Computational analysis and material selection in crossturbine blade

Journal of Reinforced Plastics and Composites 34, 101-115 DOI: 10.1177/0731684414565224

Citation Report

#	Article	IF	CITATIONS
1	Quasi-static buckling and first-ply failure loads of shear web reinforced glass-fabric composite wind blades. Composite Structures, 2017, 160, 1225-1235.	3.1	14
2	Energy Management—Collective and Computational Intelligence with Theory and Applications. Studies in Systems, Decision and Control, 2018, , .	0.8	4
3	Cross-section analysis of wind turbine blades: comparison of failure between glass and carbon fiber. Advanced Composite Materials, 2018, 27, 561-574.	1.0	7
4	Structural integrity assessment on cracked composites interaction with aeroelastic constraint by means of XFEM. Composite Structures, 2019, 229, 111414.	3.1	11
5	Linear and nonlinear buckling analysis for the material design optimization of wind turbine blades. International Journal of Structural Integrity, 2019, 10, 749-765.	1.8	4
6	A Life Cycle Engineering Perspective on Biocomposites as a Solution for a Sustainable Recovery. Sustainability, 2021, 13, 1160.	1.6	56
7	Dynamic Analysis of Composite Wind Turbine Blades as Beams: An Analytical and Numerical Study. Vibration, 2021, 4, 1-15.	0.9	12
8	A NUMERICAL STUDY FOR THE BUCKLING CAPACITY OF WIND TURBINE BLADES: GEOMETRY, LOADING AND MATERIAL INFLUENCE. , 2016, , .		1
9	Fuzzy Sets Based Performance Evaluation of Alternative Wind Energy Systems. Studies in Systems, Decision and Control, 2018, , 427-446.	0.8	1
10	Finite element modeling aspects in the fracture assessment of a low pressure steam turbine blade. International Journal on Interactive Design and Manufacturing, 0, , .	1.3	0
11	Preparation and Characterization of Polymeric Composites Assembled from Fiberglass Fabric Waste from the Wind Blades Manufacturing Process. Fibers and Polymers, 2022, 23, 3606-3614.	1.1	3
12	A Review on Composite Material Selection Using DEMATEL Method. , 2022, 1, 28-37.		2
13	Composite Material Selection for Structural Applications Using WPM Method. , 2022, 1, 1-8.		2

13Composite Material Selection for Structural Applications Using WPM Method., 2022, 1, 1-8.