Batf3 maintains autoactivation of Irf8 for commitment clonogenic progenitor

Nature Immunology 16, 708-717

DOI: 10.1038/ni.3197

Citation Report

#	Article	IF	Citations
1	Dendritic cell development—History, advances, and open questions. Seminars in Immunology, 2015, 27, 388-396.	2.7	34
2	A Hitchhiker's Guide to Myeloid Cell Subsets: Practical Implementation of a Novel Mononuclear Phagocyte Classification System. Frontiers in Immunology, 2015, 6, 406.	2.2	99
3	Transcriptional Regulation of Mononuclear Phagocyte Development. Frontiers in Immunology, 2015, 6, 533.	2.2	47
4	How many memories does it take to make an SLE flare?. Nature Immunology, 2015, 16, 685-687.	7.0	2
5	DCs are ready to commit. Nature Immunology, 2015, 16, 683-685.	7.0	4
6	Epigenetic program and transcription factor circuitry of dendritic cell development. Nucleic Acids Research, 2015, 43, gkv1056.	6.5	62
7	How does batf3 determine dendritic cell development?. Immunology and Cell Biology, 2015, 93, 681-682.	1.0	2
8	TCF4-Targeting miR-124 is Differentially Expressed amongst Dendritic Cell Subsets. Immune Network, 2016, 16, 61.	1.6	12
9	Dendritic Cells and Dendritic Cell Subsets. , 2016, , 345-352.		3
10	Molecular Mechanisms of Induction of Tolerant and Tolerogenic Intestinal Dendritic Cells in Mice. Journal of Immunology Research, 2016, 2016, 1-12.	0.9	54
11	Origin, Localization, and Immunoregulatory Properties of Pulmonary Phagocytes in Allergic Asthma. Frontiers in Immunology, 2016, 7, 107.	2.2	57
12	Interferon regulatory factor 8 and the regulation of neutrophil, monocyte, and dendritic cell production. Current Opinion in Hematology, 2016, 23, 11-17.	1.2	31
13	The role of islet antigen presenting cells and the presentation of insulin in the initiation of autoimmune diabetes in the <scp>NOD</scp> mouse. Immunological Reviews, 2016, 272, 183-201.	2.8	32
14	Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14775-14780.	3.3	67
15	Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment. Science Immunology, 2016, 1 , .	5.6	145
16	Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development. Nature Communications, 2016, 7, 11988.	5. 8	67
17	IRF8 Transcription-Factor-Dependent Classical Dendritic Cells Are Essential for Intestinal T Cell Homeostasis. Immunity, 2016, 44, 860-874.	6.6	118
18	Dendritic Cells Coordinate the Development and Homeostasis of Organ-Specific Regulatory T Cells. Immunity, 2016, 44, 847-859.	6.6	93

#	Article	IF	CITATIONS
19	The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. Journal of Experimental Medicine, 2016, 213, 897-911.	4.2	125
20	Inducible targeting of cDCs and their subsets in vivo. Journal of Immunological Methods, 2016, 434, 32-38.	0.6	55
21	Distinct Transcriptional Programs Control Cross-Priming in Classical and Monocyte-Derived Dendritic Cells. Cell Reports, 2016, 15, 2462-2474.	2.9	151
22	Transcriptional and Epigenetic Regulation of Innate Immune Cell Development by the Transcription Factor, Interferon Regulatory Factor-8. Journal of Interferon and Cytokine Research, 2016, 36, 433-441.	0.5	28
23	\hat{l}^2 8 Integrin Expression and Activation of TGF- \hat{l}^2 by Intestinal Dendritic Cells Are Determined by Both Tissue Microenvironment and Cell Lineage. Journal of Immunology, 2016, 197, 1968-1978.	0.4	48
24	IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively. Immunity, 2016, 45, 626-640.	6.6	273
25	Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species. Immunity, 2016, 45, 669-684.	6.6	683
26	Cutting Edge: ACVRL1 Signaling Augments CD8α+ Dendritic Cell Development. Journal of Immunology, 2016, 197, 1029-1034.	0.4	7
27	Conventional Dendritic Cells: Identification, Subsets, Development, andÂFunctions., 2016,, 374-383.		0
28	Human dendritic cells (DCs) are derived from distinct circulating precursors that are precommitted to become CD1c+ or CD141+ DCs. Journal of Experimental Medicine, 2016, 213, 2861-2870.	4.2	124
29	Cellular and molecular regulation of innate inflammatory responses. Cellular and Molecular Immunology, 2016, 13, 711-721.	4.8	134
30	Functions of Murine Dendritic Cells. Immunity, 2016, 45, 719-736.	6.6	313
31	Dendritic cell analysis in primary immunodeficiency. Current Opinion in Allergy and Clinical Immunology, 2016, 16, 530-540.	1.1	23
32	Nuclear receptor expression atlas in BMDCs: Nr4a2 restricts immunogenicity of BMDCs and impedes EAE. European Journal of Immunology, 2016, 46, 1842-1853.	1.6	13
33	Type 1 diabetes genetic susceptibility and dendritic cell function: potential targets for treatment. Journal of Leukocyte Biology, 2016, 100, 65-80.	1.5	26
34	Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue-resident and dermal XCR1+ DCs in mouse and human and distinguishes them from Langerhans cells. Journal of Immunological Methods, 2016, 432, 35-49.	0.6	50
35	Absence of MHC class II on cDCs results in microbial-dependent intestinal inflammation. Journal of Experimental Medicine, 2016, 213, 517-534.	4.2	110
36	IRF4 and IRF8 Act in CD11c+ Cells To Regulate Terminal Differentiation of Lung Tissue Dendritic Cells. Journal of Immunology, 2016, 196, 1666-1677.	0.4	81

#	Article	IF	CITATIONS
37	Transcriptional Control of Dendritic Cell Development. Annual Review of Immunology, 2016, 34, 93-119.	9.5	354
38	Antigen-Presenting Cells in the Skin. Annual Review of Immunology, 2017, 35, 469-499.	9.5	275
39	Development of conventional dendritic cells: from common bone marrow progenitors to multiple subsets in peripheral tissues. Mucosal Immunology, 2017, 10, 831-844.	2.7	155
40	Distribution, location, and transcriptional profile of Peyer's patch conventional DC subsets at steady state and under TLR7 ligand stimulation. Mucosal Immunology, 2017, 10, 1412-1430.	2.7	30
41	Maintenance of the marginal-zone B cell compartment specifically requires the RNA-binding protein ZFP36L1. Nature Immunology, 2017, 18, 683-693.	7.0	59
42	Tissue-Specific Diversity and Functions of Conventional Dendritic Cells. Advances in Immunology, 2017, 134, 89-135.	1.1	28
43	Mapping the human DC lineage through the integration of high-dimensional techniques. Science, 2017, 356, .	6.0	429
44	Batf3 selectively determines acquisition of CD8 ⁺ dendritic cell phenotype and function. Immunology and Cell Biology, 2017, 95, 215-223.	1.0	22
45	Revisiting the specificity of the MHC class II transactivator CIITA in classical murine dendritic cells in vivo. European Journal of Immunology, 2017, 47, 1317-1323.	1.6	9
46	Quality of TCR signaling determined by differential affinities of enhancers for the composite BATF–IRF4 transcription factor complex. Nature Immunology, 2017, 18, 563-572.	7.0	95
47	Isoform-Specific Expression and Feedback Regulation of E Protein TCF4 Control Dendritic Cell Lineage Specification. Immunity, 2017, 46, 65-77.	6.6	84
48	Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Annals of Oncology, 2017, 28, xii44-xii55.	0.6	170
49	Dendritic Cell Lineage Potential in Human Early Hematopoietic Progenitors. Cell Reports, 2017, 20, 529-537.	2.9	61
50	Dendritic cell recruitment and activation in autoimmunity. Journal of Autoimmunity, 2017, 85, 126-140.	3.0	108
51	A CD103+ Conventional Dendritic Cell Surveillance System Prevents Development of Overt Heart Failure during Subclinical Viral Myocarditis. Immunity, 2017, 47, 974-989.e8.	6.6	50
52	Lineage specification of human dendritic cells is marked by IRF8 expression in hematopoietic stem cells and multipotent progenitors. Nature Immunology, 2017, 18, 877-888.	7.0	101
53	Pulmonary immunity to viruses. Clinical Science, 2017, 131, 1737-1762.	1.8	42
54	Intestinal Batf3-dependent dendritic cells are required for optimal antiviral T-cell responses in adult and neonatal mice. Mucosal Immunology, 2017, 10, 775-788.	2.7	29

#	ARTICLE	IF	Citations
55	CD103 ⁺ CD11b ^{â°'} salivary gland dendritic cells have antigen crossâ€presenting capacity. European Journal of Immunology, 2017, 47, 305-313.	1.6	6
56	Cellular Differentiation of Human Monocytes Is Regulated by Time-Dependent Interleukin-4 Signaling and the Transcriptional Regulator NCOR2. Immunity, 2017, 47, 1051-1066.e12.	6.6	133
58	Flexible fate commitment of E2-2high common DC progenitors implies tuning in tissue microenvironments. International Immunology, 2017, 29, 443-456.	1.8	17
59	Dendritic Cell Subsets in Asthma: Impaired Tolerance or Exaggerated Inflammation?. Frontiers in Immunology, 2017, 8, 941.	2.2	33
61	Transcriptional patterns associated with <scp>BDCA</scp> 3 expression on <scp>BDCA</scp> 1 ⁺ myeloid dendritic cells. Immunology and Cell Biology, 2018, 96, 330-336.	1.0	1
62	NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell, 2018, 172, 1022-1037.e14.	13.5	1,187
63	TIM-3 Regulates CD103+ Dendritic Cell Function and Response to Chemotherapy in Breast Cancer. Cancer Cell, 2018, 33, 60-74.e6.	7.7	270
64	Human dendritic cell subsets: an update. Immunology, 2018, 154, 3-20.	2.0	866
65	Tumor Necrosis Factor Alpha Antagonism Reveals a Gut/Lung Axis That Amplifies Regulatory T Cells in a Pulmonary Fungal Infection. Infection and Immunity, 2018, 86, .	1.0	15
66	Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nature Communications, 2018, 9, 1250.	5.8	151
67	Altered compensatory cytokine signaling underlies the discrepancy between ⟨i⟩Flt3–/–⟨/i⟩ and ⟨i⟩Flt3l–/–⟨/i⟩ mice. Journal of Experimental Medicine, 2018, 215, 1417-1435.	4.2	44
68	DiSNE Movie Visualization and Assessment of Clonal Kinetics Reveal Multiple Trajectories of Dendritic Cell Development. Cell Reports, 2018, 22, 2557-2566.	2.9	33
69	Development, Diversity, and Function of Dendritic Cells in Mouse and Human. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028613.	2.3	71
70	Biallelic interferon regulatory factor 8 mutation: AÂcomplex immunodeficiency syndrome with dendritic cell deficiency, monocytopenia, and immune dysregulation. Journal of Allergy and Clinical Immunology, 2018, 141, 2234-2248.	1.5	63
71	WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science, 2018, 362, 694-699.	6.0	216
72	<i>Batf3</i> -Dependent Genes Control Tumor Rejection Induced by Dendritic Cells Independently of Cross-Presentation. Cancer Immunology Research, 2019, 7, 29-39.	1.6	45
73	Good things come in threes. Science Immunology, 2018, 3, .	5.6	3
74	Direct reprogramming of fibroblasts into antigen-presenting dendritic cells. Science Immunology, 2018, 3, .	5.6	62

#	Article	IF	Citations
75	Novel Cre-Expressing Mouse Strains Permitting to Selectively Track and Edit Type 1 Conventional Dendritic Cells Facilitate Disentangling Their Complexity in vivo. Frontiers in Immunology, 2018, 9, 2805.	2.2	27
76	The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity. Trends in Cancer, 2018, 4, 784-792.	3.8	317
77	Intratumoral Immunotherapy with XCL1 and sFlt3L Encoded in Recombinant Semliki Forest Virus–Derived Vectors Fosters Dendritic Cell–Mediated T-cell Cross-Priming. Cancer Research, 2018, 78, 6643-6654.	0.4	60
78	Recent advances in understanding dendritic cell development, classification, and phenotype. F1000Research, 2018, 7, 1558.	0.8	21
79	Alteration of Flt3-Ligand-dependent de novo generation of conventional dendritic cells during influenza infection contributes to respiratory bacterial superinfection. PLoS Pathogens, 2018, 14, e1007360.	2.1	29
80	Establishment and Characterization of a Functionally Competent Type 2 Conventional Dendritic Cell Line. Frontiers in Immunology, 2018, 9, 1912.	2.2	7
81	Transcription factor Etv6 regulates functional differentiation of cross-presenting classical dendritic cells. Journal of Experimental Medicine, 2018, 215, 2265-2278.	4.2	33
82	Batf3-Dependent Dendritic Cells Promote Optimal CD8 T Cell Responses against Respiratory Poxvirus Infection. Journal of Virology, 2018, 92, .	1.5	24
83	Clec9a-Mediated Ablation of Conventional Dendritic Cells Suggests a Lymphoid Path to Generating Dendritic Cells In Vivo. Frontiers in Immunology, 2018, 9, 699.	2.2	18
84	Microenvironmental derived factors modulating dendritic cell function and vaccine efficacy: the effect of prostanoid receptor and nuclear receptor ligands. Cancer Immunology, Immunotherapy, 2018, 67, 1789-1796.	2.0	5
85	Expression of the transcription factor ZBTB46 distinguishes human histiocytic disorders of classical dendritic cell origin. Modern Pathology, 2018, 31, 1479-1486.	2.9	14
86	Conventional Dendritic Cells Impair Recovery after Myocardial Infarction. Journal of Immunology, 2018, 201, 1784-1798.	0.4	43
87	The Origin of Skin Dendritic Cell Network and Its Role in Psoriasis. International Journal of Molecular Sciences, 2018, 19, 42.	1.8	31
88	Innate Immunity and Inflammation. , 2018, , 74-128.		0
89	Nuclear Receptor Nur77 Deficiency Alters Dendritic Cell Function. Frontiers in Immunology, 2018, 9, 1797.	2.2	22
90	Differential chemokine receptor expression and usage by preâ€ <scp>cDC</scp> 1 and preâ€ <scp>cDC</scp> 2. Immunology and Cell Biology, 2018, 96, 1131-1139.	1.0	24
91	Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nature Immunology, 2018, 19, 711-722.	7.0	226
92	An Nfil3–Zeb2–Id2 pathway imposes Irf8 enhancer switching during cDC1 development. Nature Immunology, 2019, 20, 1174-1185.	7.0	80

#	Article	IF	CITATIONS
93	Cryptic activation of an Irf8 enhancer governs cDC1 fate specification. Nature Immunology, 2019, 20, 1161-1173.	7.0	100
94	Decrypting DC development. Nature Immunology, 2019, 20, 1090-1092.	7.0	3
95	Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nature Biotechnology, 2019, 37, 925-936.	9.4	622
96	The transcription factor TCF-1 enforces commitment to the innate lymphoid cell lineage. Nature lmmunology, 2019, 20, 1150-1160.	7.0	81
97	Impaired dendritic cell functions in lung cancer: a review of recent advances and future perspectives. Cancer Communications, 2019, 39, 1-11.	3.7	52
98	Shared Transcriptional Control of Innate Lymphoid Cell and Dendritic Cell Development. Annual Review of Cell and Developmental Biology, 2019, 35, 381-406.	4.0	13
99	Single cell RNA-Seq reveals pre-cDCs fate determined by transcription factor combinatorial dose. BMC Molecular and Cell Biology, 2019, 20, 20.	1.0	18
100	Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Science Translational Medicine, 2019, 11 , .	5.8	148
101	Models of dendritic cell development correlate ontogeny with function. Advances in Immunology, 2019, 143, 99-119.	1.1	17
102	Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity. Cell, 2019, 179, 846-863.e24.	13.5	359
103	Current Paradigms of Tolerogenic Dendritic Cells and Clinical Implications for Systemic Lupus Erythematosus. Cells, 2019, 8, 1291.	1.8	25
104	Dendritic cell subsets and locations. International Review of Cell and Molecular Biology, 2019, 348, 1-68.	1.6	174
105	Liver DCs in health and disease. International Review of Cell and Molecular Biology, 2019, 348, 263-299.	1.6	9
106	Understanding the Functional Properties of Neonatal Dendritic Cells: A Doorway to Enhance Vaccine Effectiveness?. Frontiers in Immunology, 2019, 9, 3123.	2.2	14
107	Lipopolysaccharide impacts murine CD103 ⁺ DC differentiation, altering the lung DC population balance. European Journal of Immunology, 2019, 49, 638-652.	1.6	3
108	What Makes a pDC: Recent Advances in Understanding Plasmacytoid DC Development and Heterogeneity. Frontiers in Immunology, 2019, 10, 1222.	2.2	95
109	Cell-Intrinsic Wnt4 Influences Conventional Dendritic Cell Fate Determination to Suppress Type 2 Immunity. Journal of Immunology, 2019, 203, 511-519.	0.4	6
110	Investigating the Role of BATF3 in Grass Carp (Ctenopharyngodon idella) Immune Modulation: A Fundamental Functional Analysis. International Journal of Molecular Sciences, 2019, 20, 1687.	1.8	8

#	Article	IF	Citations
111	Priority lane to cDC1 open for IRF8+ progenitors. Blood, 2019, 133, 1795-1797.	0.6	1
112	Interferon-λ enhances adaptive mucosal immunity by boosting release of thymic stromal lymphopoietin. Nature Immunology, 2019, 20, 593-601.	7.0	68
113	Tissue clonality of dendritic cell subsets and emergency DCpoiesis revealed by multicolor fate mapping of DC progenitors. Science Immunology, 2019, 4, .	5.6	93
114	Identification of transcription factor binding sites using ATAC-seq. Genome Biology, 2019, 20, 45.	3.8	346
115	Are Conventional Type 1 Dendritic Cells Critical for Protective Antitumor Immunity and How?. Frontiers in Immunology, 2019, 10, 9.	2.2	126
116	ZEBs: Novel Players in Immune Cell Development and Function. Trends in Immunology, 2019, 40, 431-446.	2.9	86
117	Dendritic Cells and Cancer: From Biology to Therapeutic Intervention. Cancers, 2019, 11, 521.	1.7	100
118	Epigenetic control of early dendritic cell lineage specification by the transcription factor IRF8 in mice. Blood, 2019, 133, 1803-1813.	0.6	42
119	Allograft Inflammatory Factor-1 Governs Hematopoietic Stem Cell Differentiation Into cDC1 and Monocyte-Derived Dendritic Cells Through IRF8 and RelB in vitro. Frontiers in Immunology, 2019, 10, 173.	2.2	16
120	Emerging Principles in Myelopoiesis at Homeostasis and during Infection and Inflammation. Immunity, 2019, 50, 288-301.	6.6	106
121	Engineering dendritic cell vaccines to improve cancer immunotherapy. Nature Communications, 2019, 10, 5408.	5.8	313
122	Origin and development of classical dendritic cells. International Review of Cell and Molecular Biology, 2019, 349, 1-54.	1.6	31
123	Transcriptional control of dendritic cell development and functions. International Review of Cell and Molecular Biology, 2019, 349, 55-151.	1.6	63
124	Understanding and Modulating Immunity With Cell Reprogramming. Frontiers in Immunology, 2019, 10, 2809.	2.2	13
125	Transcription Factor PU.1 Promotes Conventional Dendritic Cell Identity and Function via Induction of Transcriptional Regulator DC-SCRIPT. Immunity, 2019, 50, 77-90.e5.	6.6	59
126	Emerging insights into human health and <scp>NK</scp> cell biology from the study of <scp>NK</scp> cell deficiencies. Immunological Reviews, 2019, 287, 202-225.	2.8	123
127	Human dendritic cell immunodeficiencies. Seminars in Cell and Developmental Biology, 2019, 86, 50-61.	2.3	25
128	cDC1 are required for the initiation of collagen-induced arthritis. Journal of Translational Autoimmunity, 2020, 3, 100066.	2.0	6

#	Article	IF	Citations
129	Chromatin Landscape Underpinning Human Dendritic Cell Heterogeneity. Cell Reports, 2020, 32, 108180.	2.9	18
130	High versus low dose irradiation for tumor immune reprogramming. Current Opinion in Biotechnology, 2020, 65, 268-283.	3.3	13
131	Unexplored horizons of cDC1 in immunity and tolerance. Advances in Immunology, 2020, 148, 49-91.	1.1	15
132	TAO-kinase 3 governs the terminal differentiation of NOTCH2-dependent splenic conventional dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31331-31342.	3.3	17
133	Bendamustine Conditioning Skews Murine Host DCs Toward Pre-cDC1s and Reduces GvHD Independently of Batf3. Frontiers in Immunology, 2020, 11, 1410.	2.2	11
134	Differential IRF8 Transcription Factor Requirement Defines Two Pathways of Dendritic Cell Development in Humans. Immunity, 2020, 53, 353-370.e8.	6.6	146
135	Novel concepts in plasmacytoid dendritic cell (pDC) development and differentiation. Molecular Immunology, 2020, 126, 25-30.	1.0	20
136	High Amount of Transcription Factor IRF8 Engages AP1-IRF Composite Elements in Enhancers to Direct Type 1 Conventional Dendritic Cell Identity. Immunity, 2020, 53, 759-774.e9.	6.6	46
137	Epigenetic aspects of DC development and differentiation. Molecular Immunology, 2020, 128, 116-124.	1.0	8
138	Single-cell RNA sequencing of murine islets shows high cellular complexity at all stages of autoimmune diabetes. Journal of Experimental Medicine, 2020, 217, .	4.2	78
139	FLT3 Ligand Is Dispensable for the Final Stage of Type 1 Conventional Dendritic Cell Differentiation. Journal of Immunology, 2020, 205, 2117-2127.	0.4	8
140	Augmenting E Protein Activity Impairs cDC2 Differentiation at the Pre-cDC Stage. Frontiers in Immunology, 2020, 11, 577718.	2.2	O
141	Interferon regulatory factor 8 governs myeloid cell development. Cytokine and Growth Factor Reviews, 2020, 55, 48-57.	3.2	14
142	Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nature Reviews Nephrology, 2020, 16, 391-407.	4.1	60
143	The quest for faithful in vitro models of human dendritic cells types. Molecular Immunology, 2020, 123, 40-59.	1.0	14
144	Adoptive cellular therapy with T cells expressing the dendritic cell growth factor Flt3L drives epitope spreading and antitumor immunity. Nature Immunology, 2020, 21, 914-926.	7.0	114
145	Innate Functions of Dendritic Cell Subsets in Cardiac Allograft Tolerance. Frontiers in Immunology, 2020, 11, 869.	2.2	6
146	Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection. Immunity, 2020, 52, 1039-1056.e9.	6.6	237

#	Article	IF	Citations
147	Suppression of Inflammasome Activation by IRF8 and IRF4 in cDCs Is Critical for T Cell Priming. Cell Reports, 2020, 31, 107604.	2.9	40
148	Towards the better understanding of myelopoiesis using single-cell technologies. Molecular Immunology, 2020, 122, 186-192.	1.0	12
149	Integrating context of tumor biology and vaccine design to shape multidimensional immunotherapies. Future Drug Discovery, 2020, 2, FDD25.	0.8	1
150	Transcriptional Networks Driving Dendritic Cell Differentiation and Function. Immunity, 2020, 52, 942-956.	6.6	90
151	Transcriptional regulation of DC fate specification. Molecular Immunology, 2020, 121, 38-46.	1.0	21
152	Human Intestinal Mononuclear Phagocytes in Health and Inflammatory Bowel Disease. Frontiers in Immunology, 2020, 11, 410.	2.2	54
153	CD137 Signaling Regulates Acute Colitis via RALDH2-Expressing CD11bâ^'CD103+ DCs. Cell Reports, 2020, 30, 4124-4136.e5.	2.9	9
154	Dendritic cell development at a clonal level within a revised †continuous†model of haematopoiesis. Molecular Immunology, 2020, 124, 190-197.	1.0	10
155	Versican and Versican-matrikines in Cancer Progression, Inflammation, and Immunity. Journal of Histochemistry and Cytochemistry, 2020, 68, 871-885.	1.3	38
156	Inhibition of LSD1 in MDS progenitors restores differentiation of CD141Hi conventional dendritic cells. Leukemia, 2020, 34, 2460-2472.	3.3	7
157	Dendritic cell development: A personal historical perspective. Molecular Immunology, 2020, 119, 64-68.	1.0	12
158	Insights from Patients with Dendritic Cell Immunodeficiency. Molecular Immunology, 2020, 122, 116-123.	1.0	4
159	Tissue-Specific Factors Differentially Regulate the Expression of Antigen-Processing Enzymes During Dendritic Cell Ontogeny. Frontiers in Immunology, 2020, 11, 453.	2.2	8
160	Dendritic Cells, the T-cell-inflamed Tumor Microenvironment, and Immunotherapy Treatment Response. Clinical Cancer Research, 2020, 26, 3901-3907.	3.2	72
161	Intestinal epithelium-derived BATF3 promotes colitis-associated colon cancer through facilitating CXCL5-mediated neutrophils recruitment. Mucosal Immunology, 2021, 14, 187-198.	2.7	23
162	Genetic models of human and mouse dendritic cell development and function. Nature Reviews Immunology, 2021, 21, 101-115.	10.6	158
163	Transcriptional divergence between cDC1s and cDC2s: an AP1–IRF composite element-dependent program. Cellular and Molecular Immunology, 2021, 18, 1618-1619.	4.8	0
164	A RUNX–CBFβ-driven enhancer directs the Irf8 dose-dependent lineage choice between DCs and monocytes. Nature Immunology, 2021, 22, 301-311.	7.0	29

#	ARTICLE	IF	Citations
165	ILC3s control splenic cDC homeostasis via lymphotoxin signaling. Journal of Experimental Medicine, 2021, 218, .	4.2	6
166	Monocytes, macrophages, dendritic cells and neutrophils: an update on lifespan kinetics in health and disease. Immunology, 2021, 163, 250-261.	2.0	91
167	Single-cell analyses reveal the clonal and molecular aetiology of Flt3L-induced emergency dendritic cell development. Nature Cell Biology, 2021, 23, 219-231.	4.6	22
169	The AP-1 transcription factors c-Jun and JunB are essential for CD8α conventional dendritic cell identity. Cell Death and Differentiation, 2021, 28, 2404-2420.	5.0	18
170	Type 1 conventional dendritic cell fate and function are controlled by DC-SCRIPT. Science Immunology, $2021, 6, .$	5.6	19
171	Dendritic Cells Revisited. Annual Review of Immunology, 2021, 39, 131-166.	9.5	339
172	Dendritic Cell Regulation of T Helper Cells. Annual Review of Immunology, 2021, 39, 759-790.	9.5	139
173	Absence of Batf3 reveals a new dimension of cell state heterogeneity within conventional dendritic cells. IScience, 2021, 24, 102402.	1.9	16
174	<i>Bcl6</i> -Independent In Vivo Development of Functional Type 1 Classical Dendritic Cells Supporting Tumor Rejection. Journal of Immunology, 2021, 207, 125-132.	0.4	4
175	TIPD: A Probability Distribution-Based Method for Trajectory Inference from Single-Cell RNA-Seq Data. Interdisciplinary Sciences, Computational Life Sciences, 2021, 13, 652-665.	2.2	2
176	Insights Into Dendritic Cells in Cancer Immunotherapy: From Bench to Clinical Applications. Frontiers in Cell and Developmental Biology, 2021, 9, 686544.	1.8	25
177	Commitment to dendritic cells and monocytes. International Immunology, 2021, 33, 815-819.	1.8	5
179	Exposure to the Gram-Negative Bacteria Pseudomonas aeruginosa Influences the Lung Dendritic Cell Population Signature by Interfering With CD103 Expression. Frontiers in Cellular and Infection Microbiology, 2021, 11, 617481.	1.8	3
180	cDC1 Dependent Accumulation of Memory T Cells Is Required for Chronic Autoimmune Inflammation in Murine Testis. Frontiers in Immunology, 2021, 12, 651860.	2.2	6
181	Differential usage of transcriptional repressor Zeb2 enhancers distinguishes adult and embryonic hematopoiesis. Immunity, 2021, 54, 1417-1432.e7.	6.6	17
182	Unboxing dendritic cells: Tales of multiâ€faceted biology and function. Immunology, 2021, 164, 433-449.	2.0	16
184	PD-L1+ and XCR1+ dendritic cells are region-specific regulators of gut homeostasis. Nature Communications, 2021, 12, 4907.	5.8	18
185	Low-Dose Radiotherapy Reverses Tumor Immune Desertification and Resistance to Immunotherapy. Cancer Discovery, 2022, 12, 108-133.	7.7	165

#	Article	IF	CITATIONS
186	Dendritic cells in cancer immunology. Cellular and Molecular Immunology, 2022, 19, 3-13.	4.8	91
187	ZMYND8-regulated IRF8 transcription axis is an acute myeloid leukemia dependency. Molecular Cell, 2021, 81, 3604-3622.e10.	4.5	32
188	Posttranslational modifications by ADAM10 shape myeloid antigen-presenting cell homeostasis in the splenic marginal zone. Proceedings of the National Academy of Sciences of the United States of America, 2021 , 118 , .	3 . 3	7
189	Dendritic Cells in Primary Immunodeficiency. , 2021, , 255-267.		O
191	Versican in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1272, 55-72.	0.8	19
192	Transcriptional Control of Mature B Cell Fates. Trends in Immunology, 2020, 41, 601-613.	2.9	22
193	Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cellular and Molecular Immunology, 2020, 17, 587-599.	4.8	183
194	BATF3 programs CD8+ T cell memory. Nature Immunology, 2020, 21, 1397-1407.	7.0	80
200	An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. Journal of Clinical Investigation, 2018, 128, 5549-5560.	3.9	193
201	Biallelic mutations in IRF8 impair human NK cell maturation and function. Journal of Clinical Investigation, 2016, 127, 306-320.	3.9	76
202	The transcription factor NR4A3 controls CD103+ dendritic cell migration. Journal of Clinical Investigation, 2016, 126, 4603-4615.	3.9	30
203	Differential IRF8 Requirement Defines Two Pathways of Dendritic Cell Development in Humans. SSRN Electronic Journal, 0, , .	0.4	7
204	Identification of Two Subsets of Murine DC1 Dendritic Cells That Differ by Surface Phenotype, Gene Expression, and Function. Frontiers in Immunology, 2021, 12, 746469.	2.2	7
208	Type 1 conventional dendritic cells: ontogeny, function, and emerging roles in cancer immunotherapy. Trends in Immunology, 2021, 42, 1113-1127.	2.9	16
209	Recruitment of dendritic cell progenitors to foci of influenza A virus infection sustains immunity. Science Immunology, 2021, 6, eabi9331.	5 . 6	14
210	The thymic microenvironment gradually modulates the phenotype of thymusâ€homing peripheral conventional dendritic cells. Immunity, Inflammation and Disease, 2022, 10, 175-188.	1.3	3
211	Epigenetics and tissue immunityâ€"Translating environmental cues into functional adaptations*. Immunological Reviews, 2022, 305, 111-136.	2.8	6
212	Mutation in Irf8 Gene (Irf8R294C) Impairs Type I IFN-Mediated Antiviral Immune Response by Murine pDCs. Frontiers in Immunology, 2021, 12, 758190.	2.2	4

#	ARTICLE	IF	CITATIONS
213	Information flow in the spatiotemporal organization of immune responses*. Immunological Reviews, 2022, 306, 93-107.	2.8	6
214	The Role of Innate Immune Cells in Tumor Invasion and Metastasis. Cancers, 2021, 13, 5885.	1.7	8
215	Mitochondrial STAT3 exacerbates LPS-induced sepsis by driving CPT1a-mediated fatty acid oxidation. Theranostics, 2022, 12, 976-998.	4.6	37
216	Stimulation of a subset of natural killer TÂcells by CD103+ DC is required for GM-CSF and protection from pneumococcal infection. Cell Reports, 2022, 38, 110209.	2.9	5
217	Host T Cell Dedifferentiation Effects Drive HIV-1 Latency Stability. Journal of Virology, 2022, 96, jvi0197421.	1.5	2
218	Methionine- and Choline-Deficient Diet Identifies an Essential Role for DNA Methylation in Plasmacytoid Dendritic Cell Biology. Journal of Immunology, 2022, 208, 881-897.	0.4	2
219	IRF8 and BATF3 interaction enhances the cDC1 specific Pfkfb3 gene expression. Cellular Immunology, 2022, 371, 104468.	1.4	4
220	Dendritic cell functions in vivo: A user's guide to current and next―generation mutant mouse models. European Journal of Immunology, 2022, 52, 1712-1749.	1.6	5
221	Glycosyltransferase Extl1 Promotes CCR7-Mediated Dendritic Cell Migration to Balance Immunity and Tolerance. SSRN Electronic Journal, 0, , .	0.4	0
222	Role of NR4A family members in myeloid cells and leukemia. Current Research in Immunology, 2022, 3, 23-36.	1.2	6
223	Epigenetics of Dendritic Cells in Tumor Immunology. Cancers, 2022, 14, 1179.	1.7	13
224	Single-cell transcriptional profiling informs efficient reprogramming of human somatic cells to cross-presenting dendritic cells. Science Immunology, 2022, 7, eabg5539.	5.6	16
225	Clonal lineage tracing reveals shared origin of conventional and plasmacytoid dendritic cells. Immunity, 2022, 55, 405-422.e11.	6.6	37
226	Distinct myeloid antigen-presenting cells dictate differential fates of tumor-specific CD8+ T cells in pancreatic cancer. JCI Insight, 2022, 7, .	2.3	5
227	Class Ib MHC–Mediated Immune Interactions Play a Critical Role in Maintaining Mucosal Homeostasis in the Mammalian Large Intestine. ImmunoHorizons, 2021, 5, 953-971.	0.8	0
228	Transition from <i>cMyc</i> to <i>L-Myc</i> during dendritic cell development coordinated by rising levels of IRF8. Journal of Experimental Medicine, 2022, 219, .	4.2	11
229	Cisplatin resistance-related multi-omics differences and the establishment of machine learning models. Journal of Translational Medicine, 2022, 20, 171.	1.8	18
230	The Role of Type-2 Conventional Dendritic Cells in the Regulation of Tumor Immunity. Cancers, 2022, 14, 1976.	1.7	27

#	Article	IF	CITATIONS
231	The <i>In Vitro</i> Differentiation of Human CD141+CLEC9A+ Dendritic Cells from Mobilized Peripheral Blood CD34+ Hematopoietic Stem Cells. Current Protocols, 2022, 2, e410.	1.3	5
252	Antigen Presentation in the Lung. Frontiers in Immunology, 2022, 13, .	2.2	19
253	A cardioimmunologist's toolkit: genetic tools to dissect immune cells in cardiac disease. Nature Reviews Cardiology, 2022, 19, 395-413.	6.1	6
254	Single-cell transcriptome profiling of the immune space-time landscape reveals dendritic cell regulatory program in polymicrobial sepsis. Theranostics, 2022, 12, 4606-4628.	4.6	17
256	Indoleamine 2,3-dioxygenase 1 activation in mature cDC1 promotes tolerogenic education of inflammatory cDC2 via metabolic communication. Immunity, 2022, 55, 1032-1050.e14.	6.6	41
257	Ablation of cDC2 development by triple mutations within the Zeb2 enhancer. Nature, 2022, 607, 142-148.	13.7	34
258	Ly6D+Siglec-H+ precursors contribute to conventional dendritic cells via a Zbtb46+Ly6D+ intermediary stage. Nature Communications, 2022, 13, .	5.8	7
260	IRF8 deficiency induces the transcriptional, functional, and epigenetic reprogramming of cDC1 into the cDC2 lineage. Immunity, 2022, 55, 1431-1447.e11.	6.6	16
261	Chromatin structure undergoes global and local reorganization during murine dendritic cell development and activation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
264	Murine precursors to type 1 conventional dendritic cells induce tumor cytotoxicity and exhibit activated PD-1/PD-L1 pathway. PLoS ONE, 2022, 17, e0273075.	1.1	3
265	IRF8: Mechanism of Action and Health Implications. Cells, 2022, 11, 2630.	1.8	6
266	Who on IRF are you? IRF8 deficiency redirects cDC1 lineage commitment. Trends in Immunology, 2022, 43, 687-689.	2.9	0
267	Functional Specialization of Dendritic Cell Subsets. , 2022, , .		0
268	Dendritic Cells., 2022,,.		0
270	Compartmentalization of gut immune responses: Mucosal niches and lymph node peculiarities. Immunology Letters, 2022, 251-252, 86-90.	1.1	2
271	The Toxoplasma effector GRA28 promotes parasite dissemination by inducing dendritic cell-like migratory properties in infected macrophages. Cell Host and Microbe, 2022, 30, 1570-1588.e7.	5.1	12
272	The thin line between conventional dendritic cells (cDCs) and group 3 innate lymphoid cells (ILC3s) in the gut. International Immunology, 2023, 35, 107-121.	1.8	2
273	Using Blood Transcriptome Analysis to Determine the Changes in Immunity and Metabolism of Giant Pandas with Age. Veterinary Sciences, 2022, 9, 667.	0.6	1

#	Article	IF	CITATIONS
274	Modulation of the gut microbiota engages antigen cross-presentation to enhance antitumor effects of CAR TÂcell immunotherapy. Molecular Therapy, 2023, 31, 686-700.	3.7	7
275	Ablation of Adar1 in myeloid cells imprints a global antiviral state in the lung and heightens early immunity against SARS-CoV-2. Cell Reports, 2023, 42, 112038.	2.9	1
277	Classical DC2 subsets and monocyteâ€derived DC: Delineating the developmental and functional relationship. European Journal of Immunology, 2023, 53, .	1.6	5
278	The intestinal microenvironment shapes macrophage and dendritic cell identity and function. Immunology Letters, 2023, 253, 41-53.	1.1	5
279	SHP-2 and PD-1-SHP-2 signaling regulate myeloid cell differentiation and antitumor responses. Nature Immunology, 2023, 24, 55-68.	7.0	22
280	Perspective Chapter: Dendritic Cells in The Tumor Microenvironment. , 0, , .		0
282	Early-life hyperoxia-induced Flt3L drives neonatal lung dendritic cell expansion and proinflammatory responses. Frontiers in Immunology, 0, 14, .	2.2	1
283	pDC-like cells are pre-DC2 and require KLF4 to control homeostatic CD4 T cells. Science Immunology, 2023, 8, .	5.6	12
284	Concomitant inhibition of PPAR $\hat{1}^3$ and mTORC1 induces the differentiation of human monocytes into highly immunogenic dendritic cells. Cell Reports, 2023, 42, 112156.	2.9	2
285	Insights into dendritic cell maturation during infection with application of advanced imaging techniques. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	1
286	Origin, Phenotype, and Function of Mouse Dendritic Cell Subsets. Methods in Molecular Biology, 2023, , 3-16.	0.4	0
287	A lncRNA identifies Irf8 enhancer element in negative feedback control of dendritic cell differentiation. ELife, 0, 12, .	2.8	3
288	The role of dendritic cells in radiation-induced immune responses. International Review of Cell and Molecular Biology, 2023, , .	1.6	1
289	<i>Cis</i> interactions in the <i>Irf8</i> locus regulate stage-dependent enhancer activation. Genes and Development, 0, , .	2.7	0
297	tDCs \hat{a} e" a distinct subset with dual functional and developmental roles. Nature Immunology, 0, , .	7.0	0
313	Concise review: The heterogenous roles of BATF3 in cancer oncogenesis and dendritic cells and T cells differentiation and function considering the importance of BATF3-dependent dendritic cells. Immunogenetics, 2024, 76, 75-91.	1.2	0