576, 151720. A new hyperbranched water-splitting technique based on Co3O4/MoS2 nano composite catalyst for High-Performance of hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 2124-2133. Theoretical study the component and facet dependence of HER performance on nickel phosphides surfaces. International Journal of Hydrogen Energy, 2021, 47, 2992-2992.	4.0 4.0 2.5 3.1 3.8 3.8	0 20 28 7 9 5
 1198 1199 1200 1202 1203 1204 1205 1206 	Ru-Doped Platelet-Like Ni2P Nanostructure for Electrocatalytic HER and ORR Applications. , 0, , . Interface Engineering of CoP ₃ /Ni ₂ P for Boosting the Wide pH Range Water-Splitting Activity. ACS Applied Materials & amp; Interfaces, 2021, 13, 52598-52609. Nickel Iron Phosphide/Phosphate as an Oxygen Bifunctional Electrocatalyst for High-Power-Density Rechargeable Znâc ^{er} Air Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 52487-52497. Recent advances of anion regulated NiFe-based electrocatalysts for water oxidation. Sustainable Energy and Fuels, 2021, 5, 6298-6309. Co-anion exchange prepared 2D structure Ni(Co,Fe)PS for efficient overall water electrolysis. Applied Surface Science, 2022, 576, 151720. A new hyperbranched water-splitting technique based on Co3O4/MoS2 nano composite catalyst for High-Performance of hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 2124-2133. Theoretical study the component and facet dependence of HER performance on nickel phosphides surfaces. International Journal of Hydrogen Energy, 2021, 47, 2992-2992. Asymmetric Electrolyte Design: Energy-Efficient Electrolytic Hydrogen Production under 0.95 V Driven by Janus Metal Phosphide Nanoarray. ACS Sustainable Chemistry and Engineering, 2021, 9, 16163-16171.	4.0 4.0 2.5 3.1 3.8 3.8 3.8	0 20 28 7 9 5 6 2

#	Article	IF	CITATIONS
1208	Electrochemical incorporation of heteroatom into surface reconstruction induced Ni vacancy of NixO nanosheet for enhanced water oxidation. Journal of Colloid and Interface Science, 2022, 608, 3030-3039.	5.0	9
1209	Optimization of Oxygen Evolution Reaction with Electroless Deposited Ni–P Catalytic Nanocoating. Nanomaterials, 2021, 11, 3010.	1.9	13
1210	Electrochemically Fabricated Superhydrophilic/Superaerophobic Manganese Oxide Nanowires at Discontinuous Solid–Liquid Interfaces for Enhanced Oxygen Evolution Performances. Advanced Materials Interfaces, 2022, 9, 2101478.	1.9	8
1211	Electron-transfer enhanced sponge-like CrP-Re2P as a robust bifunctional electrocatalyst for high-current overall water splitting and Zn–H2O cell. Electrochimica Acta, 2022, 404, 139598.	2.6	9
1212	Recent Advances in Manifold Exfoliated Synthesis of Twoâ€Dimensional Nonâ€precious Metalâ€Based Nanosheet Electrocatalysts for Water Splitting. Small Structures, 2022, 3, 2100153.	6.9	43
1213	Electrocatalysis enabled transformation of earth-abundant water, nitrogen and carbon dioxide for a sustainable future. Materials Advances, 2022, 3, 1359-1400.	2.6	17
1214	Octanuclear Cu(ii) cluster–tungstosilicate composite as efficient electrocatalyst for oxygen evolution reaction at near-neutral pH. Sustainable Energy and Fuels, 2021, 6, 223-230.	2.5	1
1215	Synergetic design of N-doped defect-enriched porous carbon matrix with Co-Co0.85Se loading for water splitting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128243.	2.3	4
1216	Dispersed FeO nanoparticles decorated with Co2SiO4 hollow spheres for enhanced oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 611, 235-245.	5.0	19
1217	In situ unraveling surface reconstruction of Ni5P4@FeP nanosheet array for superior alkaline oxygen evolution reaction. Applied Catalysis B: Environmental, 2022, 305, 121033.	10.8	104
1218	Metal-organic frameworks derived transition metal phosphides for electrocatalytic water splitting. Journal of Energy Chemistry, 2022, 68, 494-520.	7.1	70
1219	Rational design of metal oxide catalysts for electrocatalytic water splitting. Nanoscale, 2021, 13, 20324-20353.	2.8	38
1220			
	Application of Transition Metal Phosphides to Electrocatalysis: An Overview. Jom, 2022, 74, 381-395.	0.9	9
1221	Application of Transition Metal Phosphides to Electrocatalysis: An Overview. Jom, 2022, 74, 381-395. Realizing electrochemical transformation of a metal–organic framework precatalyst into a metal hydroxide–oxy(hydroxide) active catalyst during alkaline water oxidation. Journal of Materials Chemistry A, 2022, 10, 3843-3868.	0.9 5.2	9
1221 1222	Application of Transition Metal Phosphides to Electrocatalysis: An Overview. Jom, 2022, 74, 381-395. Realizing electrochemical transformation of a metal–organic framework precatalyst into a metal hydroxide–oxy(hydroxide) active catalyst during alkaline water oxidation. Journal of Materials Chemistry A, 2022, 10, 3843-3868. MXene-supported copper-molybdenum sulfide nanostructures as catalysts for hydrogen evolution. New Journal of Chemistry, 2022, 46, 1127-1134.	0.9 5.2 1.4	9 44 4
1221 1222 1223	Application of Transition Metal Phosphides to Electrocatalysis: An Overview. Jom, 2022, 74, 381-395. Realizing electrochemical transformation of a metal–organic framework precatalyst into a metal hydroxide–oxy(hydroxide) active catalyst during alkaline water oxidation. Journal of Materials Chemistry A, 2022, 10, 3843-3868. MXene-supported copper-molybdenum sulfide nanostructures as catalysts for hydrogen evolution. New Journal of Chemistry, 2022, 46, 1127-1134. Immobilization of cobalt oxide nanoparticles on porous nitrogen-doped carbon as electrocatalyst for oxygen evolution. Chinese Journal of Chemical Engineering, 2022, 52, 10-18.	0.9 5.2 1.4 1.7	9 44 4 1
1221 1222 1223 1224	Application of Transition Metal Phosphides to Electrocatalysis: An Overview. Jom, 2022, 74, 381-395.Realizing electrochemical transformation of a metal–organic framework precatalyst into a metal hydroxide–oxy(hydroxide) active catalyst during alkaline water oxidation. Journal of Materials Chemistry A, 2022, 10, 3843-3868.MXene-supported copper-molybdenum sulfide nanostructures as catalysts for hydrogen evolution. New Journal of Chemistry, 2022, 46, 1127-1134.Immobilization of cobalt oxide nanoparticles on porous nitrogen-doped carbon as electrocatalyst for oxygen evolution. Chinese Journal of Chemical Engineering, 2022, 52, 10-18.IrO ₂ -Modified RuO ₂ Nanowires/Nitrogen-Doped Carbon Composite for Effective Overall Water Splitting in All pH. Energy & amp; Fuels, 2022, 36, 1015-1026.	0.9 5.2 1.4 1.7 2.5	9 44 4 1 36

#	Article	IF	CITATIONS
1226	Coupling NiCo catalysts with carbon quantum dots on hematite photoanodes for highly efficient oxygen evolution. Journal of Materials Chemistry A, 2022, 10, 2813-2818.	5.2	17
1228	Ultrafast synthesis of Cu2O octahedrons inlaid in Ni foam for efficient alkaline water/seawater electrolysis. Electrochemistry Communications, 2022, 134, 107177.	2.3	12
1229	Fe and Cu dual-doped Ni ₃ S ₄ nanoarrays with less low-valence Ni species for boosting water oxidation reaction. Dalton Transactions, 2022, 51, 1594-1602.	1.6	8
1230	Formation of Highly Active NiO(OH) Thin Films from Electrochemically Deposited Ni(OH) ₂ by a Simple Thermal Treatment at a Moderate Temperature: A Combined Electrochemical and Surface Science Investigation. ACS Catalysis, 2022, 12, 1508-1519.	5.5	34
1231	An efficient amorphous ternary transition metal boride (WFeNiB) electrocatalyst for oxygen evolution from water. Sustainable Energy and Fuels, 2022, 6, 1345-1352.	2.5	9
1232	Nickel-Rich Ni ₃ N Particles Stimulated by Defective Graphitic Carbon Nitrides for the Effective Oxygen Evolution Reaction. Industrial & Engineering Chemistry Research, 2022, 61, 2081-2090.	1.8	21
1233	A Superior and Stable Electrocatalytic Oxygen Evolution Reaction by One-Dimensional FeCoP Colloidal Nanostructures. ACS Applied Materials & Interfaces, 2022, 14, 5468-5477.	4.0	26
1234	Influence of the crystalline phase on the electrocatalytic behaviour of Sm _{2â°<i>x</i>} Sr _{<i>x</i>} NiO _{4â°<i>î</i>} (<i>x</i> = 0.4 to 1.0) Ruddlesden–Popper-based systems: a comparative study of bulk and thin electrocatalysts. Physical Chemistry Chemical Physics. 2022. 24. 5330-5342.	1.3	3
1235	Ru-Doped NiFe Layered Double Hydroxide as a Highly Active Electrocatalyst for Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2022, 169, 024503.	1.3	15
1236	Coupling overall water splitting and biomass oxidation via Fe-doped Ni2P@C nanosheets at large current density. Applied Catalysis B: Environmental, 2022, 307, 121170.	10.8	75
1237	Constructing 2D Fe-doped CoP nanosheets for high-efficiency hydrogen evolution in alkaline media. Ionics, 2022, 28, 2301-2307.	1.2	2
1238	Three-dimensional crystalline-Ni5P4@amorphous-NiOx core–shell nanosheets as bifunctional electrode for urea electro-oxidation and hydrogen evolution. Fuel, 2022, 315, 123279.	3.4	24
1239	Engineering of Co3O4@Ni2P heterostructure as trifunctional electrocatalysts for rechargeable zinc-air battery and self-powered overall water splitting. Journal of Materials Science and Technology, 2022, 115, 19-28.	5.6	35
1240	Crystalline-amorphous interface of mesoporous Ni2PÂ@ÂFePOxHy for oxygen evolution at high current density in alkaline-anion-exchange-membrane water-electrolyzer. Applied Catalysis B: Environmental, 2022, 306, 121127.	10.8	90
1241	Modifying the 316L stainless steel surface by an electrodeposition technique: towards high-performance electrodes for alkaline water electrolysis. Sustainable Energy and Fuels, 2022, 6, 1382-1397.	2.5	6
1242	Ni2P@MoS2/CC catalysts with heterogeneous structure are used for highly efficient electrolysis of water for hydrogen evolution. Journal of Alloys and Compounds, 2022, 905, 164157.	2.8	9
1243	Discharge Induced-Activation of Phosphorus-Doped Nickel Oxyhydroxide for Oxygen Evolution Reaction. Chemical Engineering Journal, 2022, 435, 135049.	6.6	14
1244	Bimetal phosphide as high efficiency and stable bifunctional electrocatalysts for hydrogen and oxygen evolution reaction in alkaline solution. RSC Advances, 2022, 12, 9051-9057.	1.7	4

	Сітатіо	n Report	
#	Article	IF	CITATIONS
1245	Steps towards highly-efficient water splitting and oxygen reduction using nanostructured β-Ni(OH) ₂ . RSC Advances, 2022, 12, 10020-10028.	1.7	5
1246	Three-dimensional nano-framework CoP/Co ₂ P/Co ₃ O ₄ heterojunction as a trifunctional electrocatalyst for metal–air battery and water splitting. New Journal of Chemistry, 2022, 46, 8786-8793.	1.4	5
1247	Nickel-Based Electrocatalysts for Water Electrolysis. Energies, 2022, 15, 1609.	1.6	21
1248	Applications of Nickelâ€Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	17
1249	Super-Hydrophilic Leaflike Sn ₄ P ₃ on the Porous Seamless Graphene–Carbon Nanotube Heterostructure as an Efficient Electrocatalyst for Solar-Driven Overall Water Splitting. ACS Nano, 2022, 16, 4861-4875.	7.3	41
1250	Integrated Bifunctional Electrodes Based on Amorphous Co–Ni–S Nanoflake Arrays with Atomic Dispersity of Active Sites for Overall Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 10277-10287.	4.0	40
1251	Metal–organic frameworkâ€derived phosphide nanomaterials for electrochemical applications. , 2022, 4, 246-281.		48
1252	Polar Layered Intermetallic LaCo ₂ P ₂ as a Water Oxidation Electrocatalyst. ACS Applied Materials & Interfaces, 2022, 14, 14120-14128.	4.0	4
1253	Interface-Engineered Porous Pt–PdO Nanostructures for Highly Efficient Hydrogen Evolution and Oxidation Reactions in Base and Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 3704-3715.	3.2	16
1254	Nonmetallic Active Sites on Nickel Phosphide in Oxygen Evolution Reaction. Nanomaterials, 2022, 12, 1130.	1.9	3
1255	Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Metals, 2022, 41, 2169-2183.	3.6	62
1256	Simultaneous heterostructure engineering and Mn doping modulation of Ni2P nanosheet arrays for enhanced electrocatalytic water splitting. Science China Materials, 2022, 65, 1814-1824.	3.5	14
1257	Reduction of Transition-Metal Columbite-Tantalite as a Highly Efficient Electrocatalyst for Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 15090-15102.	4.0	3
1258	Nanostructured Metal Phosphide Based Catalysts for Electrochemical Water Splitting: A Review. Small, 2022, 18, e2107572.	5.2	100
1259	Oxygen Evolution Reaction in Alkaline Environment: Material Challenges and Solutions. Advanced Functional Materials, 2022, 32, .	7.8	209
1260	Ternary copper molybdenum sulfide (Cu ₂ MoS ₄) nanoparticles anchored on PANI/rGO as electrocatalysts for oxygen evolution reaction (OER). Applied Organometallic Chemistry, 2022, 36, .	1.7	4
1261	Cobalt-regulation-induced dual active sites in Ni2P for hydrazine electrooxidation. Chinese Journal of Catalysis, 2022, 43, 1131-1138.	6.9	9
1262	Modulating electronic structure of Ni2P pre-catalyst by doping trace iron for enhanced oxygen evolution reaction in alkaline. Journal of Alloys and Compounds, 2022, 908, 164603.	2.8	12

#	Article	IF	CITATIONS
1263	Metal - organic frameworks derived Ni5P4/NC@CoFeP/NC composites for highly efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 617, 585-593.	5.0	14
1264	Interface engineering induced electrocatalytic behavior in core-shelled CNTs@NiP2/NbP heterostructure for highly efficient overall water splitting. Chemical Engineering Journal, 2022, 442, 136120.	6.6	35
1265	Rapid screening of NixFe1â~'x/Fe2O3/Ni(OH)2 complexes with excellent oxygen evolution reaction activity and durability by a two-step electrodeposition method. Applied Surface Science, 2022, 592, 153251.	3.1	9
1266	A dynamic Ni(OH)2-NiOOH/NiFeP heterojunction enabling high-performance E-upgrading of hydroxymethylfurfural. Applied Catalysis B: Environmental, 2022, 311, 121357.	10.8	75
1267	Halfâ€ s andwich ruthenium complex with a very low overpotential and excellent activity for water oxidation under acidic conditions. Applied Organometallic Chemistry, 2022, 36, .	1.7	2
1268	A Ni/Ni2P heterostructure in modified porous carbon separator for boosting polysulfide catalytic conversion. Science China Materials, 2022, 65, 2453-2462.	3.5	10
1269	Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis. Nature Communications, 2022, 13, 2191.	5.8	179
1270	Sustainable photocatalytic cascaded reaction for H2 evolution over Co decorated ultrathin Cd0.5Zn0.5S nanosheets: Surface kinetics in aqueous NaOH and methanol. Chemical Engineering Journal, 2022, 443, 136427.	6.6	17
1274	Phase-controlled solvothermal syntheses and oxygen evolution reaction (OER) activity of nickel sulfide nanoparticles obtained from 1,2-bis(diphenylphosphino)ethane nickel(<scp>ii</scp>) acetylacetonatedithiolate. New Journal of Chemistry, 2022, 46, 10246-10255.	1.4	4
1275	Metal phosphide based electrocatalysts for water splitting. , 2022, , 293-324.		1
1276	Electrochemical preparation of nano/micron structure transition metal-based catalysts for the oxygen evolution reaction. Materials Horizons, 2022, 9, 1788-1824.	6.4	32
1277	Catalysts for hydrogen and oxygen evolution reactions (HER/OER) in cells. , 2022, , 457-470.		1
1278	Interfacial Electronic Rearrangement and Synergistic Catalysis for Alkaline Water Splitting in Carbon Encapsulated Ni (111)/Ni3c (113) Heterostructure. SSRN Electronic Journal, 0, , .	0.4	0
1279	Fabrication of Alkaline Electrolyzer Using Ni@MWCNT as an Effective Electrocatalyst and Composite Anion Exchange Membrane. ACS Omega, 2022, 7, 15467-15477.	1.6	4
1280	In situ confined vertical growth of Co2.5Ni0.5Si2O5(OH)4 nanoarrays on rGO for an efficient oxygen evolution reaction. Nano Materials Science, 2023, 5, 351-360.	3.9	7
1281	Progress on Emerging Ferroelectric Materials for Energy Harvesting, Storage and Conversion. Advanced Energy Materials, 2022, 12, .	10.2	45
1282	Atomically Dispersed Janus Nickel Sites on Red Phosphorus for Photocatalytic Overall Water Splitting. Angewandte Chemie - International Edition, 2022, 61, .	7.2	43
1283	Role of Noble- and Base-Metal Speciation and Surface Segregation in Ni _{2–<i>x</i>} Rh _{<i>x</i>} P Nanocrystals on Electrocatalytic Water Splitting Reactions in Alkaline Media. Chemistry of Materials, 2022, 34, 4414-4427.	3.2	10

#	Article	IF	CITATIONS
1284	MOF-Derived Porous Fe ₃ O ₄ /RuO ₂ -C Composite for Efficient Alkaline Overall Water Splitting. ACS Applied Energy Materials, 2022, 5, 6059-6069.	2.5	20
1285	Atomically Dispersed Janus Nickel Sites on Red Phosphorus for Photocatalytic Overall Water Splitting. Angewandte Chemie, 0, , .	1.6	2
1286	Ni2P(O)–Fe2P(O)/CeOx as high effective bifunctional catalyst for overall water splitting. International Journal of Hydrogen Energy, 2022, 47, 18587-18596.	3.8	6
1287	Self-Promoted Electrocatalysts Derived from Surface Reconstruction for Rechargeable Zinc–Air Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 6456-6465.	3.2	9
1288	Electrocatalytic Water Oxidation: An Overview With an Example of Translation From Lab to Market. Frontiers in Chemistry, 2022, 10, .	1.8	15
1289	Surface engineering of MOFs as a route to cobalt phosphide electrocatalysts for efficient oxygen evolution reaction. Nano Energy, 2022, 98, 107315.	8.2	31
1290	Low-temperature water electrolysis: fundamentals, progress, and new strategies. Materials Advances, 2022, 3, 5598-5644.	2.6	50
1291	Atomic Heterointerface Engineering of Ni ₂ Pâ€NiSe ₂ Nanosheets Coupled ZnPâ€Based Arrays for Highâ€Efficiency Solarâ€Assisted Water Splitting. Advanced Functional Materials, 2022, 32, .	7.8	49
1292	Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity. Nature Communications, 2022, 13, .	5.8	78
1293	Stoichiometry design in hierarchical CoNiFe phosphide for highly efficient water oxidation. Science China Materials, 2022, 65, 2685-2693.	3.5	12
1294	CoCu-hydroxyquinoline loaded on copper foam as effective pre-catalytic electrode for oxygen evolution. Inorganic Chemistry Communication, 2022, 141, 109572.	1.8	2
1295	First-row transition metal-based materials derived from bimetallic metal–organic frameworks as highly efficient electrocatalysts for electrochemical water splitting. Energy and Environmental Science, 2022, 15, 3119-3151.	15.6	125
1296	Co(OH)2-Ni(OH)xSy amorphous composite electrocatalysts prepared by electrodeposition method for efficient oxygen evolution reaction. Ionics, 0, , .	1.2	0
1297	The Scalable Solid-State Synthesis of a Ni5P4/Ni2P–FeNi Alloy Encapsulated into a Hierarchical Porous Carbon Framework for Efficient Oxygen Evolution Reactions. Nanomaterials, 2022, 12, 1848.	1.9	3
1298	Co-Based Nanosheets with Transitional Metal Doping for Oxygen Evolution Reaction. Nanomaterials, 2022, 12, 1788.	1.9	0
1299	Bimetallic Boron Phosphide Niâ€2Feâ€BP as an Active Waterâ€Splitting Catalyst. ChemistrySelect, 2022, 7,	0.7	6
1301	Influence of Co ²⁺ , Cu ²⁺ , Ni ²⁺ , Zn ²⁺ , and Ga ³⁺ on the iron-based trimetallic layered double hydroxides for water oxidation. RSC Advances, 2022, 12, 16955-16965.	1.7	3
1302	A single atom Ir doped heterophase of a NiMoP-NiMoP _{<i>x</i>} O _{<i>y</i>} ultrathin layer assembled on CNTs-graphene for high-performance water splitting. Journal of Materials Chemistry A, 2022, 10, 14604-14612.	5.2	12

	CHARON	KLFOKT	
#	Article	IF	CITATIONS
1303	An anionic regulation mechanism for the structural reconstruction of sulfide electrocatalysts under oxygen evolution conditions. Energy and Environmental Science, 2022, 15, 3257-3264.	15.6	74
1305	Empirical analysis and recent advances in metal-organic framework-derived electrocatalysts for oxygen reduction, hydrogen and oxygen evolution reactions. Materials Chemistry and Physics, 2022, 289, 126438.	2.0	7
1306	Aufgabenspezifische Janusâ€Materialien in der heterogenen Katalyse. Angewandte Chemie, 2022, 134, .	1.6	2
1307	Facile Single Step Electrochemical Growth of Ni ₃ P on Carbon Cloth for Highly Efficient Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2022, 169, 064511.	1.3	4
1308	Taskâ€Specific Janus Materials in Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
1309	Transition Metal Nonâ€Oxides as Electrocatalysts: Advantages and Challenges. Small, 2022, 18, .	5.2	47
1311	MXenes for electrocatalysis applications: Modification and hybridization. Chinese Journal of Catalysis, 2022, 43, 2057-2090.	6.9	76
1312	Corrosion of non-noble metal-based catalysts during oxygen evolution reaction under on/off operation. Corrosion Science, 2022, 205, 110437.	3.0	6
1313	Electrocatalytic conversion of nitrate waste into ammonia: a review. Environmental Chemistry Letters, 2022, 20, 2929-2949.	8.3	87
1314	Constructing abundant active interfaces in ultrafine Ru nanoparticles doped nickel–iron layered double hydroxide to promote electrocatalytic oxygen evolution. Electrochimica Acta, 2022, 427, 140835.	2.6	4
1315	High oxidation state enabled by plated Ni-P achieves superior electrocatalytic performance for 5-hydroxymethylfurfural oxidation reaction. IScience, 2022, 25, 104744.	1.9	9
1316	Three-dimensional nickel and copper-based foam-in-foam architecture as an electrode for efficient water electrolysis. Catalysis Today, 2023, 424, 113836.	2.2	3
1317	The Utilization of Iridium Nanoparticles Impregnated on Metal Oxides (Ceria, Titania, and Zirconia) with a Simple and Ecologically Safe Synthesis Approach in Oxygen Evolution Reactions. Journal of the Electrochemical Society, 0, , .	1.3	0
1318	Surface dissolution and amorphization of electrocatalysts during oxygen evolution reaction: Atomistic features and viewpoints. Materials Today, 2022, 58, 221-237.	8.3	11
1319	Chameleon‣ike Reconstruction on Redox Catalysts Adaptive to Alkali Water Electrolysis. Small, 2022, 18, .	5.2	9
1320	Elaboration of Ni ₂ P@C Composites with Hollow Porous Structure for Enhanced Overall Water Splitting. Advanced Materials Interfaces, 2022, 9, .	1.9	8
1321	Unfolding essence of nanoscience for improved water splitting hydrogen generation in the light of newly emergent nanocatalysts. International Journal of Hydrogen Energy, 2022, 47, 26915-26955.	3.8	16
1322	Multiphase nanosheet-nanowire cerium oxide and nickel-cobalt phosphide for highly-efficient electrocatalytic overall water splitting. Applied Catalysis B: Environmental, 2022, 316, 121678.	10.8	67

#	Article	IF	CITATIONS
1323	Electron enriched ternary NiMoB electrocatalyst for improved overall water splitting: Better performance as compared to the Pt/C RuO2 at high current density. Applied Materials Today, 2022, 29, 101579.	2.3	7
1324	MOF-Derived Zero-Dimensional Cu ₃ P Nanoparticles Embedded in Carbon Matrices for Electrochemical Hydrogen Evolution. Energy & amp; Fuels, 2022, 36, 8381-8390.	2.5	7
1325	Synergistic Incorporating RuO ₂ and NiFeOOH Layers onto Ni ₃ S ₂ Nanoflakes with Modulated Electron Structure for Efficient Water Splitting. Small Methods, 2022, 6,	4.6	15
1326	Interfacial Engineering of Heterostructured Co(OH) ₂ /NiP _x Nanosheets for Enhanced Oxygen Evolution Reaction. Advanced Functional Materials, 2022, 32, .	7.8	43
1327	Electrochemically Tuned Synergistic Nanoâ€Interface of a Tertiary Ni(OH) ₂ â`'NiO(OH)/Ni _x P Heterojunction Material for Enhanced and Durable Alkaline Water Splitting. ChemistrySelect, 2022, 7, .	0.7	2
1328	Nickel-Iron-Zinc Phosphide with Three-Dimensional Petal-Like Nanostructure as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction in Alkaline Electrolytes. ECS Journal of Solid State Science and Technology, 2022, 11, 081008.	0.9	1
1329	Adjusting electronic structure coupling of Fe–Ni2P (NiFeP-MOF) multilevel structure for ultra-activity and durable catalytic water oxidation. International Journal of Hydrogen Energy, 2022, 47, 30472-30483.	3.8	9
1330	Engineering MIL-88A-Derived Self-Supported Moss-like Iron Phosphide Particles on Nickel Foam as Robust Bifunctional Electrocatalysts for Overall Water Splitting. ACS Applied Energy Materials, 2022, 5, 9392-9401.	2.5	7
1331	A Single Source, Scalable Route for Direct Isolation of Earth-Abundant Nanometal Carbide Water-Splitting Electrocatalysts. Inorganic Chemistry, 2022, 61, 13836-13845.	1.9	10
1332	Manganese, iron co-doped Ni2P nanoflowers as a powerful electrocatalyst for oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 921, 116681.	1.9	3
1333	Heterostructure engineering of the Fe-doped Ni phosphides/Ni sulfide p-p junction for high-efficiency oxygen evolution. Journal of Alloys and Compounds, 2022, 924, 166613.	2.8	8
1334	Interface engineering of NiMoSx heterostructure nanorods for efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 628, 513-523.	5.0	5
1335	Supercapacitor and oxygen evolution reaction performances based on rGO and Mn2V2O7 nanomaterials. Electrochimica Acta, 2022, 430, 141106.	2.6	11
1336	Efficient electrocatalysis for oxygen evolution: W-doped NiFe nanosheets with oxygen vacancies constructed by facile electrodeposition and corrosion. Chemical Engineering Journal, 2023, 452, 139104.	6.6	18
1337	The application of plasma technology in activating the hydrogen evolution performance of nanostructured electrocatalysts. , 2022, , 63-104.		0
1338	Design of cobalt nickel nitrides/carbon nitride composite catalysts for enhanced electrochemical water splitting. Journal of Physics: Conference Series, 2022, 2334, 012011.	0.3	1
1339	Facile Synthesis of FeCoNiCulr High Entropy Alloy Nanoparticles for Efficient Oxygen Evolution Electrocatalysis. Catalysts, 2022, 12, 1050.	1.6	5
1340	Surface reconstruction-derived heterostructures for electrochemical water splitting. EnergyChem, 2023, 5, 100091.	10.1	36
#	Article	IF	Citations
------	--	-----	-----------
1341	Optimized Metal Deficiency-Induced Operando Phase Transformation Enhances Charge Polarization Promoting Hydrogen Evolution Reaction. Chemistry of Materials, 2022, 34, 8999-9008.	3.2	4
1342	Improved Corrosionâ€Resistance and Regulated Electroâ€state of Elastic Polyaniline Coated Nickel Phosphide for Efficient Water Oxidation. ChemCatChem, 2022, 14, .	1.8	4
1343	Efficient electrocatalysts with strong core-shell interaction for water splitting: The modulation of selectivity and activity. Journal of Alloys and Compounds, 2022, 929, 167247.	2.8	3
1344	Defect-activated surface reconstruction: mechanism for triggering the oxygen evolution reaction activity of NiFe phosphide. Journal of Materials Chemistry A, 2022, 10, 22750-22759.	5.2	18
1345	Carbon-incorporated Ni ₂ P–Fe ₂ P hollow nanorods as superior electrocatalysts for the oxygen evolution reaction. Nanoscale, 2022, 14, 16262-16269.	2.8	9
1346	Interface regulation of Pt quantum dots doped nickel phosphide and cobalt hydroxide to promote electrocatalytic overall water splitting. International Journal of Hydrogen Energy, 2022, 47, 40986-40998.	3.8	6
1347	Single-Atom-Induced Adsorption Optimization of Adjacent Sites Boosted Oxygen Evolution Reaction. ACS Catalysis, 2022, 12, 13482-13491.	5.5	22
1348	High-Performing Anion Exchange Membrane Water Electrolysis Using Self-Supported Metal Phosphide Anode Catalysts and an Ether-Free Aromatic Polyelectrolyte. ACS Sustainable Chemistry and Engineering, 2023, 11, 854-865.	3.2	12
1349	Hydrogen Bubble-Assisted One-Step Electrodeposition of Cu, Ni, and P toward Electrocatalytic Water Oxidation. ACS Applied Energy Materials, 2022, 5, 12602-12613.	2.5	5
1350	Enhanced electrocatalytic water splitting by Sm and Gd-doped ceria electrocatalysts on Ni foam substrate. Electrochimica Acta, 2022, 435, 141382.	2.6	8
1351	Controlled synthesis of M doped Co3O4 (MÂ=ÂCe, Ni and Fe) on Ni foam as robust electrocatalyst for oxygen evolution reaction and urea oxidation reaction. Journal of Colloid and Interface Science, 2023, 630, 512-524.	5.0	15
1352	Interfacial Electronic Rearrangement and Synergistic Catalysis for Alkaline Water Splitting in Carbon-Encapsulated Ni (111)/Ni3C (113) Heterostructures. Catalysts, 2022, 12, 1367.	1.6	2
1353	Recent trends in photoelectrochemical water splitting: the role of cocatalysts. NPG Asia Materials, 2022, 14, .	3.8	52
1354	Reconstructured Electrocatalysts during Oxygen Evolution Reaction under Alkaline Electrolytes. Chemistry - A European Journal, 2023, 29, .	1.7	4
1355	Highly Durable Compositionally Variant Bifunctional Tetrametallic Ni–Co–Mn–Fe Phosphide Electrocatalysts Synthesized by a Facile Electrodeposition Method for High-Performance Overall Water Splitting. Energy & Fuels, 2022, 36, 14371-14381.	2.5	18
1356	Constructing nickel vanadium phosphide nanoarrays with highly active heterointerfaces for water oxidation in alkali media. Electrochimica Acta, 2023, 439, 141721.	2.6	5
1357	Efficient electrochemical reduction of nitrate by bimetallic Cu-Fe phosphide derived from Prussian blue analogue. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130678.	2.3	9
1358	Annealing and electrochemically activated amorphous ribbons: Surface nanocrystallization and oxidation effects enhanced for oxygen evolution performance. Journal of Colloid and Interface Science, 2023, 633, 303-313.	5.0	4

CITATION REPORT

#	Article	IF	CITATIONS
1359	Recent Advances and Future Perspectives of Metalâ€Based Electrocatalysts for Overall Electrochemical Water Splitting. Chemical Record, 2023, 23, .	2.9	16
1360	Au@NiS _x Yolk@Shell Nanostructures as Dualâ€Functional Electrocatalysts for Concomitant Production of Valueâ€Added Tartronic Acid and Hydrogen Fuel. Advanced Functional Materials, 2023, 33, .	7.8	9
1361	A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction. Applied Catalysis B: Environmental, 2023, 325, 122313.	10.8	38
1362	Alkaline Media Regulated NiFe-LDH-Based Nickel–Iron Phosphides toward Robust Overall Water Splitting. Catalysts, 2023, 13, 198.	1.6	3
1363	Developments and Challenges of Catalytic Materials for Green Hydrogen Production. , 0, 1, .		2
1364	One dimensional nickel phosphide polymorphic heterostructure as carbon-free functional support loading single-atom iridium for promoted electrocatalytic water oxidation. Journal of Energy Chemistry, 2023, 79, 410-417.	7.1	7
1365	RE-doped (RE = La, Ce and Er) Ni ₂ P porous nanostructures as promising electrocatalysts for hydrogen evolution reaction. Dalton Transactions, 2023, 52, 1895-1901.	1.6	3
1366	Tailoring the nucleation and growth routes of discharge products for lithium-oxygen batteries through the facet engineering of Ni2P catalysts. Energy Storage Materials, 2023, 56, 506-514.	9.5	9
1367	Bottom-up evolution of perovskite clusters into high-activity rhodium nanoparticles toward alkaline hydrogen evolution. Nature Communications, 2023, 14, .	5.8	16
1368	Ternary Copper Tungsten Sulfide (Cu2WS4) Nanoparticles Obtained through a Solvothermal Approach: A Bi-Functional Electrocatalyst for the Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER). Materials, 2023, 16, 299.	1.3	1
1369	Versatile Janus Architecture for Electrocatalytic Applications. Small, 2023, 19, .	5.2	11
1370	Selfâ€Supporting Ironâ€Modified Nickel Phosphide Electrode Realizing Superior Bifunctional Performance for Water Splitting. ChemCatChem, 0, , .	1.8	0
1371	Synthesis of amorphous trimetallic PdCuNiP nanoparticles for enhanced OER. Frontiers in Chemistry, 0, 11, .	1.8	2
1372	Cobalt carbonate hydroxide assisted formation of self-supported CoNi-based Metal–Organic framework nanostrips as efficient electrocatalysts for oxygen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 15566-15573.	3.8	3
1373	Research progress on the construction of synergistic electrocatalytic ORR/OER self-supporting cathodes for zinc–air batteries. Journal of Materials Chemistry A, 2023, 11, 4400-4427.	5.2	33
1374	(Fe, F) co-doped nickel oxyhydroxide for highly efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2023, 11, 4619-4626.	5.2	12
1375	Multistage interfacial engineering of 3D carbonaceous Ni2P nanospheres/nanoflowers derived from Ni-BTC metal–organic frameworks for overall water splitting. Journal of Colloid and Interface Science, 2023, 638, 582-594.	5.0	9
1376	Reversion of catalyst valence states for highly efficient water oxidation. Catalysis Science and Technology, 0, , .	2.1	1

#	Article	IF	CITATIONS
1377	Facile and scalable synthesis of 2D porous Ni/C <i>via</i> a salt-template assisted approach for enhanced urea oxidation reaction and energy-saving hydrogen production. New Journal of Chemistry, 2023, 47, 7399-7409.	1.4	2
1378	Pt@Ni2P/C3N4 for charge acceleration to promote hydrogen evolution from ammonia-borane. International Journal of Hydrogen Energy, 2023, 48, 25423-25437.	3.8	4
1379	Enhanced electrocatalytic activity of POM-derived CoMoS/FCP heterostructures for overall water splitting in alkaline media. International Journal of Electrochemical Science, 2023, 18, 100076.	0.5	1
1380	Selective surface nitridation of the self-supported Co oxide nanobushes catalytic electrode towards efficient oxygen evolution reaction. Applied Surface Science, 2023, 618, 156670.	3.1	6
1381	Electrocatalytic oxygen evolution activities of metal chalcogenides and phosphides: Fundamentals, origins, and future strategies. Journal of Energy Chemistry, 2023, 81, 167-191.	7.1	31
1382	Electronic structure reconfiguration of nickel–cobalt layered double hydroxide nanoflakes via engineered heteroatom and oxygen-vacancies defect for efficient electrochemical water splitting. Chemical Engineering Journal, 2023, 463, 142396.	6.6	29
1383	Boron pretreatment promotes phosphorization of FeNi catalysts for oxygen evolution. Applied Catalysis B: Environmental, 2023, 330, 122598.	10.8	20
1384	Vanadium tunning amorphous iron phosphate encapsulated iron phosphide on phosphorous-doped graphene promoted oxygen reactions for flexible zinc air batteries. Applied Catalysis B: Environmental, 2023, 331, 122674.	10.8	11
1385	Emerging trends of electrocatalytic technologies for renewable hydrogen energy from seawater: Recent advances, challenges, and techno-feasible assessment. Journal of Energy Chemistry, 2023, 80, 658-688.	7.1	20
1386	Developments in electrocatalysts for electrocatalytic hydrogen evolution reaction with reference to bio-inspired phthalocyanines. International Journal of Hydrogen Energy, 2023, 48, 16569-16592.	3.8	13
1387	Highly Efficient Dehydrogenation of Ammonia Borane over Reduced Graphene Oxide-Supported Pd@NiP Nanoparticles at Room Temperature. International Journal of Energy Research, 2023, 2023, 1-13.	2.2	2
1388	Fabrication of surface etched NiFe2O4-NiSe2 nanocomposite as an efficient electrocatalyst for oxygen evolution reaction. Inorganic Chemistry Communication, 2023, 150, 110508.	1.8	1
1389	Achieving High Performance Electrode for Energy Storage with Advanced Prussian Blue-Drived Nanocomposites—A Review. Materials, 2023, 16, 1430.	1.3	2
1390	Nanoneedles of Mixed Transition Metal Phosphides as Bifunctional Catalysts for Electrocatalytic Water Splitting in Alkaline Media. Nanomaterials, 2023, 13, 683.	1.9	4
1391	Enhancing Oxygen Evolution Catalytic Performance of Nickel Borate with Cobalt Doping and Carbon Nanotubes. ChemistrySelect, 2023, 8, .	0.7	2
1392	Upgrading the detection of electrocatalyst degradation during the oxygen evolution reaction. Current Opinion in Electrochemistry, 2023, 38, 101247.	2.5	8
1393	A review of electrochemical glucose sensing based on transition metal phosphides. Journal of Applied Physics, 2023, 133, .	1.1	4
1394	Recent progress in electrocatalytic selectivity in heterogeneous electro-Fenton processes. Journal of Materials Chemistry A, 2023, 11, 7387-7408.	5.2	3

#	Article	IF	CITATIONS
1395	Exploring the oxygen evolution electrocatalysis of an amine-based cobalt metal–organic framework. Molecular Systems Design and Engineering, 2023, 8, 1004-1012.	1.7	1
1396	Efficient Oxygen Evolution Reaction Catalyzed by Ni/NiO Nanoparticles Produced by Pulsed Laser Ablation in Liquid Environment. Physica Status Solidi (B): Basic Research, 2023, 260, .	0.7	1
1397	A Bimetallic Phosphide@Hydroxide Interface for High-Performance 5-Hydroxymethylfurfural Electro-Valorization. Journal of Physical Chemistry C, 2023, 127, 4967-4974.	1.5	2
1398	Fabrication of Ruthenium-Based Transition Metal Nanoparticles/Reduced Graphene Oxide Hybrid Electrocatalysts for Alkaline Water Splitting. Journal of Korean Institute of Metals and Materials, 2023, 61, 190-197.	0.4	1
1399	Facile preparation of nickel phosphide for enhancing the photoelectrochemical water splitting performance of BiVO ₄ photoanodes. RSC Advances, 2023, 13, 8374-8382.	1.7	3
1400	Unveiling the role of Zn dopants in NiFe phosphide nanosheet for oxygen evolution reaction. Progress in Natural Science: Materials International, 2023, 33, 74-82.	1.8	4
1401	CuNi Nanoalloys with Tunable Composition and Oxygen Defects for the Enhancement of the Oxygen Evolution Reaction**. Angewandte Chemie, 2023, 135, .	1.6	1
1402	CuNi Nanoalloys with Tunable Composition and Oxygen Defects for the Enhancement of the Oxygen Evolution Reaction**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
1403	N-doped bimetallic phosphides composite catalysts derived from metal–organic frameworks for electrocatalytic water splitting. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	11
1439	Designing Janus catalysts for renewable energy-relevant bifunctional small molecule activation. Inorganic Chemistry Frontiers, 2023, 10, 5839-5855.	3.0	1
1440	Heterostructured 2D material-based electro-/photo-catalysts for water splitting. Materials Chemistry Frontiers, 2023, 7, 6154-6187.	3.2	3