Klf4 Expression in Conventional Dendritic Cells Is Requ

Immunity 42, 916-928 DOI: 10.1016/j.immuni.2015.04.017

Citation Report

#	Article	IF	CITATIONS
1	In vitro-generated MDSCs prevent murine GVHD by inducing type 2 T cells without disabling antitumor cytotoxicity. Blood, 2015, 126, 1138-1148.	0.6	71
2	A Hitchhiker's Guide to Myeloid Cell Subsets: Practical Implementation of a Novel Mononuclear Phagocyte Classification System. Frontiers in Immunology, 2015, 6, 406.	2.2	99
3	Immunity to Pathogens Taught by Specialized Human Dendritic Cell Subsets. Frontiers in Immunology, 2015, 6, 527.	2.2	47
4	Transcriptional Regulation of Mononuclear Phagocyte Development. Frontiers in Immunology, 2015, 6, 533.	2.2	47
5	Krüppel-ling of IRF4-Dependent DCs into Two Functionally Distinct DC Subsets. Immunity, 2015, 42, 785-787.	6.6	8
6	Barrier Epithelial Cells and the Control of Type 2 Immunity. Immunity, 2015, 43, 29-40.	6.6	634
7	Dendritic Cells and Dendritic Cell Subsets. , 2016, , 345-352.		3
8	Determinants of Divergent Adaptive Immune Responses after Airway Sensitization with Ligands of Toll-Like Receptor 9. PLoS ONE, 2016, 11, e0167693.	1.1	11
9	iNKT Cells Are Responsible for the Apoptotic Reduction of Basophils That Mediate Th2 Immune Responses Elicited by Papain in Mice Following γPGA Stimulation. PLoS ONE, 2016, 11, e0152189.	1.1	8
10	Regulation of Th2 Cell Immunity by Dendritic Cells. Immune Network, 2016, 16, 1.	1.6	73
11	Papainâ€Based Vaccination Modulates <i>Schistosoma mansoni</i> Infectionâ€Induced Cytokine Signals. Scandinavian Journal of Immunology, 2016, 83, 128-138.	1.3	8
12	The Mononuclear Phagocyte System in Organ Transplantation. American Journal of Transplantation, 2016, 16, 1053-1069.	2.6	24
13	Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14775-14780.	3.3	67
14	The Heterogeneity of Ly6Chi Monocytes Controls Their Differentiation into iNOS+ Macrophages or Monocyte-Derived Dendritic Cells. Immunity, 2016, 45, 1205-1218.	6.6	237
15	Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment. Science Immunology, 2016, 1, .	5.6	145
16	Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development. Nature Communications, 2016, 7, 11988.	5.8	67
17	Myeloid Cell Phenotypes in Susceptibility and Resistance to Helminth Parasite Infections. Microbiology Spectrum, 2016, 4, .	1.2	8
18	The influence of skin microorganisms on cutaneous immunity. Nature Reviews Immunology, 2016, 16, 353-366.	10.6	237

#	Article	IF	CITATIONS
19	The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. Journal of Experimental Medicine, 2016, 213, 897-911.	4.2	125
20	Dendritic Cells and Monocytes with Distinct Inflammatory Responses Reside in Lung Mucosa of Healthy Humans. Journal of Immunology, 2016, 196, 4498-4509.	0.4	59
21	Host-Protozoan Interactions Protect from Mucosal Infections through Activation of the Inflammasome. Cell, 2016, 167, 444-456.e14.	13.5	251
22	Dendritic cells and adipose tissue. Immunology, 2016, 149, 353-361.	2.0	42
23	Regulation of the host immune system by helminth parasites. Journal of Allergy and Clinical Immunology, 2016, 138, 666-675.	1.5	409
24	Interferon response factorâ€3 promotes the proâ€Th2 activity of mouse lung CD11b ⁺ conventional dendritic cells in response to house dust mite allergens. European Journal of Immunology, 2016, 46, 2614-2628.	1.6	12
25	Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species. Immunity, 2016, 45, 669-684.	6.6	683
26	Conventional Dendritic Cells: Identification, Subsets, Development, andÂFunctions. , 2016, , 374-383.		0
27	Krüppel-like Factor 4 modulates interleukin-6 release in human dendritic cells after in vitro stimulation with Aspergillus fumigatus and Candida albicans. Scientific Reports, 2016, 6, 27990.	1.6	29
28	GATA1-Deficient Dendritic Cells Display Impaired CCL21-Dependent Migration toward Lymph Nodes Due to Reduced Levels of Polysialic Acid. Journal of Immunology, 2016, 197, 4312-4324.	0.4	12
29	Functions of Murine Dendritic Cells. Immunity, 2016, 45, 719-736.	6.6	313
30	Dendritic cell analysis in primary immunodeficiency. Current Opinion in Allergy and Clinical Immunology, 2016, 16, 530-540.	1.1	23
31	Dendritic cells in lung immunopathology. Seminars in Immunopathology, 2016, 38, 449-460.	2.8	60
32	Molecular events by which dendritic cells promote Th2 immune protection in helmith infection. Infectious Diseases, 2016, 48, 715-720.	1.4	19
33	IL-10-producing lung interstitial macrophages prevent neutrophilic asthma. International Immunology, 2016, 28, 489-501.	1.8	82
34	Classical dendritic cells are required for dietary antigen–mediated induction of peripheral Treg cells and tolerance. Nature Immunology, 2016, 17, 545-555.	7.0	222
35	Duality at the gate: Skin dendritic cells as mediators of vaccine immunity and tolerance. Human Vaccines and Immunotherapeutics, 2016, 12, 104-116.	1.4	9
36	IRF4 and IRF8 Act in CD11c+ Cells To Regulate Terminal Differentiation of Lung Tissue Dendritic Cells. Journal of Immunology, 2016, 196, 1666-1677.	0.4	81

#	ARTICLE	IF	CITATIONS
37	Role of the reprogramming factor KLF4 in blood formation. Journal of Leukocyte Biology, 2016, 99, 673-685	1.5	24
38	Mechanisms for T cell tolerance induced with granulocyte colony-stimulating factor. Molecular Immunology, 2016, 70, 56-62.	1.0	25
39	Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. Journal of Experimental Medicine, 2016, 213, 35-51.	4.2	90
40	Transcriptional Control of Dendritic Cell Development. Annual Review of Immunology, 2016, 34, 93-119.	9.5	354
41	Negative Regulation of Type 2 Immunity. Trends in Immunology, 2017, 38, 154-167.	2.9	21
42	Human Blood CD1c+ Dendritic Cells Encompass CD5high and CD5low Subsets That Differ Significantly in Phenotype, Gene Expression, and Functions. Journal of Immunology, 2017, 198, 1553-1564.	0.4	93
43	Antigen-Presenting Cells in the Skin. Annual Review of Immunology, 2017, 35, 469-499.	9.5	275
44	Krüppel-like factor 4 (KLF4): What we currently know. Gene, 2017, 611, 27-37.	1.0	369
45	Epicutaneous sensitization to house dust mite allergen requires interferon regulatory factor 4–dependent dermal dendritic cells. Journal of Allergy and Clinical Immunology, 2017, 140, 1364-1377.e2.	1.5	55
46	Development of conventional dendritic cells: from common bone marrow progenitors to multiple subsets in peripheral tissues. Mucosal Immunology, 2017, 10, 831-844.	2.7	155
47	Tissue-Specific Diversity and Functions of Conventional Dendritic Cells. Advances in Immunology, 2017, 134, 89-135.	1.1	28
48	T follicular helper and T H 2 cells in allergic responses. Allergology International, 2017, 66, 377-381.	1.4	40
49	Modes of Action for Mucosal Vaccine Adjuvants. Viral Immunology, 2017, 30, 463-470.	0.6	61
50	Th2 responses are primed by skin dendritic cells with distinct transcriptional profiles. Journal of Experimental Medicine, 2017, 214, 125-142.	4.2	69
51	The role of rare innate immune cells in Type 2 immune activation against parasitic helminths. Parasitology, 2017, 144, 1288-1301.	0.7	31
52	Diversity and functions of intestinal mononuclear phagocytes. Mucosal Immunology, 2017, 10, 845-864.	2.7	138
53	The Cooperative Role of CD326+ and CD11b+ Dendritic Cell Subsets for a Hapten-Induced Th2 Differentiation. Journal of Immunology, 2017, 199, 3137-3146.	0.4	7
54	A Discrete Subset of Monocyte-Derived Cells among Typical Conventional Type 2 Dendritic Cells Can Efficiently Cross-Present. Cell Reports, 2017, 21, 1203-1214.	2.9	63

#	Article	IF	CITATIONS
55	O-Acetylation of Peptidoglycan Limits Helper T Cell Priming and Permits Staphylococcus aureus Reinfection. Cell Host and Microbe, 2017, 22, 543-551.e4.	5.1	32
56	Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Annals of Oncology, 2017, 28, xii44-xii55.	0.6	170
57	Regulatory Dendritic Cells. Current Topics in Microbiology and Immunology, 2017, 410, 47-71.	0.7	22
58	Epigenetic Regulation of Dendritic Cell Development and Function. Cancer Journal (Sudbury, Mass), 2017, 23, 302-307.	1.0	30
59	Type I interferon is required for T helper (Th) 2 induction by dendritic cells. EMBO Journal, 2017, 36, 2404-2418.	3.5	80
60	Dendritic Cell Lineage Potential in Human Early Hematopoietic Progenitors. Cell Reports, 2017, 20, 529-537.	2.9	61
61	Targeting C-type lectin receptors: a high-carbohydrate diet for dendritic cells to improve cancer vaccines. Journal of Leukocyte Biology, 2017, 102, 1017-1034.	1.5	67
62	Dendritic cell recruitment and activation in autoimmunity. Journal of Autoimmunity, 2017, 85, 126-140.	3.0	108
63	mTOR regulates metabolic adaptation of APCs in the lung and controls the outcome of allergic inflammation. Science, 2017, 357, 1014-1021.	6.0	98
64	A CD103+ Conventional Dendritic Cell Surveillance System Prevents Development of Overt Heart Failure during Subclinical Viral Myocarditis. Immunity, 2017, 47, 974-989.e8.	6.6	50
65	Near-Infrared 1064 nm Laser Modulates Migratory Dendritic Cells To Augment the Immune Response to Intradermal Influenza Vaccine. Journal of Immunology, 2017, 199, 1319-1332.	0.4	24
66	Petri Net computational modelling of Langerhans cell Interferon Regulatory Factor Network predicts their role in T cell activation. Scientific Reports, 2017, 7, 668.	1.6	26
67	T Cells in Allergic Asthma: Key Players Beyond the Th2 Pathway. Current Allergy and Asthma Reports, 2017, 17, 43.	2.4	35
68	Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunological Reviews, 2017, 278, 145-161.	2.8	105
69	Interplay between barrier epithelial cells and dendritic cells in allergic sensitization through the lung and the skin. Immunological Reviews, 2017, 278, 131-144.	2.8	57
70	Innate and adaptive type 2 immunity in lung allergic inflammation. Immunological Reviews, 2017, 278, 162-172.	2.8	213
71	Metabolic control of type 2 immunity. European Journal of Immunology, 2017, 47, 1266-1275.	1.6	21
72	Dectin-1 Plays an Important Role in House Dust Mite–Induced Allergic Airway Inflammation through the Activation of CD11b+ Dendritic Cells. Journal of Immunology, 2017, 198, 61-70.	0.4	67

#	Article	IF	CITATIONS
73	The origin of DCs and capacity for immunologic tolerance in central and peripheral tissues. Seminars in Immunopathology, 2017, 39, 137-152.	2.8	62
74	Dendritic cells in central nervous system autoimmunity. Seminars in Immunopathology, 2017, 39, 99-111.	2.8	35
75	Human skin dendritic cell fate is differentially regulated by the monocyte identity factor Kruppel-like factor 4 during steady state and inflammation. Journal of Allergy and Clinical Immunology, 2017, 139, 1873-1884.e10.	1.5	20
77	Kruppel-like factor 4 regulates neutrophil activation. Blood Advances, 2017, 1, 662-668.	2.5	8
78	Myeloid Cell Phenotypes in Susceptibility and Resistance to Helminth Parasite Infections. , 2017, , 759-769.		0
79	Lung CD103+ dendritic cells restrain allergic airway inflammation through IL-12 production. JCI Insight, 2017, 2, .	2.3	54
80	Homeostatic control of dendritic cell numbers and differentiation. Immunology and Cell Biology, 2018, 96, 463-476.	1.0	41
81	A new RelBâ€dependent CD117 + CD172a + murine DC subset preferentially induces Th2 differentiation and supports airway hyperresponses in vivo. European Journal of Immunology, 2018, 48, 923-936.	1.6	11
82	Isolation of Murine Skin Resident and Migratory Dendritic Cells via Enzymatic Digestion. Current Protocols in Immunology, 2018, 121, e45.	3.6	24
83	House dust mite induced allergic airway disease is attenuated in CD11ccreIL-4Rαâ^'/l°x mice. Scientific Reports, 2018, 8, 885.	1.6	12
84	Biology and function of adipose tissue macrophages, dendritic cells and B cells. Atherosclerosis, 2018, 271, 102-110.	0.4	47
85	Immunity to gastrointestinal nematode infections. Mucosal Immunology, 2018, 11, 304-315.	2.7	89
86	Dendritic cells conditioned by activin A–induced regulatory T cells exhibit enhanced tolerogenic properties and protect against experimental asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 671-684.e7.	1.5	18
87	ADAM10 and Notch1 on murine dendritic cells control the development of type 2 immunity and IgE production. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 125-136.	2.7	18
88	TH2 cell development and function. Nature Reviews Immunology, 2018, 18, 121-133.	10.6	365
89	Development, Diversity, and Function of Dendritic Cells in Mouse and Human. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028613.	2.3	71
90	Functional specialization of intestinal dendritic cell subsets during Th2 helminth infection in mice. European Journal of Immunology, 2018, 48, 87-98.	1.6	6
91	Immunomodulatory Bonds of the Partnership between Dendritic Cells and T Cells. Critical Reviews in Immunology, 2018, 38, 379-401.	1.0	58

#	Article	IF	CITATIONS
92	PDL2+ CD11b+ dermal dendritic cells capture topical antigen through hair follicles to prime LAP+ Tregs. Nature Communications, 2018, 9, 5238.	5.8	55
93	The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity. Trends in Cancer, 2018, 4, 784-792.	3.8	317
94	Notch2-dependent DC2s mediate splenic germinal center responses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10726-10731.	3.3	53
95	Eosinophil recruitment is dynamically regulated by interplay among lung dendritic cell subsets after allergen challenge. Nature Communications, 2018, 9, 3879.	5.8	48
96	Recent advances in understanding dendritic cell development, classification, and phenotype. F1000Research, 2018, 7, 1558.	0.8	21
97	Langerin+ DCs regulate innate IL-17 production in the oral mucosa during Candida albicans-mediated infection. PLoS Pathogens, 2018, 14, e1007069.	2.1	51
98	Krüppel-Like Factors in Vascular Inflammation: Mechanistic Insights and Therapeutic Potential. Frontiers in Cardiovascular Medicine, 2018, 5, 6.	1.1	81
99	Clec9a-Mediated Ablation of Conventional Dendritic Cells Suggests a Lymphoid Path to Generating Dendritic Cells In Vivo. Frontiers in Immunology, 2018, 9, 699.	2.2	18
100	Understanding the Cellular Origin of the Mononuclear Phagocyte System Sheds Light on the Myeloid Postulate of Immune Paralysis in Sepsis. Frontiers in Immunology, 2018, 9, 823.	2.2	18
101	Type 2 immunity in asthma. World Allergy Organization Journal, 2018, 11, 13.	1.6	116
102	Isolation and Characterization of Mononuclear Phagocytes in the Mouse Lung and Lymph Nodes. Methods in Molecular Biology, 2018, 1809, 33-44.	0.4	22
103	Expression characteristics and functional analysis of Krüppel-like factor 4 in adductor muscle and mantle of Zhikong scallop Chlamys farreri. Development Genes and Evolution, 2018, 228, 95-103.	0.4	1
104	The Chemokine Receptor CCR8 Promotes the Migration of Dendritic Cells into the Lymph Node Parenchyma to Initiate the Allergic Immune Response. Immunity, 2018, 49, 449-463.e6.	6.6	77
105	The Origin of Skin Dendritic Cell Network and Its Role in Psoriasis. International Journal of Molecular Sciences, 2018, 19, 42.	1.8	31
106	Interferon regulatory factor 8 regulates caspase-1 expression to facilitate Epstein-Barr virus reactivation in response to B cell receptor stimulation and chemical induction. PLoS Pathogens, 2018, 14, e1006868.	2.1	45
107	Differential chemokine receptor expression and usage by preâ€ <scp>cDC</scp> 1 and preâ€ <scp>cDC</scp> 2. Immunology and Cell Biology, 2018, 96, 1131-1139.	1.0	24
108	Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nature Immunology, 2018, 19, 711-722.	7.0	226
109	Worms: Pernicious parasites or allies against allergies?. Parasite Immunology, 2019, 41, e12574.	0.7	19

#	Article	IF	CITATIONS
110	Tuning the Tumor Myeloid Microenvironment to Fight Cancer. Frontiers in Immunology, 2019, 10, 1611.	2.2	96
111	KLF4 upregulation is involved in alternative macrophage activation during secondary <i>Echinococcus granulosus</i> infection. Parasite Immunology, 2019, 41, e12666.	0.7	7
112	An Nfil3–Zeb2–Id2 pathway imposes Irf8 enhancer switching during cDC1 development. Nature Immunology, 2019, 20, 1174-1185.	7.0	80
113	Shared Transcriptional Control of Innate Lymphoid Cell and Dendritic Cell Development. Annual Review of Cell and Developmental Biology, 2019, 35, 381-406.	4.0	13
114	Thioesterase PPT1 balances viral resistance and efficient T cell crosspriming in dendritic cells. Journal of Experimental Medicine, 2019, 216, 2091-2112.	4.2	23
115	Single cell RNA-Seq reveals pre-cDCs fate determined by transcription factor combinatorial dose. BMC Molecular and Cell Biology, 2019, 20, 20.	1.0	18
116	Cell-autonomous FLT3L shedding via ADAM10 mediates conventional dendritic cell development in mouse spleen. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14714-14723.	3.3	20
117	Induction of memory-like dendritic cell responses in vivo. Nature Communications, 2019, 10, 2955.	5.8	113
118	Models of dendritic cell development correlate ontogeny with function. Advances in Immunology, 2019, 143, 99-119.	1.1	17
119	Regulation of IgA Production by Intestinal Dendritic Cells and Related Cells. Frontiers in Immunology, 2019, 10, 1891.	2.2	87
120	Single-Cell Analysis of Human Mononuclear Phagocytes Reveals Subset-Defining Markers and Identifies Circulating Inflammatory Dendritic Cells. Immunity, 2019, 51, 573-589.e8.	6.6	336
121	A Benzenoid 4,7-Dimethoxy-5-Methyl-L, 3-Benzodioxole from Antrodia cinnamomea Attenuates Dendritic Cell-Mediated Th2 Allergic Responses. The American Journal of Chinese Medicine, 2019, 47, 1271-1287.	1.5	5
122	Next Generation Sequencing for Long Non-coding RNAs Profile for CD4+ T Cells in the Mouse Model of Acute Asthma. Frontiers in Genetics, 2019, 10, 545.	1.1	11
123	Human Dendritic Cell Subsets, Ontogeny, and Impact on HIV Infection. Frontiers in Immunology, 2019, 10, 1088.	2.2	91
124	Dendritic Cell-Mediated Th2 Immunity and Immune Disorders. International Journal of Molecular Sciences, 2019, 20, 2159.	1.8	61
125	The Dynamics of the Skin's Immune System. International Journal of Molecular Sciences, 2019, 20, 1811.	1.8	336
126	Beyond cDC1: Emerging Roles of DC Crosstalk in Cancer Immunity. Frontiers in Immunology, 2019, 10, 1014.	2.2	74
127	The Chemoattractant Receptor Ebi2 Drives Intranodal Naive CD4+ T Cell Peripheralization to Promote Effective Adaptive Immunity. Immunity, 2019, 50, 1188-1201.e6.	6.6	80

D

#	Article	IF	CITATIONS
128	DC Respond to Cognate T Cell Interaction in the Antigen-Challenged Lymph Node. Frontiers in Immunology, 2019, 10, 863.	2.2	16
129	Negligible Role for Deletion Mediated by cDC1 in CD8+ T Cell Tolerance. Journal of Immunology, 2019, 202, 2628-2635.	0.4	6
130	Structure and function of the immune system in the spleen. Science Immunology, 2019, 4, .	5.6	592
131	Cord-Blood-Stem-Cell-Derived Conventional Dendritic Cells Specifically Originate from CD115-Expressing Precursors. Cancers, 2019, 11, 181.	1.7	16
132	T cell and dendritic cell interactions in lymphoid organs: More than just being in the right place at the right time. Immunological Reviews, 2019, 289, 115-128.	2.8	15
133	Compartmentalization of dendritic cell and Tâ€cell interactions in the lymph node: Anatomy of Tâ€cell fate decisions. Immunological Reviews, 2019, 289, 84-100.	2.8	25
134	Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature, 2019, 569, 126-130.	13.7	221
135	Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell, 2019, 177, 556-571.e16.	13.5	405
136	Origin and development of classical dendritic cells. International Review of Cell and Molecular Biology, 2019, 349, 1-54.	1.6	31
137	Transcriptional control of dendritic cell development and functions. International Review of Cell and Molecular Biology, 2019, 349, 55-151.	1.6	63
138	Mechanistic Insights into Factor VIII Immune Tolerance Induction via Prenatal Cell Therapy in Hemophilia A. Current Stem Cell Reports, 2019, 5, 145-161.	0.7	3
139	Transcription Factor PU.1 Promotes Conventional Dendritic Cell Identity and Function via Induction of Transcriptional Regulator DC-SCRIPT. Immunity, 2019, 50, 77-90.e5.	6.6	59
140	Professional and â€~Amateur' Antigen-Presenting Cells In Type 2 Immunity. Trends in Immunology, 2019, 40, 22-34.	2.9	86
141	Dendritic cell subsets in T cell programming: location dictates function. Nature Reviews Immunology, 2019, 19, 89-103.	10.6	510
142	Immature lung TNFR2â^' conventional DC 2 subpopulation activates moDCs to promote cyclic di-GMP mucosal adjuvant responses in vivo. Mucosal Immunology, 2019, 12, 277-289.	2.7	24
143	Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer. Molecular Immunology, 2019, 110, 24-39.	1.0	38
144	Allergin-1 Immunoreceptor Suppresses House Dust Mite–Induced Allergic Airway Inflammation. Journal of Immunology, 2020, 204, 753-762.	0.4	8
145	Chromatin Landscape Underpinning Human Dendritic Cell Heterogeneity. Cell Reports, 2020, 32, 108180.	2.9	18

#	Article	IF	Citations
146	Substance P Release by Sensory Neurons Triggers Dendritic Cell Migration and Initiates the Type-2 Immune Response to Allergens. Immunity, 2020, 53, 1063-1077.e7.	6.6	133
147	Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics, 2020, 12, 663.	2.0	24
148	TAO-kinase 3 governs the terminal differentiation of NOTCH2-dependent splenic conventional dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31331-31342.	3.3	17
149	Recent Discoveries on the Involvement of Krüppel-Like Factor 4 in the Most Common Cancer Types. International Journal of Molecular Sciences, 2020, 21, 8843.	1.8	27
150	Group 3 Innate Lymphoid Cells Program a Distinct Subset of IL-22BP-Producing Dendritic Cells Demarcating Solitary Intestinal Lymphoid Tissues. Immunity, 2020, 53, 1015-1032.e8.	6.6	41
151	Defined Intestinal Regions Are Drained by Specific Lymph Nodes That Mount Distinct Th1 and Th2 Responses Against Schistosoma mansoni Eggs. Frontiers in Immunology, 2020, 11, 592325.	2.2	13
152	Human and Mouse Transcriptome Profiling Identifies Cross-Species Homology in Pulmonary and Lymph Node Mononuclear Phagocytes. Cell Reports, 2020, 33, 108337.	2.9	38
153	Dendritic cells in Th2 immune responses and allergic sensitization. Immunology and Cell Biology, 2020, 98, 807-818.	1.0	27
154	High Amount of Transcription Factor IRF8 Engages AP1-IRF Composite Elements in Enhancers to Direct Type 1 Conventional Dendritic Cell Identity. Immunity, 2020, 53, 759-774.e9.	6.6	46
155	Epigenetic aspects of DC development and differentiation. Molecular Immunology, 2020, 128, 116-124.	1.0	8
156	IRF4 Expression Is Required for the Immunoregulatory Activity of Conventional Type 2 Dendritic Cells in Settings of Chronic Bacterial Infection and Cancer. Journal of Immunology, 2020, 205, 1933-1943.	0.4	8
157	Elucidating the Role of Ezh2 in Tolerogenic Function of NOD Bone Marrow-Derived Dendritic Cells Expressing Constitutively Active Stat5b. International Journal of Molecular Sciences, 2020, 21, 6453.	1.8	5
158	Dermal IRF4+ dendritic cells and monocytes license CD4+ T helper cells to distinct cytokine profiles. Nature Communications, 2020, 11, 5637.	5.8	18
159	Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection. Immunity, 2020, 52, 1039-1056.e9.	6.6	237
160	Transcriptional Networks Driving Dendritic Cell Differentiation and Function. Immunity, 2020, 52, 942-956.	6.6	90
161	Transcriptional regulation of DC fate specification. Molecular Immunology, 2020, 121, 38-46.	1.0	21
162	Phosphatase PTPN22 Regulates Dendritic Cell Homeostasis and cDC2 Dependent T Cell Responses. Frontiers in Immunology, 2020, 11, 376.	2.2	3
163	Mechanisms of Particles in Sensitization, Effector Function and Therapy of Allergic Disease. Frontiers in Immunology, 2020, 11, 1334.	2.2	15

		CITATION REPORT		
#	Article		IF	Citations
164	The ontogenetic path of human dendritic cells. Molecular Immunology, 2020, 120, 122-1	.29.	1.0	31
165	Dendritic Cell Subsets in Intestinal Immunity and Inflammation. Journal of Immunology, 2 1075-1083.	.020, 204,	0.4	64
166	Lung IFNAR1hi TNFR2+ cDC2 promotes lung regulatory T cells induction and maintains lu tolerance at steady state. Mucosal Immunology, 2020, 13, 595-608.	ing mucosal	2.7	20
167	CytoMAP: A Spatial Analysis Toolbox Reveals Features of Myeloid Cell Organization in Ly Tissues. Cell Reports, 2020, 31, 107523.	nphoid	2.9	141
168	Tolerogenic Dendritic Cells in Autoimmunity and Inflammatory Diseases. Trends in Immu 42, 59-75.	10logy, 2021,	2.9	112
169	Role of Kruppel-like factor 4 in atherosclerosis. Clinica Chimica Acta, 2021, 512, 135-141	·	0.5	18
170	Genetic models of human and mouse dendritic cell development and function. Nature Re Immunology, 2021, 21, 101-115.	views	10.6	158
172	Gut Helicobacter presentation by multiple dendritic cell subsets enables context-specific cell generation. ELife, 2021, 10, .	regulatory T	2.8	18
173	Regulation of the Migration of Distinct Dendritic Cell Subsets. Frontiers in Cell and Devel Biology, 2021, 9, 635221.	opmental	1.8	14
174	Recent advances in understanding the Th1/Th2 effector choice. Faculty Reviews, 2021, 1	0, 30.	1.7	65
175	ILC3s control splenic cDC homeostasis via lymphotoxin signaling. Journal of Experimenta 2021, 218, .	l Medicine,	4.2	6
176	Zbtb10 transcription factor is crucial for murine cDC1 activation and cytokine secretion. Journal of Immunology, 2021, 51, 1126-1142.	European	1.6	7
177	Innate IL-13 licenses dermal type 2 dendritic cells for efficient T helper 2 cell responses. N Reviews Immunology, 2021, 21, 275-275.	ature	10.6	1
178	Type 1 conventional dendritic cell fate and function are controlled by DC-SCRIPT. Science 2021, 6, .	Immunology,	5.6	19
179	Dendritic Cells Revisited. Annual Review of Immunology, 2021, 39, 131-166.		9.5	339
180	Dendritic Cell Regulation of T Helper Cells. Annual Review of Immunology, 2021, 39, 759	-790.	9.5	139
181	Role of Dendritic Cells in Pathogen Infections: A Current Perspective. , 0, , .			0
182	Select hyperactivating NLRP3 ligands enhance the T _H 1- and T _{Hpotential of human type 2 conventional dendritic cells. Science Signaling, 2021, 14, .}	o> 17-inducing	1.6	36

#	Article	IF	CITATIONS
183	<i>H. pylori</i> infection induces CXCL8 expression and promotes gastric cancer progress through downregulating KLF4. Molecular Carcinogenesis, 2021, 60, 524-537.	1.3	10
184	Recent Progress in Dendritic Cell-Based Cancer Immunotherapy. Cancers, 2021, 13, 2495.	1.7	26
185	The role of dendritic cells in cancer and anti-tumor immunity. Seminars in Immunology, 2021, 52, 101481.	2.7	91
186	A simplified method for separating renal MPCs using SLAMF9. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 1209-1217.	1.1	2
187	Clonal multi-omics reveals Bcor as a negative regulator of emergency dendritic cell development. Immunity, 2021, 54, 1338-1351.e9.	6.6	25
188	TIPD: A Probability Distribution-Based Method for Trajectory Inference from Single-Cell RNA-Seq Data. Interdisciplinary Sciences, Computational Life Sciences, 2021, 13, 652-665.	2.2	2
189	Inflammasomes in dendritic cells: Friend or foe?. Immunology Letters, 2021, 234, 16-32.	1.1	19
190	CD14 Expressing Precursors Give Rise to Highly Functional Conventional Dendritic Cells for Use as Dendritic Cell Vaccine. Cancers, 2021, 13, 3818.	1.7	2
191	Unboxing dendritic cells: Tales of multiâ€ f aceted biology and function. Immunology, 2021, 164, 433-449.	2.0	16
192	Adipose Tissue Dendritic Cells: Critical Regulators of Obesity-Induced Inflammation and Insulin Resistance. International Journal of Molecular Sciences, 2021, 22, 8666.	1.8	16
193	CD11b+ lung dendritic cells at different stages of maturation induce Th17 or Th2 differentiation. Nature Communications, 2021, 12, 5029.	5.8	34
194	Dendritic cell functions in the inductive and effector sites of intestinal immunity. Mucosal Immunology, 2022, 15, 40-50.	2.7	31
195	Unraveling the Heterogeneity and Ontogeny of Dendritic Cells Using Single-Cell RNA Sequencing. Frontiers in Immunology, 2021, 12, 711329.	2.2	18
196	An inhibitory immunoreceptor, Allergin-1, suppresses FITC-induced type 2 contact hypersensitivity. Biochemical and Biophysical Research Communications, 2021, 579, 146-152.	1.0	0
197	Immunological perspectives on spatial and temporal vaccine delivery. Advanced Drug Delivery Reviews, 2021, 178, 113966.	6.6	14
198	Dendritic Cells in Primary Immunodeficiency. , 2021, , 255-267.		0
199	Environmental signals rather than layered ontogeny imprint the function of type 2 conventional dendritic cells in young and adult mice. Nature Communications, 2021, 12, 464.	5.8	25
201	Dendritic cells and the skin environment. Current Opinion in Immunology, 2020, 64, 56-62.	2.4	21

#	Article	IF	CITATIONS
202	Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cellular and Molecular Immunology, 2020, 17, 587-599.	4.8	183
204	Interferon-driven deletion of antiviral B cells at the onset of chronic infection. Science Immunology, 2016, 1, .	5.6	90
205	Stem cell transplantation impairs dendritic cell trafficking and herpesvirus immunity. JCI Insight, 2019, 4, .	2.3	5
206	IL-12 from endogenous cDC1, and not vaccine DC, is required for Th1 induction. JCI Insight, 2020, 5, .	2.3	28
207	Kruppel-like factor4 regulates PRDM1 expression through binding to an autoimmune risk allele. JCI Insight, 2017, 2, e89569.	2.3	23
208	The role of cDC1s in vivo: CD8 T cell priming through cross-presentation. F1000Research, 2017, 6, 98.	0.8	56
209	MiR-1165-3p Suppresses Th2 Differentiation via Targeting IL-13 and PPM1A in a Mouse Model of Allergic Airway Inflammation. Allergy, Asthma and Immunology Research, 2020, 12, 859.	1.1	14
210	Inhibition of IRF4 in dendritic cells by PRR-independent and -dependent signals inhibit Th2 and promote Th17 responses. ELife, 2020, 9, .	2.8	24
211	Lymph node–resident dendritic cells drive T _H 2 cell development involving MARCH1. Science Immunology, 2021, 6, eabh0707.	5.6	10
212	Identification of Two Subsets of Murine DC1 Dendritic Cells That Differ by Surface Phenotype, Gene Expression, and Function. Frontiers in Immunology, 2021, 12, 746469.	2.2	7
213	Type 2 immunity plays an essential role for murine model of allergic contact dermatitis with mixed type 1/type 2 immune response. Journal of Dermatological Science, 2021, 104, 122-131.	1.0	1
214	Graft-Versus-Host Disease Prevention by In Vitro-Generated Myeloid-Derived Suppressor Cells Is Exclusively Mediated by the CD11b+CD11c+ MDSC Subpopulation. Frontiers in Immunology, 2021, 12, 754316.	2.2	2
215	LN Monocytes Limit DC-Poly I:C Induced Cytotoxic T Cell Response via IL-10 and Induction of Suppressor CD4 T Cells. Frontiers in Immunology, 2021, 12, 763379.	2.2	3
216	The personalized application of biomaterials based on age and sexuality specific immune responses. Biomaterials, 2021, 278, 121177.	5.7	7
218	The Role of the Gut in Type 2 Immunity. Birkhauser Advances in Infectious Diseases, 2017, , 145-165.	0.3	0
219	Allergin-1 Immunoreceptor Suppresses House Dust Mite-Induced Allergic Th2 Responses. SSRN Electronic Journal, 0, , .	0.4	0
220	Ifnβ Reprograms Th2 Promoting Mature Lung TNFR2+ cDC2 Subset <i>in vivo</i> to Generate Regulatory T Cells and Restore Lung Mucosal Tolerance. SSRN Electronic Journal, 0, , .	0.4	0
226	Role of Th1 and Th2 in autoimmunity. , 2022, , 61-92.		0

#	Article	IF	CITATIONS
227	Dendritic Cell-Regulated T Cell Immunity and Tolerance against Acute Myeloid Leukemia. , 2020, , 279-296.		0
228	Vps33B in Dendritic Cells Regulates House Dust Mite–Induced Allergic Lung Inflammation. Journal of Immunology, 2021, 207, 2649-2659.	0.4	2
229	Aging and the Krüppel-like factors. Trends in Cell & Molecular Biology, 2017, 12, 1-15.	0.5	7
230	Mutation in Irf8 Gene (Irf8R294C) Impairs Type I IFN-Mediated Antiviral Immune Response by Murine pDCs. Frontiers in Immunology, 2021, 12, 758190.	2.2	4
232	Information flow in the spatiotemporal organization of immune responses*. Immunological Reviews, 2022, 306, 93-107.	2.8	6
233	Homeostatic IL-13 in healthy skin directs dendritic cell differentiation to promote TH2 and inhibit TH17 cell polarization. Nature Immunology, 2021, 22, 1538-1550.	7.0	61
234	Type I interferon activates MHC class I-dressed CD11b+ conventional dendritic cells to promote protective anti-tumor CD8+ TÂcell immunity. Immunity, 2022, 55, 308-323.e9.	6.6	126
235	Dendritic Cell-Based Immunotherapy in Multiple Myeloma: Challenges, Opportunities, and Future Directions. International Journal of Molecular Sciences, 2022, 23, 904.	1.8	25
236	Putative regulatory functions of SNPs associated with bronchial asthma, arterial hypertension and their comorbid phenotype. Vavilovskii Zhurnal Genetiki I Selektsii, 2022, 25, 855-863.	0.4	3
237	Inhalant Mammal-Derived Lipocalin Allergens and the Innate Immunity. Frontiers in Allergy, 2021, 2, 824736.	1.2	5
238	CD97 promotes spleen dendritic cell homeostasis through the mechanosensing of red blood cells. Science, 2022, 375, eabi5965.	6.0	42
239	Flt3L, LIF, and ILâ€1O combination promotes the selective in vitro development of ESAM ^{low} cDC2B from murine bone marrow. European Journal of Immunology, 2022, 52, 1946-1960.	1.6	2
240	Imaging dendritic cell functions*. Immunological Reviews, 2022, 306, 137-163.	2.8	22
241	ILC2â€derived ILâ€13 promotes skin cDC2 diversity. Immunology and Cell Biology, 2022, 100, 141-143.	1.0	Ο
242	Effective CD4 T cell priming requires repertoire scanning by CD301b ⁺ migratory cDC2 cells upon lymph node entry. Science Immunology, 2021, 6, eabg0336.	5.6	11
243	Bone Marrow Harbors a Unique Population of Dendritic Cells with the Potential to Boost Neutrophil Formation upon Exposure to Fungal Antigen. Cells, 2022, 11, 55.	1.8	3
244	The Role of Type-2 Conventional Dendritic Cells in the Regulation of Tumor Immunity. Cancers, 2022, 14, 1976.	1.7	27
245	ADP-ribosylating adjuvant reveals plasticity in cDC1 cells that drive mucosal Th17 cell development and protection against influenza virus infection. Mucosal Immunology, 2022, 15, 745-761.	2.7	6

#	Article	IF	Citations
256	The Leading Role of the Immune Microenvironment in Multiple Myeloma: A New Target with a Great Prognostic and Clinical Value. Journal of Clinical Medicine, 2022, 11, 2513.	1.0	15
257	The kinase p38α functions in dendritic cells to regulate Th2-cell differentiation and allergic inflammation. , 2022, 19, 805-819.		12
258	Antigen Presentation in the Lung. Frontiers in Immunology, 2022, 13, .	2.2	19
259	ADAMTS7 Attenuates House Dust Mite-Induced Airway Inflammation and Th2 Immune Responses. Lung, 2022, 200, 305-313.	1.4	1
260	Robust temporal map of human in vitro myelopoiesis using single-cell genomics. Nature Communications, 2022, 13, .	5.8	13
261	Conventional Type 1 Dendritic Cells in Intestinal Immune Homeostasis. Frontiers in Immunology, 2022, 13, .	2.2	5
262	Metabolic regulation of type 2 immune response during tissue repair and regeneration. Journal of Leukocyte Biology, 2022, 112, 1013-1023.	1.5	1
263	ILâ€13 in dermal typeâ€2 dendritic cell specialization: From function to therapeutic targeting. European Journal of Immunology, 2022, 52, 1047-1057.	1.6	3
264	<scp>IL</scp> â€13: An essential <scp>cDC2s</scp> partner to maintain skin homeostasis. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2869-2871.	2.7	0
265	Ablation of cDC2 development by triple mutations within the Zeb2 enhancer. Nature, 2022, 607, 142-148.	13.7	34
266	Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors. International Journal of Molecular Sciences, 2022, 23, 7325.	1.8	7
267	Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, e1-18.	1.4	3
268	Mouse dendritic cells and other myeloid subtypes in healthy lymph nodes and skin: 26â€Color flow cytometry panel for immune phenotyping. European Journal of Immunology, 2022, 52, 2006-2009.	1.6	1
269	Dendritic Cell Vaccines: A Promising Approach in the Fight against Ovarian Cancer. Cancers, 2022, 14, 4037.	1.7	13
271	Dendritic Cell-Based Vaccines Against Cancer: Challenges, Advances and Future Opportunities. Immunological Investigations, 2022, 51, 2133-2158.	1.0	20
272	Functional Recognition Theory and Type 2 Immunity: Insights and Uncertainties. ImmunoHorizons, 2022, 6, 569-580.	0.8	2
273	A Morbillivirus Infection Shifts DC Maturation Toward a Tolerogenic Phenotype to Suppress T Cell Activation. Journal of Virology, 0, , .	1.5	1
274	Functional Specialization of Dendritic Cell Subsets. , 2022, , .		0

#	Article	IF	CITATIONS
275	Rebooting Regulatory T Cell and Dendritic Cell Function in Immune-Mediated Inflammatory Diseases: Biomarker and Therapy Discovery under a Multi-Omics Lens. Biomedicines, 2022, 10, 2140.	1.4	1
276	Effects of Oral Exposure to Low-Dose Bisphenol S on Allergic Asthma in Mice. International Journal of Molecular Sciences, 2022, 23, 10790.	1.8	4
277	IRF4 expression by lung dendritic cells drives acute but not Trm cell–dependent memory Th2 responses. JCI Insight, 2022, 7, .	2.3	3
278	Metabolic guidance and stress in tumors modulate antigen-presenting cells. Oncogenesis, 2022, 11, .	2.1	3
279	CD109 Pumps Up Type Two Dendritic Cells for Allergic Responses in the Airways. American Journal of Respiratory Cell and Molecular Biology, 2023, 68, 127-128.	1.4	1
280	The thin line between conventional dendritic cells (cDCs) and group 3 innate lymphoid cells (ILC3s) in the gut. International Immunology, 2023, 35, 107-121.	1.8	2
281	Guidelines for DC preparation and flow cytometry analysis of mouse nonlymphoid tissues. European Journal of Immunology, 2023, 53, .	1.6	5
282	Guidelines for mouse and human DC functional assays. European Journal of Immunology, 2023, 53, .	1.6	1
283	Understanding the development of Th2 cell-driven allergic airway disease in early life. Frontiers in Allergy, 0, 3, .	1.2	5
285	Gut immune cells and intestinal niche imprinting. Seminars in Cell and Developmental Biology, 2023, 150-151, 50-57.	2.3	4
286	Classical DC2 subsets and monocyteâ€derived DC: Delineating the developmental and functional relationship. European Journal of Immunology, 2023, 53, .	1.6	5
287	The evolving biology of cross-presentation. Seminars in Immunology, 2023, 66, 101711.	2.7	10
288	Perspective Chapter: Dendritic Cells in The Tumor Microenvironment. , 0, , .		0
289	Mechanisms of gastrointestinal pathogenesis and landscape of intestinal immunity. , 2023, , 863-913.		2
290	The Immune Response to Nematode Infection. International Journal of Molecular Sciences, 2023, 24, 2283.	1.8	3
291	KLF4 loss in hepatocellular carcinoma: Improving prognostic prediction and correlating immune infiltrates. Frontiers in Genetics, 0, 14, .	1.1	0
292	Langerhans cells in the skin and oral mucosa: Brothers in arms?. European Journal of Immunology, 2023, 53, .	1.6	6
293	pDC-like cells are pre-DC2 and require KLF4 to control homeostatic CD4 T cells. Science Immunology, 2023, 8, .	5.6	12

IF ARTICLE CITATIONS # Insights into dendritic cell maturation during infection with application of advanced imaging 294 1.8 1 techniques. Frontiers in Cellular and Infection Microbiology, 0, 13, . Type 2 Dendritic Cells Orchestrate a Local Immune Circuit to Confer Antimetastatic Immunity. Journal 0.4 of Immunology, 2023, 210, 1146-1155. Commensal Bacteria and the Lung Environment Are Responsible for Th2-Mediated Memory Yielding 296 0.4 1 Natural IgE in MyD88-Deficient Mice. Journal of Immunology, 2023, 210, 959-972. Origin, Phenotype, and Function of Mouse Dendritic Cell Subsets. Methods in Molecular Biology, 2023, , 3-16. In Vitro Generation of Murine Bone Marrow–Derived Dendritic Cells. Methods in Molecular Biology, 298 0.4 0 2023, , 83-92. Tissueâ€specific antigenâ€presenting cells contribute to distinct phenotypes of allergy. European Journal of Immunology, 2023, 53, . 299 1.6 The role of dendritic cells in radiation-induced immune responses. International Review of Cell and 300 1.6 1 Molecular Biology, 2023, , . Pulmonary inflammation promoted by type-2 dendritic cells is a feature of human and murine 5.8 schistosomiasis. Nature Communications, 2023, 14, . 302 Modes of type 2 immune response initiation. Immunity, 2023, 56, 687-694. 6.6 4 Neural Mechanisms Underlying the Coughing Reflex. Neuroscience Bulletin, 2023, 39, 1823-1839. 1.5 A new step in understanding mouse cDC ontogeny. Nature Immunology, 2024, 25, 383-384. 324 7.0 0