Integrative Clinical Genomics of Advanced Prostate Car

Cell 161, 1215-1228

DOI: 10.1016/j.cell.2015.05.001

Citation Report

#	Article	IF	CITATIONS
1	Assessment of arrhythmias in myocardial infarction BMJ: British Medical Journal, 1967, 2, 719-723.	2.4	73
2	A novel genomic alteration of LSAMP associates with aggressive prostate cancer in African American men. EBioMedicine, 2015, 2, 1957-1964.	2.7	61
3	Persistent androgen receptor addiction in castration-resistant prostate cancer. Journal of Hematology and Oncology, 2015, 8, 128.	6.9	59
4	Landscape of gene fusions in epithelial cancers: seq and ye shall find. Genome Medicine, 2015, 7, 129.	3.6	127
5	Sustained Complete Response to Cytotoxic Therapy and the PARP Inhibitor Veliparib in Metastatic Castration-Resistant Prostate Cancer – A Case Report. Frontiers in Oncology, 2015, 5, 169.	1.3	10
6	Mutational Landscapes of Sequential Prostate Metastases and Matched Patient Derived Xenografts during Enzalutamide Therapy. PLoS ONE, 2015, 10, e0145176.	1.1	26
7	Advanced neuroendocrine prostate tumors regress to stemness. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14406-14407.	3.3	12
8	Norwegian Cancer Genomics Consortium: a platform for research on personalized cancer medicine in a public health system. Drug Discovery Today, 2015, 20, 1419-1421.	3.2	3
9	Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nature Reviews Cancer, 2015, 15, 701-711.	12.8	1,044
10	Stem cells in genetically-engineered mouse models of prostate cancer. Endocrine-Related Cancer, 2015, 22, T199-T208.	1.6	13
11	Distinct Genomic Alterations in Prostate Tumors from African American Men. EBioMedicine, 2015, 2, 1850-1851.	2.7	1
12	Identification of Different Classes of Luminal Progenitor Cells within Prostate Tumors. Cell Reports, 2015, 13, 2147-2158.	2.9	74
13	Molecular landscape of prostate cancer: Implications for current clinical trials. Cancer Treatment Reviews, 2015, 41, 761-766.	3.4	53
14	Co-targeting AR and HSP90 suppresses prostate cancer cell growth and prevents resistance mechanisms. Endocrine-Related Cancer, 2015, 22, 805-818.	1.6	24
15	Chromatin to Clinic: The Molecular Rationale for PARP1 Inhibitor Function. Molecular Cell, 2015, 58, 925-934.	4. 5	114
16	Clonotyping for precision oncology. Drug Discovery Today, 2015, 20, 1464-1469.	3.2	3
17	DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. New England Journal of Medicine, 2015, 373, 1697-1708.	13.9	1,796
18	Plasma <i>AR</i> and abiraterone-resistant prostate cancer. Science Translational Medicine, 2015, 7, 312re10.	5.8	366

#	ARTICLE	IF	Citations
19	Liquid biopsy: Clues on prostate cancer drug resistance. Science Translational Medicine, 2015, 7, 312fs45.	5.8	17
20	The Molecular Taxonomy of Primary Prostate Cancer. Cell, 2015, 163, 1011-1025.	13.5	2,435
21	Next-generation sequencing to guide cancer therapy. Genome Medicine, 2015, 7, 80.	3.6	251
22	Emerging treatments for recurrent prostate cancer. Future Oncology, 2015, 11, 2873-2880.	1.1	8
23	Impact of visceral metastases on outcome to abiraterone after docetaxel in castration-resistant prostate cancer patients. Future Oncology, 2015, 11, 2881-2891.	1.1	12
24	A basal stem cell signature identifies aggressive prostate cancer phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6544-52.	3.3	168
25	Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell, 2015, 163, 506-519.	13.5	1,485
26	Intrapatient heterogeneity in prostate cancer. Nature Reviews Urology, 2015, 12, 430-431.	1.9	18
27	What is the Need for Prostatic Biomarkers in Prostate Cancer Management?. Current Urology Reports, 2015, 16, 70.	1.0	11
28	Androgen receptor and prostate cancer stem cells: biological mechanisms and clinical implications. Endocrine-Related Cancer, 2015, 22, T209-T220.	1.6	48
29	Truncated ERG Oncoproteins from TMPRSS2-ERG Fusions Are Resistant to SPOP-Mediated Proteasome Degradation. Molecular Cell, 2015, 59, 904-916.	4.5	129
30	Emerging agents for the therapy of advanced prostate cancer. Future Oncology, 2015, 11, 2775-2787.	1.1	10
31	RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science, 2015, 349, 1351-1356.	6.0	614
32	Cancer therapies that are gone with the Wnt. Science, 2015, 349, 1283-1284.	6.0	4
33	Cell types of origin for prostate cancer. Current Opinion in Cell Biology, 2015, 37, 35-41.	2.6	41
35	<i>CCR</i> 20th Anniversary Commentary: Circulating Tumor Cells in Prostate Cancer. Clinical Cancer Research, 2015, 21, 4992-4995.	3.2	11
36	Clinical Relevance of Androgen Receptor Splice Variants in Castration-Resistant Prostate Cancer. Current Treatment Options in Oncology, 2015, 16, 57.	1.3	30
37	Redefining Androgen Receptor Function: Clinical Implications in Understanding Prostate Cancer Progression and Therapeutic Resistance. , 0, , .		0

#	Article	IF	Citations
38	Prostate Cancer Molecular Background: The IGF-1Ec Story. Clinical Cancer Drugs, 2016, 3, 6-15.	0.3	0
39	Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget, 2016, 7, 52810-52817.	0.8	305
40	Interrogating the Cancer Genome to Deliver More Precise Cancer Care. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, e577-e583.	1.8	2
41	Emerging Molecular Biomarkers in Advanced Prostate Cancer: Translation to the Clinic. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, 131-141.	1.8	19
42	Is it time to split strategies to treat homologous recombinant deficiency in pancreas cancer?. Journal of Gastrointestinal Oncology, 2016, 7, 738-749.	0.6	14
43	Screening for functional kinases in metastatic prostate cancer: a glimmer of hope for kinase inhibition. Translational Andrology and Urology, 2016, 5, 616-619.	0.6	0
44	Oncogenic microRNA-4534 regulates PTEN pathway in prostate cancer. Oncotarget, 2016, 7, 68371-68384.	0.8	62
45	Resistance to Novel Antiandrogen Therapies in Metastatic Castration-Resistant Prostate Cancer. Clinical Medicine Insights: Oncology, 2016, 10s1, CMO.Ss34534.	0.6	14
46	Galeterone for the treatment of advanced prostate cancer: the evidence to date. Drug Design, Development and Therapy, 2016, Volume 10, 2289-2297.	2.0	43
47	Control of Wnt Receptor Turnover by R-spondin-ZNRF3/RNF43 Signaling Module and Its Dysregulation in Cancer. Cancers, 2016, 8, 54.	1.7	127
48	Aberrant Lipid Metabolism Promotes Prostate Cancer: Role in Cell Survival under Hypoxia and Extracellular Vesicles Biogenesis. International Journal of Molecular Sciences, 2016, 17, 1061.	1.8	77
49	The In Vitro Stability of Circulating Tumour DNA. PLoS ONE, 2016, 11, e0168153.	1.1	18
50	A Tmprss2-CreERT2 Knock-In Mouse Model for Cancer Genetic Studies on Prostate and Colon. PLoS ONE, 2016, 11, e0161084.	1.1	18
51	Epigenetic Biomarkers of Disease. , 2016, , 159-176.		2
52	Genomic and epigenomic analysis of high-risk prostate cancer reveals changes in hydroxymethylation and TET1. Oncotarget, 2016, 7, 24326-24338.	0.8	33
53	Clonality of localized and metastatic prostate cancer. Current Opinion in Urology, 2016, 26, 219-224.	0.9	9
54	DNA Damage Repair and the Emerging Role of Poly(ADP-ribose) Polymerase Inhibition in Cancer Therapeutics. Clinical Therapeutics, 2016, 38, 1577-1588.	1.1	27
55	Amplification of the 9p13.3 chromosomal region in prostate cancer. Genes Chromosomes and Cancer, 2016, 55, 617-625.	1.5	14

#	Article	IF	CITATIONS
56	A Pilot Study of Clinical Targeted Next Generation Sequencing for Prostate Cancer: Consequences for Treatment and Genetic Counseling. Prostate, 2016, 76, 1303-1311.	1.2	21
57	Androgen receptorâ€related diseases: what do we know?. Andrology, 2016, 4, 366-381.	1.9	70
58	Germline genetic profiling in prostate cancer: latest developments and potential clinical applications. Future Science OA, 2016, 2, FSO87.	0.9	13
59	Implications of High Rates of Metastatic Prostate Cancer in <i>BRCA2</i> Mutation Carriers. Prostate, 2016, 76, 1135-1145.	1.2	9
60	Gene-expression profiling of localized prostate cancer: still miles to go before we sleep. Future Oncology, 2016, 12, 273-276.	1.1	0
61	Conversion of Prostate Adenocarcinoma to Small Cell Carcinoma‣ike by Reprogramming. Journal of Cellular Physiology, 2016, 231, 2040-2047.	2.0	14
62	Abiraterone for the Treatment of mCRPC. , 2016, , 125-155.		0
63	<i>Sleeping Beauty</i> screen reveals <i>Pparg</i> activation in metastatic prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8290-8295.	3.3	91
64	Novel Regulation of Wnt Signaling at the Proximal Membrane Level. Trends in Biochemical Sciences, 2016, 41, 773-783.	3.7	29
65	Precision medicine for advanced prostate cancer. Current Opinion in Urology, 2016, 26, 231-239.	0.9	23
66	Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. New England Journal of Medicine, 2016, 375, 443-453.	13.9	1,205
67	The Genomic Era of Clinical Oncology: Integrated Genomic Analysis for Precision Cancer Care. Cytogenetic and Genome Research, 2016, 150, 162-175.	0.6	16
68	Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer. Nature Communications, 2016, 7, 13668.	5.8	134
69	Single-Cell Analysis of Circulating Tumor Cells as a Window into Tumor Heterogeneity. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 269-274.	2.0	40
70	Low CD38 Identifies Progenitor-like Inflammation-Associated Luminal Cells that Can Initiate Human Prostate Cancer and Predict Poor Outcome. Cell Reports, 2016, 17, 2596-2606.	2.9	94
71	ESMO / ASCO Recommendations for a Global Curriculum in Medical Oncology Edition 2016. ESMO Open, 2016, 1, e000097.	2.0	82
72	Precision management of localized prostate cancer. Expert Review of Precision Medicine and Drug Development, 2016, 1, 505-515.	0.4	6
73	Identification and Validation of PCAT14 as Prognostic Biomarker in Prostate Cancer. Neoplasia, 2016, 18, 489-499.	2.3	55

#	Article	IF	Citations
74	Immunotherapy in genitourinary malignancies. Current Opinion in Urology, 2016, 26, 501-507.	0.9	6
75	Targeting DNA Repair. Cancer Journal (Sudbury, Mass), 2016, 22, 353-356.	1.0	27
76	An Interaction with Ewing's Sarcoma Breakpoint Protein EWS Defines a Specific Oncogenic Mechanism of ETS Factors Rearranged in Prostate Cancer. Cell Reports, 2016, 17, 1289-1301.	2.9	38
77	MicroRNA-449a enhances radiosensitivity by downregulation of c-Myc in prostate cancer cells. Scientific Reports, 2016, 6, 27346.	1.6	55
78	Optimal Treatment Sequence for Metastatic Castration-resistant Prostate Cancer. European Urology Focus, 2016, 2, 488-498.	1.6	38
79	The Molecular Evolution of Castration-resistant Prostate Cancer. European Urology Focus, 2016, 2, 506-513.	1.6	41
80	Determining the frequency of pathogenic germline variants from exome sequencing in patients with castrate-resistant prostate cancer. BMJ Open, 2016, 6, e010332.	0.8	32
81	Genomic Aberrations Drive Clonal Evolution of Neuroendocrine Tumors. Trends in Endocrinology and Metabolism, 2016, 27, 242-244.	3.1	1
82	Building a hit list for the fight against metastatic castration resistant prostate cancer. Cancer Biology and Therapy, 2016, 17, 231-232.	1.5	4
83	Targeting persistent androgen receptor signaling in castration-resistant prostate cancer. Medical Oncology, 2016, 33, 44.	1.2	40
84	Clonal origin and spread of metastatic prostate cancer. Endocrine-Related Cancer, 2016, 23, R207-R217.	1.6	32
85	Castration-Resistant Prostate Cancer Tissue Acquisition From Bone Metastases for Molecular Analyses. Clinical Genitourinary Cancer, 2016, 14, 485-493.	0.9	30
86	TRIM24 Is an Oncogenic Transcriptional Activator in Prostate Cancer. Cancer Cell, 2016, 29, 846-858.	7.7	228
87	Re: Prostate Cancer Incidence and PSA Testing Patterns in Relation to USPSTF Screening Recommendations. European Urology, 2016, 70, 205-206.	0.9	1
88	Re: DNA-repair Defects and Olaparib in Metastatic Prostate Cancer. European Urology, 2016, 70, 204-205.	0.9	2
89	Redirecting abiraterone metabolism to fine-tune prostate cancer anti-androgen therapy. Nature, 2016, 533, 547-551.	13.7	138
90	Diagnostic Gleason score and castration-resistant prostate cancer. Annals of Oncology, 2016, 27, 962-964.	0.6	4
92	Integrated clinical, whole-genome, and transcriptome analysis of multisampled lethal metastatic prostate cancer. Journal of Physical Education and Sports Management, 2016, 2, a000752.	0.5	24

#	ARTICLE	IF	CITATIONS
93	A Feasibility Study Showing [68Ga]Citrate PET Detects Prostate Cancer. Molecular Imaging and Biology, 2016, 18, 946-951.	1.3	33
94	Androgen receptor variant-driven prostate cancer: clinical implications and therapeutic targeting. Prostate Cancer and Prostatic Diseases, 2016, 19, 231-241.	2.0	142
95	Inherited Variants in SULT1E1 and Response to Abiraterone Acetate by Men with Metastatic Castration Refractory Prostate Cancer. Journal of Urology, 2016, 196, 1112-1116.	0.2	12
96	The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nature Cell Biology, 2016, 18, 645-656.	4.6	176
97	Oncolytic virotherapy for urological cancers. Nature Reviews Urology, 2016, 13, 334-352.	1.9	18
98	Second-Generation HSP90 Inhibitor Onalespib Blocks mRNA Splicing of Androgen Receptor Variant 7 in Prostate Cancer Cells. Cancer Research, 2016, 76, 2731-2742.	0.4	79
99	Molecular Pathways: Targeting DNA Repair Pathway Defects Enriched in Metastasis. Clinical Cancer Research, 2016, 22, 3132-3137.	3.2	28
100	Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biology, 2016, 17, 10.	3.8	165
101	Metastasis as an evolutionary process. Science, 2016, 352, 169-175.	6.0	497
102	Association Between Early PSA Increase and Clinical Outcome in Patients Treated with Enzalutamide for Metastatic Castration Resistant Prostate Cancer. Molecular Diagnosis and Therapy, 2016, 20, 255-263.	1.6	10
104	Biallelic BRCA2 Mutations Shape the Somatic Mutational Landscape of Aggressive Prostate Tumors. American Journal of Human Genetics, 2016, 98, 818-829.	2.6	34
105	Comprehensive Molecular Characterization of Salivary Duct Carcinoma Reveals Actionable Targets and Similarity to Apocrine Breast Cancer. Clinical Cancer Research, 2016, 22, 4623-4633.	3.2	153
106	Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles. Cancer Discovery, 2016, 6, 714-726.	7.7	139
107	Genomic Alterations in Cell-Free DNA and Enzalutamide Resistance in Castration-Resistant Prostate Cancer. JAMA Oncology, 2016, 2, 1598.	3.4	290
108	The use of circulating tumor cells in guiding treatment decisions for patients with metastatic castration-resistant prostate cancer. Cancer Treatment Reviews, 2016, 46, 42-50.	3.4	24
109	Ethical qualms about genetic prognosis. Cmaj, 2016, 188, 453-454.	0.9	2
110	Analytic Validation of RNA <i>In Situ </i> Hybridization (RISH) for AR and AR-V7 Expression in Human Prostate Cancer. Clinical Cancer Research, 2016, 22, 4651-4663.	3.2	34
111	Analytic validation of a clinical-grade PTEN immunohistochemistry assay in prostate cancer by comparison with PTEN FISH. Modern Pathology, 2016, 29, 904-914.	2.9	71

#	Article	IF	CITATIONS
112	Synthetic Lethality in PTEN-Mutant Prostate Cancer Is Induced by Combinatorial PI3K/Akt and BCL-XL Inhibition. Molecular Cancer Research, 2016, 14, 1176-1181.	1.5	19
113	Major milestones in translational oncology. BMC Medicine, 2016, 14, 110.	2.3	15
114	Predictors of duration of abiraterone acetate in men with castration-resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2016, 19, 398-405.	2.0	12
115	Biallelic Alteration and Dysregulation of the Hippo Pathway in Mucinous Tubular and Spindle Cell Carcinoma of the Kidney. Cancer Discovery, 2016, 6, 1258-1266.	7.7	66
116	Non-invasive actionable biomarkers for metastatic prostate cancer. Asian Journal of Urology, 2016, 3, 170-176.	0.5	8
117	Applications of circulating tumor cells for prostate cancer. Asian Journal of Urology, 2016, 3, 254-259.	0.5	4
118	Biomarkers for Metastatic Castration-resistant Prostate Cancer (mCRPC): Yes or No? Predictive and Response Biomarkers Towards Precision Medicine in mCRPC. European Urology Focus, 2016, 2, 465-466.	1.6	1
119	WOMEN IN CANCER THEMATIC REVIEW: Diverse functions of DNA methylation: implications for prostate cancer and beyond. Endocrine-Related Cancer, 2016, 23, T169-T178.	1.6	8
120	Toward Precision Medicine: A Cancer Molecular Subtyping Nanoâ€Strategy for RNA Biomarkers in Tumor and Urine. Small, 2016, 12, 6233-6242.	5. 2	52
121	Contemporary molecular tests for prognosis and treatment guidance for castration-resistant prostate cancer. Expert Review of Molecular Diagnostics, 2016, 16, 1113-1120.	1.5	5
122	Activation of Notch1 synergizes with multiple pathways in promoting castration-resistant prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6457-E6466.	3.3	44
123	PARP inhibitors and stratified treatment of prostate cancer. Expert Review of Anticancer Therapy, 2016, 16, 1213-1215.	1.1	6
124	Biomarkers of Response and Resistance to DNA Repair Targeted Therapies. Clinical Cancer Research, 2016, 22, 5651-5660.	3.2	116
125	N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer. Cancer Cell, 2016, 30, 563-577.	7.7	394
126	Phosphoproteome Integration Reveals Patient-Specific Networks in Prostate Cancer. Cell, 2016, 166, 1041-1054.	13.5	206
127	The Landscape of microRNA Targeting in Prostate Cancer Defined by AGO-PAR-CLIP. Neoplasia, 2016, 18, 356-370.	2.3	40
128	Targeting deficient DNA damage repair in gastric cancer. Expert Opinion on Pharmacotherapy, 2016, 17, 1757-1766.	0.9	16
129	The Dual Inhibition of RNA Pol I Transcription and PIM Kinase as a New Therapeutic Approach to Treat Advanced Prostate Cancer. Clinical Cancer Research, 2016, 22, 5539-5552.	3.2	59

#	Article	IF	CITATIONS
130	Role of BET proteins in castration-resistant prostate cancer. Drug Discovery Today: Technologies, 2016, 19, 29-38.	4.0	15
131	Radium-223 in prostate cancer: emitting the right signals. Lancet Oncology, The, 2016, 17, 1186-1187.	5.1	1
132	Phase II Evaluation of Magnetic Resonance Imaging Guided Focal Laser Ablation of Prostate Cancer. Journal of Urology, 2016, 196, 1670-1675.	0.2	116
133	Utility of novel androgen receptor therapies in the real world: A nuanced approach. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 340-347.	0.8	2
134	GRM1 is An Androgen-Regulated Gene and its Expression Correlates with Prostate Cancer Progression in Pre-Clinical Models. Clinical Cancer Research, 2016, , clincanres.0137.2016.	3.2	3
135	Predictors of early androgen deprivation treatment failure in prostate cancer with bone metastases. Cancer Medicine, 2016, 5, 407-414.	1.3	35
136	Imatinib Treatment in PDGFRAâ€Negative Childhood Hypereosinophilic Syndrome. Pediatric Blood and Cancer, 2016, 63, 164-167.	0.8	1
137	Translating cancer genomes and transcriptomes for precision oncology. Ca-A Cancer Journal for Clinicians, 2016, 66, 75-88.	157.7	133
138	Raising the Bar for Therapeutic Trials in Advanced Prostate Cancer. Journal of Clinical Oncology, 2016, 34, 2958-2960.	0.8	2
139	Biennial report on genitourinary cancers. European Journal of Cancer, 2016, 66, 125-130.	1.3	1
140	Risk stratification of prostate cancer 2016. Scandinavian Journal of Clinical and Laboratory Investigation, 2016, 76, S54-S59.	0.6	6
141	Rare Variation in <i>TET2</i> Is Associated with Clinically Relevant Prostate Carcinoma in African Americans. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1456-1463.	1.1	22
142	Familial prostate cancer. Seminars in Oncology, 2016, 43, 560-565.	0.8	49
143	<scp>Androgen receptor</scp> splice variant 7 in castrationâ€resistant prostate cancer: Clinical considerations. International Journal of Urology, 2016, 23, 646-653.	0.5	25
144	Use of poly ADP-ribose polymerase [PARP] inhibitors in cancer cells bearing DDR defects: the rationale for their inclusion in the clinic. Journal of Experimental and Clinical Cancer Research, 2016, 35, 179.	3.5	88
145	Androgen receptor signaling in castration-resistant prostate cancer: a lesson in persistence. Endocrine-Related Cancer, 2016, 23, T179-T197.	1.6	132
146	Targeting the N-Terminal Domain of the Androgen Receptor: A New Approach for the Treatment of Advanced Prostate Cancer. Oncologist, 2016, 21, 1427-1435.	1.9	60
147	Inhibition of the PI3K/AKT/mTOR Pathway in Solid Tumors. Journal of Clinical Oncology, 2016, 34, 3803-3815.	0.8	336

#	Article	IF	CITATIONS
148	DNA Repair Deficiency Is Common in Advanced Prostate Cancer: New Therapeutic Opportunities. Oncologist, 2016, 21, 940-945.	1.9	29
149	Examination of CK2α and NF-κB p65 expression in human benign prostatic hyperplasia and prostate cancer tissues. Molecular and Cellular Biochemistry, 2016, 420, 43-51.	1.4	16
150	Personalized treatment of prostate cancer: better knowledge of the patient, the disease and the medicine. Future Oncology, 2016, 12, 2359-2361.	1.1	4
151	Investigating BRCA Mutations: A Breakthrough in Precision Medicine of Castration-Resistant Prostate Cancer. Targeted Oncology, 2016, 11, 569-577.	1.7	15
152	Drug discovery in advanced prostate cancer: translating biology into therapy. Nature Reviews Drug Discovery, 2016, 15, 699-718.	21.5	111
153	Bipolar Androgen Therapy for Men With Androgen Ablation Na \tilde{A} ve Prostate Cancer: Results From the Phase II BATMAN Study. Prostate, 2016, 76, 1218-1226.	1.2	63
154	Emerging data on androgen receptor splice variants in prostate cancer. Endocrine-Related Cancer, 2016, 23, T199-T210.	1.6	47
155	Complementing genomics and transcriptomics: Phosphoproteomics illuminates systems biology in prostate cancer. Molecular and Cellular Oncology, 2016, 3, e1246075.	0.3	4
156	Development and validation of a whole-exome sequencing test for simultaneous detection of point mutations, indels and copy-number alterations for precision cancer care. Npj Genomic Medicine, 2016, 1, .	1.7	68
157	Identification of mutations, gene expression changes and fusion transcripts by whole transcriptome RNAseq in docetaxel resistant prostate cancer cells. SpringerPlus, 2016, 5, 1861.	1.2	15
158	Whole-genome plasma sequencing reveals focal amplifications as a driving force in metastatic prostate cancer. Nature Communications, 2016, 7, 12008.	5.8	134
159	Minireview: Role of genetic changes of faciogenital dysplasia protein 1 in human disease. Physiological Genomics, 2016, 48, 446-454.	1.0	9
160	Cell-free and circulating tumor cell–based biomarkers in men with metastatic prostate cancer: Tools for real-time precision medicine?. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 490-501.	0.8	11
161	Delivering on the promise of precision cancer medicine. Genome Medicine, 2016, 8, 110.	3.6	7
162	PARP inhibitor combination therapy. Critical Reviews in Oncology/Hematology, 2016, 108, 73-85.	2.0	175
163	Cheminformatics Modeling of Adverse Drug Responses by Clinically Relevant Mutants of Human Androgen Receptor. Journal of Chemical Information and Modeling, 2016, 56, 2507-2516.	2.5	16
164	PET/CT imaging for evaluating response to therapy in castration-resistant prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 2103-2104.	3.3	7
165	Role of Chemotherapy and Mechanisms of Resistance to Chemotherapy in Metastatic Castration-Resistant Prostate Cancer. Clinical Medicine Insights: Oncology, 2016, 10s1, CMO.S34535.	0.6	34

#	Article	IF	CITATIONS
166	The Role of Next-Generation Sequencing in Castration-Resistant Prostate Cancer Treatment. Cancer Journal (Sudbury, Mass), 2016, 22, 357-361.	1.0	9
167	Cancer immunotherapy. Current Opinion in Urology, 2016, 26, 556-563.	0.9	5
168	Regulating NKX3.1 stability and function: Post-translational modifications and structural determinants. Prostate, 2016, 76, 523-533.	1.2	19
169	Resistance to docetaxel in prostate cancer is associated with androgen receptor activation and loss of KDM5D expression. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6259-6264.	3.3	127
170	Precision Medicine: Implications for Science and Practice. Journal of the American College of Surgeons, 2016, 223, 433-439e1.	0.2	6
171	Integrated Classification of Prostate Cancer Reveals a Novel Luminal Subtype with Poor Outcome. Cancer Research, 2016, 76, 4948-4958.	0.4	147
172	Targeting constitutively active androgen receptor splice variants in castration resistant prostate cancer. Expert Opinion on Therapeutic Targets, 2016, 20, 903-906.	1.5	7
173	Use of big data in drug development for precision medicine. Expert Review of Precision Medicine and Drug Development, 2016, 1, 245-253.	0.4	28
174	Development and clinical application of an integrative genomic approach to personalized cancer therapy. Genome Medicine, 2016, 8, 62.	3.6	71
175	Translational and clinical implications of the genetic landscape of prostate cancer. Nature Reviews Clinical Oncology, 2016, 13, 597-610.	12.5	63
176	Co-targeting hexokinase 2-mediated Warburg effect and ULK1-dependent autophagy suppresses tumor growth of PTEN- and TP53- deficiency-driven castration-resistant prostate cancer. EBioMedicine, 2016, 7, 50-61.	2.7	56
177	Glycosylation is an Androgen-Regulated Process Essential for Prostate Cancer Cell Viability. EBioMedicine, 2016, 8, 103-116.	2.7	76
178	Improving Survival for Metastatic Castrate-resistant Prostate Cancer: Will Combination Therapy Help Us To Move Forward?. European Urology, 2016, 70, 722-723.	0.9	4
179	When Genome Maintenance Goes Badly Awry. Molecular Cell, 2016, 62, 777-787.	4.5	64
180	CYP17 inhibitors in prostate cancer: latest evidence and clinical potential. Therapeutic Advances in Medical Oncology, 2016, 8, 267-275.	1.4	45
181	Targeting intratumoral androgens: statins and beyond. Therapeutic Advances in Medical Oncology, 2016, 8, 388-395.	1.4	7
182	Evaluation of the methods to identify patients who may benefit from PARP inhibitor use. Endocrine-Related Cancer, 2016, 23, R267-R285.	1.6	28
183	Multidisciplinary intervention of early, lethal metastatic prostate cancer: Report from the 2015 Coffey-Holden Prostate Cancer Academy Meeting. Prostate, 2016, 76, 125-139.	1.2	17

#	Article	IF	CITATIONS
184	Rare Genitourinary Tumors., 2016,,.		0
185	Cholesterol Sulfonation Enzyme, SULT2B1b, Modulates AR and Cell Growth Properties in Prostate Cancer. Molecular Cancer Research, 2016, 14, 776-786.	1.5	24
186	Ovarian Cancers Harboring Inactivating Mutations in <i>CDK12</i> Display a Distinct Genomic Instability Pattern Characterized by Large Tandem Duplications. Cancer Research, 2016, 76, 1882-1891.	0.4	95
187	Integrative analysis identifies targetable CREB1/FoxA1 transcriptional co-regulation as a predictor of prostate cancer recurrence. Nucleic Acids Research, 2016, 44, 4105-4122.	6.5	38
188	Metastatic colonization by circulating tumour cells. Nature, 2016, 529, 298-306.	13.7	1,498
189	Biomarkers in localized prostate cancer. Future Oncology, 2016, 12, 399-411.	1.1	39
190	The kinome 'at large' in cancer. Nature Reviews Cancer, 2016, 16, 83-98.	12.8	226
191	PARP inhibition in castration-resistant prostate cancer. Future Oncology, 2016, 12, 577-580.	1.1	2
192	BET Bromodomain Inhibitors Enhance Efficacy and Disrupt Resistance to AR Antagonists in the Treatment of Prostate Cancer. Molecular Cancer Research, 2016, 14, 324-331.	1.5	137
193	Role of corticosteroids in prostate cancer progression: implications for treatment strategy in metastatic castration-resistant patients. Journal of Endocrinological Investigation, 2016, 39, 729-738.	1.8	7
194	BRCAness revisited. Nature Reviews Cancer, 2016, 16, 110-120.	12.8	976
195	The Clinical Impact of BRCA2 Loss in Prostate Cancer. European Urology, 2016, 69, 996-997.	0.9	2
196	The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organsâ€"Part B: Prostate and Bladder Tumours. European Urology, 2016, 70, 106-119.	0.9	1,323
197	Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nature Reviews Genetics, 2016, 17, 257-271.	7.7	558
198	Multifaceted and personalized therapy of advanced prostate cancer. Current Opinion in Oncology, 2016, 28, 222-231.	1.1	5
199	[¹⁸ F]Fluorodeoxyglucose (FDG)-Positron Emission Tomography (PET)/Computed Tomography (CT) in Suspected Recurrent Breast Cancer: A Prospective Comparative Study of Dual-Time-Point FDG-PET/CT, Contrast-Enhanced CT, and Bone Scintigraphy. Journal of Clinical Oncology, 2016, 34, 1889-1897.	0.8	64
200	Neoadjuvant Treatment of High-Risk, Clinically Localized Prostate Cancer Prior to Radical Prostatectomy. Current Urology Reports, 2016, 17, 37.	1.0	11
201	ROR-Î ³ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer. Nature Medicine, 2016, 22, 488-496.	15.2	155

#	ARTICLE	IF	CITATIONS
202	Managing Metastatic Castration-Resistant Prostate Cancer in the Pre-chemotherapy Setting: A Changing Approach in the Era of New Targeted Agents. Drugs, 2016, 76, 421-430.	4.9	4
203	PARP inhibitor receives FDA breakthrough therapy designation in castration resistant prostate cancer: beyond germline BRCA mutations. Annals of Oncology, 2016, 27, 755-757.	0.6	42
204	Molecular Discriminators of Racial Disparities in Prostate Cancer. Trends in Cancer, 2016, 2, 116-120.	3.8	8
205	Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nature Medicine, 2016, 22, 298-305.	15.2	1,193
206	Intermittent Androgen Deprivation in Prostate Cancer: Are We Ready to Quit?. Journal of Clinical Oncology, 2016, 34, 211-214.	0.8	6
207	Severe neutropenia during cabazitaxel treatment is associated with survival benefit in men with metastatic castration-resistant prostate cancer (mCRPC): A post-hoc analysis of the TROPIC phase III trial. European Journal of Cancer, 2016, 56, 93-100.	1.3	62
208	Crossroad between linear and nonlinear transcription concepts in the discovery of next-generation sequencing systems-based anticancer therapies. Drug Discovery Today, 2016, 21, 663-673.	3.2	16
209	Trial Design and Objectives for Castration-Resistant Prostate Cancer: Updated Recommendations From the Prostate Cancer Clinical Trials Working Group 3. Journal of Clinical Oncology, 2016, 34, 1402-1418.	0.8	1,089
210	Novel Insights into Molecular Indicators of Response and Resistance to Modern Androgen-Axis Therapies in Prostate Cancer. Current Urology Reports, 2016, 17, 29.	1.0	22
211	The molecular and cellular origin of human prostate cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1238-1260.	1.9	92
212	Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nature Medicine, 2016, 22, 369-378.	15.2	572
213	Vimentin and Ki67 expression in circulating tumour cells derived from castrate-resistant prostate cancer. BMC Cancer, 2016, 16, 168.	1.1	69
214	Gene and pathway level analyses of germline DNA-repair gene variants and prostate cancer susceptibility using the iCOGS-genotyping array. British Journal of Cancer, 2016, 114, 945-952.	2.9	17
215	Driven to metastasize: Kinases as potential therapeutic targets in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 473-475.	3.3	7
216	Molecules in medicine mini-review: isoforms of PI3K in biology and disease. Journal of Molecular Medicine, 2016, 94, 5-11.	1.7	111
217	Moving Toward Personalized Care: Liquid Biopsy Predicts Response to Cisplatin in an Unusual Case of BRCA2-Null Neuroendocrine Prostate Cancer. Clinical Genitourinary Cancer, 2016, 14, e233-e236.	0.9	15
218	The new and the old that is new again. Nature Reviews Clinical Oncology, 2016, 13, 73-74.	12.5	4
219	Prevalence and management of prostate cancer among East Asian men: Current trends and future perspectives. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 58.e1-58.e9.	0.8	17

#	Article	IF	Citations
220	Prospects for the use of ipilimumab in treating advanced prostate cancer. Expert Opinion on Biological Therapy, 2016, 16, 421-432.	1.4	5
221	Biallelic Inactivation of BRCA2 in Platinum-sensitive Metastatic Castration-resistant Prostate Cancer. European Urology, 2016, 69, 992-995.	0.9	228
222	Targeting PTPRK-RSPO3 colon tumours promotes differentiation and loss of stem-cell function. Nature, 2016, 529, 97-100.	13.7	203
223	The presence of intraductal carcinoma of the prostate in needle biopsy is a significant prognostic factor for prostate cancer patients with distant metastasis at initial presentation. Modern Pathology, 2016, 29, 166-173.	2.9	59
224	Functional screen identifies kinases driving prostate cancer visceral and bone metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E172-81.	3.3	40
225	Combined Tumor Suppressor Defects Characterize Clinically Defined Aggressive Variant Prostate Cancers. Clinical Cancer Research, 2016, 22, 1520-1530.	3.2	206
226	Knockdown of AKR1C3 exposes a potential epigenetic susceptibility in prostate cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2016, 155, 47-55.	1.2	15
227	METastasis Reporting and Data System for Prostate Cancer: Practical Guidelines for Acquisition, Interpretation, and Reporting of Whole-body Magnetic Resonance Imaging-based Evaluations of Multiorgan Involvement in Advanced Prostate Cancer. European Urology, 2017, 71, 81-92.	0.9	230
228	Lessons from tissue compartment-specific analysis of androgen receptor alterations in prostate cancer. Journal of Steroid Biochemistry and Molecular Biology, 2017, 166, 28-37.	1.2	12
229	p27T187A knockin identifies Skp2/Cks1 pocket inhibitors for advanced prostate cancer. Oncogene, 2017, 36, 60-70.	2.6	20
230	Androgen deprivation leads to increased carbohydrate metabolism and hexokinase 2-mediated survival in Pten/Tp53-deficient prostate cancer. Oncogene, 2017, 36, 525-533.	2.6	39
231	CX4945 suppresses the growth of castration-resistant prostate cancer cells by reducing AR-V7 expression. World Journal of Urology, 2017, 35, 1213-1221.	1.2	6
232	Comprehensive Profiling of the Androgen Receptor in Liquid Biopsies from Castration-resistant Prostate Cancer Reveals Novel Intra-AR Structural Variation and Splice Variant Expression Patterns. European Urology, 2017, 72, 192-200.	0.9	106
233	<i>Rb1</i> and <i>Trp53</i> cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science, 2017, 355, 78-83.	6.0	767
234	<i>SOX2</i> promotes lineage plasticity and antiandrogen resistance in <i>TP53</i> - and <i>RB1</i> -deficient prostate cancer. Science, 2017, 355, 84-88.	6.0	759
235	Prostate cancer, PI3K, PTEN and prognosis. Clinical Science, 2017, 131, 197-210.	1.8	146
236	Genomic hallmarks of localized, non-indolent prostate cancer. Nature, 2017, 541, 359-364.	13.7	462
237	Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nature Communications, 2017, 8, 13671.	5.8	182

#	ARTICLE	IF	Citations
238	High levels of the AR-V7 Splice Variant and Co-Amplification of the Golgi Protein Coding <i>YIPF6 </i> i>in <i>AR </i> i>Amplified Prostate Cancer Bone Metastases. Prostate, 2017, 77, 625-638.	1.2	27
239	Prostate Cancer Metastasis. , 2017, , 33-59.		2
240	Re: Inherited DNA-repair Gene Mutations in Men with Metastatic Prostate Cancer. European Urology, 2017, 71, 692.	0.9	1
241	Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality. Oncogene, 2017, 36, 3417-3427.	2.6	68
242	Genotype-matched treatment for patients with advanced type I epithelial ovarian cancer (EOC). Gynecologic Oncology, 2017, 144, 250-255.	0.6	27
243	DNA copy number changes define spatial patterns of heterogeneity in colorectal cancer. Nature Communications, 2017, 8, 14093.	5.8	85
244	Exploiting AR-Regulated Drug Transport to Induce Sensitivity to the Survivin Inhibitor YM155. Molecular Cancer Research, 2017, 15, 521-531.	1.5	17
245	Dissecting cell-type-specific roles of androgen receptor in prostate homeostasis and regeneration through lineage tracing. Nature Communications, 2017, 8, 14284.	5.8	46
246	Gleason Score 7 Prostate Cancers Emerge through Branched Evolution of Clonal Gleason Pattern 3 and 4. Clinical Cancer Research, 2017, 23, 3823-3833.	3.2	43
247	Integrating phosphoproteomics into the clinical management of prostate cancer. Clinical and Translational Medicine, 2017, 6, 9.	1.7	6
248	The Strange Case of CDK4/6 Inhibitors: Mechanisms, Resistance, and Combination Strategies. Trends in Cancer, 2017, 3, 39-55.	3.8	206
249	Cabozantinib Eradicates Advanced Murine Prostate Cancer by Activating Antitumor Innate Immunity. Cancer Discovery, 2017, 7, 750-765.	7.7	112
250	Molecular mechanisms of therapy resistance in solid tumors: chasing "moving―targets. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2017, 471, 155-164.	1.4	12
251	Navigating the evolving therapeutic landscape in advanced prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2017, 35, S1-S13.	0.8	53
252	Circulating tumor cells capture disease evolution in advanced prostate cancer. Journal of Translational Medicine, 2017, 15, 44.	1.8	27
253	Novel AR-V7 detection in whole blood samples in patients with prostate cancer: not as simple as it seems. World Journal of Urology, 2017, 35, 1625-1627.	1.2	7
254	WNT signalling events near the cell membrane and their pharmacological targeting for the treatment of cancer. British Journal of Pharmacology, 2017, 174, 4547-4563.	2.7	46
255	LuCaP Prostate Cancer Patient-Derived Xenografts Reflect the Molecular Heterogeneity of Advanced Disease anÂÂd Serve as Models for Evaluating Cancer Therapeutics. Prostate, 2017, 77, 654-671.	1.2	219

#	Article	IF	Citations
256	A multicenter phase I study of cabazitaxel, mitoxantrone, and prednisone for chemotherapy-na¬ve patients with metastatic castration-resistant prostate cancer: A department of defense prostate cancer clinical trials consortium study. Urologic Oncology: Seminars and Original Investigations, 2017, 35, 149.e7-149.e13.	0.8	7
257	Treatment Outcomes and Tumor Loss of Heterozygosity in Germline DNA Repair–deficient Prostate Cancer. European Urology, 2017, 72, 34-42.	0.9	179
258	Bone Metastasis of Prostate Cancer Can Be Therapeutically Targeted at the TBX2–WNT Signaling Axis. Cancer Research, 2017, 77, 1331-1344.	0.4	50
259	The Evolving Narrative of DNA Repair Gene Defects: Distinguishing Indolent from Lethal Prostate Cancer. European Urology, 2017, 71, 748-749.	0.9	9
260	The nuclear transport receptor Importin-11 is a tumor suppressor that maintains PTEN protein. Journal of Cell Biology, 2017, 216, 641-656.	2.3	35
261	Prostate cancer heterogeneity: Discovering novel molecular targets for therapy. Cancer Treatment Reviews, 2017, 54, 68-73.	3.4	64
262	Computational identification of mutually exclusive transcriptional drivers dysregulating metastatic microRNAs in prostate cancer. Nature Communications, 2017, 8, 14917.	5.8	16
263	CHD1 loss sensitizes prostate cancer to DNA damaging therapy by promoting error-prone double-strand break repair. Annals of Oncology, 2017, 28, 1495-1507.	0.6	91
264	Transcriptomic and genomic features of invasive lobular breast cancer. Seminars in Cancer Biology, 2017, 44, 98-105.	4.3	34
265	Protein Kinase C Epsilon Cooperates with PTEN Loss for Prostate Tumorigenesis through the CXCL13-CXCR5 Pathway. Cell Reports, 2017, 19, 375-388.	2.9	72
266	Whole-Genome Sequence of the Metastatic PC3 and LNCaP Human Prostate Cancer Cell Lines. G3: Genes, Genomes, Genetics, 2017, 7, 1731-1741.	0.8	49
267	Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer. Cancer Discovery, 2017, 7, 736-749.	7.7	275
268	Cellular determinants and microenvironmental regulation of prostate cancer metastasis. Seminars in Cancer Biology, 2017, 44, 83-97.	4.3	54
269	c-Myc Antagonises the Transcriptional Activity of the Androgen Receptor in Prostate Cancer Affecting Key Gene Networks. EBioMedicine, 2017, 18, 83-93.	2.7	96
270	The future of oncology therapeutics. Expert Review of Anticancer Therapy, 2017, 17, 563-565.	1.1	3
271	Prostate cancer molecular profiling: the Achilles heel for the implementation of precision medicine. Cell Biology International, 2017, 41, 1239-1245.	1.4	7
272	Androgen Receptor Variant AR-V9 Is Coexpressed with AR-V7 in Prostate Cancer Metastases and Predicts Abiraterone Resistance. Clinical Cancer Research, 2017, 23, 4704-4715.	3.2	117
273	Label-free isolation of prostate circulating tumor cells using Vortex microfluidic technology. Npj Precision Oncology, 2017, 1, 15.	2.3	72

#	Article	IF	CITATIONS
274	Synthetic lethal targeting of RNF20 through PARP1 silencing and inhibition. Cellular Oncology (Dordrecht), 2017, 40, 281-292.	2.1	10
275	Genetic profile of ductal adenocarcinoma of the prostate. Human Pathology, 2017, 69, 1-7.	1.1	20
276	HIC1 loss promotes prostate cancer metastasis by triggering epithelial-mesenchymal transition. Journal of Pathology, 2017, 242, 409-420.	2.1	21
277	Clinical value of R-spondins in triple-negative and metaplastic breast cancers. British Journal of Cancer, 2017, 116, 1595-1603.	2.9	31
278	Whole-genome sequencing identifies homozygous <i>BRCA2</i> deletion guiding treatment in dedifferentiated prostate cancer. Journal of Physical Education and Sports Management, 2017, 3, a001362.	0.5	9
279	Longâ€term clinical impact of PSA surge in castrationâ€resistant prostate cancer patients treated with abiraterone. Prostate, 2017, 77, 1012-1019.	1.2	6
280	Acquiring evidence for precision prostate cancer care. Annals of Oncology, 2017, 28, 916-917.	0.6	1
281	Analytic, Preanalytic, and Clinical Validation of p53 IHC for Detection of <i>TP53</i> Missense Mutation in Prostate Cancer. Clinical Cancer Research, 2017, 23, 4693-4703.	3.2	62
282	Circulating Cell-Free DNA to Guide Prostate Cancer Treatment with PARP Inhibition. Cancer Discovery, 2017, 7, 1006-1017.	7.7	341
283	Analysis of Circulating Cell-Free DNA Identifies Multiclonal Heterogeneity of <i>BRCA2</i> Reversion Mutations Associated with Resistance to PARP Inhibitors. Cancer Discovery, 2017, 7, 999-1005.	7.7	223
284	Castration Resistance in Prostate Cancer Is Mediated by the Kinase NEK6. Cancer Research, 2017, 77, 753-765.	0.4	31
285	\hat{l}^2 -Carotene $9\hat{a}\in ^2$, $10\hat{a}\in ^2$ Oxygenase Modulates the Anticancer Activity of Dietary Tomato or Lycopene on Prostate Carcinogenesis in the TRAMP Model. Cancer Prevention Research, 2017, 10, 161-169.	0.7	47
286	Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncology, The, 2017, 18, 75-87.	5.1	975
287	A multiparametric approach to improve upon existing prostate cancer screening and biopsy recommendations. Current Opinion in Urology, 2017, 27, 475-480.	0.9	3
288	Attaining precision therapy in prostate cancer: A tall order. European Journal of Cancer, 2017, 81, 226-227.	1.3	0
289	Biomarkers for the Management of Castration-Resistant Prostate Cancer: We Are Not There Yet. Targeted Oncology, 2017, 12, 401-412.	1.7	6
290	Phase II trial of the PI3 kinase inhibitor buparlisib (BKM-120) with or without enzalutamide in men with metastatic castration resistant prostate cancer. European Journal of Cancer, 2017, 81, 228-236.	1.3	76
291	Exome Sequencing of African-American Prostate Cancer Reveals Loss-of-Function <i>ERF</i> Mutations. Cancer Discovery, 2017, 7, 973-983.	7.7	94

#	Article	IF	Citations
292	Why Targeting of PSMA Is a Valuable Addition to the Management of Castration-Resistant Prostate Cancer: The Urologist's Point of View. Journal of Nuclear Medicine, 2017, 58, 1207-1209.	2.8	4
293	Active surveillance in prostate cancer: new efforts, new voices, new hope. BJU International, 2017, 120, 4-5.	1.3	1
294	Prostateâ€specific membrane antigen radioguided surgery: a promising utility. BJU International, 2017, 120, 5-6.	1.3	9
295	Characterization of a novel p $110\hat{l}^2$ -specific inhibitor BL140 that overcomes MDV3100-resistance in castration-resistant prostate cancer cells. Prostate, 2017, 77, 1187-1198.	1.2	17
296	Molecular biomarkers to guide precision medicine in localized prostate cancer. Expert Review of Molecular Diagnostics, 2017, 17, 791-804.	1.5	20
297	Recent progress in immunotherapy for urological cancer. International Journal of Urology, 2017, 24, 735-742.	0.5	12
298	The Non-Coding Transcriptome of Prostate Cancer: Implications for Clinical Practice. Molecular Diagnosis and Therapy, 2017, 21, 385-400.	1.6	18
299	PARP Inhibitors in Prostate Cancer. Current Treatment Options in Oncology, 2017, 18, 37.	1.3	50
300	RSPO2 suppresses colorectal cancer metastasis by counteracting the Wnt5a/Fzd7-driven noncanonical Wnt pathway. Cancer Letters, 2017, 402, 153-165.	3.2	59
301	FZD8, a target of p53, promotes bone metastasis in prostate cancer by activating canonical Wnt/ \hat{l}^2 -catenin signaling. Cancer Letters, 2017, 402, 166-176.	3.2	58
302	Clinical research in small genomically stratified patient populations. European Journal of Cancer, 2017, 80, 73-82.	1.3	2
303	Treatment strategies for DNA repair-deficient prostate cancer. Expert Review of Clinical Pharmacology, 2017, 10, 889-898.	1.3	26
304	AR-v7 liquid biopsy for treatment stratification in prostate cancer. Current Opinion in Urology, 2017, 27, 500-509.	0.9	5
305	Real-Time Transferrin-Based PET Detects MYC-Positive Prostate Cancer. Molecular Cancer Research, 2017, 15, 1221-1229.	1.5	27
306	Androgen Receptor Rearrangement and Splicing Variants in Resistance to Endocrine Therapies in Prostate Cancer. Endocrinology, 2017, 158, 1533-1542.	1.4	58
307	The potential of organoids in urological cancer research. Nature Reviews Urology, 2017, 14, 401-414.	1.9	72
308	Androgen receptor inhibitor–induced "BRCAness―and PARP inhibition are synthetically lethal for castration-resistant prostate cancer. Science Signaling, 2017, 10, .	1.6	200
309	Androgen deprivation therapy has no effect on Pim-1 expression in a mouse model of prostate cancer. Oncology Letters, 2017, 13, 4364-4370.	0.8	4

#	Article	IF	CITATIONS
310	Myeloid-derived cells in prostate cancer progression: phenotype and prospective therapies. Journal of Leukocyte Biology, 2017, 102, 393-406.	1.5	55
311	Adjunct Screening of NKX3.1 Expression Supports 5î±-Reductase Inhibition Intervention in Prostate Cancer Active Surveillance. European Urology, 2017, 72, 507-508.	0.9	1
312	Therapy assessment in prostate cancer using choline and PSMA PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 78-83.	3.3	31
313	Connecting androgen receptor signaling and the DNA damage response: Development of new therapies for advanced prostate cancer. Molecular and Cellular Oncology, 2017, 4, e1321167.	0.3	7
314	Rationale for the development of alternative forms of androgen deprivation therapy. Endocrine-Related Cancer, 2017, 24, R275-R295.	1.6	17
315	ACK1/TNK2 Regulates Histone H4 Tyr88-phosphorylation and AR Gene Expression in Castration-Resistant Prostate Cancer. Cancer Cell, 2017, 31, 790-803.e8.	7.7	88
316	Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5207-E5215.	3.3	266
317	The association between germline <scp><i>BRCA2</i></scp> variants and sensitivity to platinumâ€based chemotherapy among men with metastatic prostate cancer. Cancer, 2017, 123, 3532-3539.	2.0	217
318	ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature, 2017, 546, 671-675.	13.7	70
319	Exploiting <scp>DNA</scp> damage without repair: The activity of platinum chemotherapy in <scp>BRCA</scp> â€mutated prostate cancers. Cancer, 2017, 123, 3441-3444.	2.0	5
320	Emerging Variants of Castration-Resistant Prostate Cancer. Current Oncology Reports, 2017, 19, 32.	1.8	150
321	Phase Ib dose-finding study of abiraterone acetate plus buparlisib (BKM120) or dactolisib (BEZ235) in patients with castration-resistant prostate cancer. European Journal of Cancer, 2017, 76, 36-44.	1.3	64
322	Academic Cancer Center Phase I Program Development. Oncologist, 2017, 22, 369-374.	1.9	0
323	The emerging role of homologous recombination repair and PARP inhibitors in genitourinary malignancies. Cancer, 2017, 123, 1912-1924.	2.0	52
324	Re: Detection of Micrometastases by Flow Cytometry in Sentinel Lymph Nodes from Patients with Renal Tumours. European Urology, 2017, 71, 691-692.	0.9	1
325	Clinical characteristics and whole exome/transcriptome sequencing of coexisting chronic myeloid leukemia and myelofibrosis. American Journal of Hematology, 2017, 92, 555-561.	2.0	12
326	Extracellular vesicles for liquid biopsy in prostate cancer: where are we and where are we headed?. Prostate Cancer and Prostatic Diseases, 2017, 20, 251-258.	2.0	82
327	Changing face of metastatic prostate cancer: the law of diminishing returns holds true. Current Opinion in Oncology, 2017, 29, 196-200.	1.1	4

#	Article	IF	CITATIONS
328	Androgen Signaling in Prostate Cancer. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a030452.	2.9	278
329	Skp2 deficiency restricts the progression and stem cell features of castration-resistant prostate cancer by destabilizing Twist. Oncogene, 2017, 36, 4299-4310.	2.6	56
330	Resistance to Hormonal Therapy in Prostate Cancer. Handbook of Experimental Pharmacology, 2017, 249, 181-194.	0.9	7
331	The role of CREB3L4 in the proliferation of prostate cancer cells. Scientific Reports, 2017, 7, 45300.	1.6	21
332	SPOP Mutation Drives Prostate Tumorigenesis InÂVivo through Coordinate Regulation of PI3K/mTOR and AR Signaling. Cancer Cell, 2017, 31, 436-451.	7.7	152
333	Evasion of targeted cancer therapy through stem-cell-like reprogramming. Molecular and Cellular Oncology, 2017, 4, e1291397.	0.3	5
334	Mining Human Prostate Cancer Datasets: The "camcAPP―Shiny App. EBioMedicine, 2017, 17, 5-6.	2.7	31
335	The Mechanistic Role of the Calcium-Activated Chloride Channel ANO1 in Tumor Growth and Signaling. Advances in Experimental Medicine and Biology, 2017, 966, 1-14.	0.8	28
336	Antagonizing effects of membrane-acting androgens on the eicosanoid receptor OXER1 in prostate cancer. Scientific Reports, 2017, 7, 44418.	1.6	45
337	The Role of Therapeutic Layering in Optimizing Treatment for Patients With Castration-resistant Prostate Cancer (Prostate Cancer Radiographic Assessments for Detection of Advanced Recurrence II). Urology, 2017, 104, 150-159.	0.5	29
338	Disrupting Androgen Receptor Signaling Induces Snail-Mediated Epithelial–Mesenchymal Plasticity in Prostate Cancer. Cancer Research, 2017, 77, 3101-3112.	0.4	68
339	Recent advances in genitourinary tumors: A review focused on biology and systemic treatment. Critical Reviews in Oncology/Hematology, 2017, 113, 171-190.	2.0	22
340	Germline DNA Repair Mutations and Response to Hormonal Therapy in Advanced Prostate Cancer. European Urology, 2017, 72, 43-44.	0.9	12
341	A Phase I Study of Abiraterone Acetate Combined with BEZ235, a Dual PI3K/mTOR Inhibitor, in Metastatic Castration Resistant Prostate Cancer. Oncologist, 2017, 22, 503-e43.	1.9	42
342	Overexpression of TACC3 is correlated with tumor aggressiveness and poor prognosis in prostate cancer. Biochemical and Biophysical Research Communications, 2017, 486, 872-878.	1.0	28
343	Tumour-derived alkaline phosphatase regulates tumour growth, epithelial plasticity and disease-free survival in metastatic prostate cancer. British Journal of Cancer, 2017, 116, 227-236.	2.9	132
344	Prostate-specific Antigen Response and Eradication of Androgen Receptor Amplification with High-dose Testosterone in Prostate Cancer. European Urology, 2017, 71, 997-998.	0.9	4
345	Improved outcomes and precision medicine come within reach. Nature Reviews Urology, 2017, 14, 71-72.	1.9	4

#	Article	IF	CITATIONS
346	Somatic Mutations in Prostate Cancer: Closer to Personalized Medicine. Molecular Diagnosis and Therapy, 2017, 21, 167-178.	1.6	14
347	Nuclear-specific AR-V7 Protein Localization is Necessary to Guide Treatment Selection in Metastatic Castration-resistant Prostate Cancer. European Urology, 2017, 71, 874-882.	0.9	150
348	Germline Mutations in ATM and BRCA1/2 Distinguish Risk for Lethal and Indolent Prostate Cancer and are Associated with Early Age at Death. European Urology, 2017, 71, 740-747.	0.9	256
349	Incorporating Biomarker Stratification into STAMPEDE: an Adaptive Multi-arm, Multi-stage Trial Platform. Clinical Oncology, 2017, 29, 778-786.	0.6	13
350	Thioredoxin-1 protects against androgen receptor-induced redox vulnerability in castration-resistant prostate cancer. Nature Communications, 2017, 8, 1204.	5.8	40
352	Loss of FOXO1 Cooperates with TMPRSS2–ERG Overexpression to Promote Prostate Tumorigenesis and Cell Invasion. Cancer Research, 2017, 77, 6524-6537.	0.4	51
353	Androgen Receptor Pathway-Independent Prostate Cancer Is Sustained through FGF Signaling. Cancer Cell, 2017, 32, 474-489.e6.	7.7	483
354	Pan-cancer analysis of bi-allelic alterations in homologous recombination DNA repair genes. Nature Communications, 2017, 8, 857.	5.8	182
355	The unidirectional hypoxiaâ€activated prodrug OCT1002 inhibits growth and vascular development in castrateâ€resistant prostate tumors. Prostate, 2017, 77, 1539-1547.	1.2	9
356	BET inhibitors in metastatic prostate cancer: therapeutic implications and rational drug combinations. Expert Opinion on Investigational Drugs, 2017, 26, 1391-1397.	1.9	26
357	Clinical relevance of androgen receptor alterations in prostate cancer. Endocrine Connections, 2017, 6, R146-R161.	0.8	87
358	A novel approach for data integration and disease subtyping. Genome Research, 2017, 27, 2025-2039.	2.4	139
359	Impact of Therapy on Genomics and Transcriptomics in High-Risk Prostate Cancer Treated with Neoadjuvant Docetaxel and Androgen Deprivation Therapy. Clinical Cancer Research, 2017, 23, 6802-6811.	3.2	69
360	Targeted Therapies and Immunotherapy in Prostate Cancer. , 2017, , 367-374.		0
361	Dysregulation of spliceosome gene expression in advanced prostate cancer by RNA-binding protein PSF. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10461-10466.	3.3	93
362	WNT signalling in prostate cancer. Nature Reviews Urology, 2017, 14, 683-696.	1.9	256
363	TOP2A and EZH2 Provide Early Detection of an Aggressive Prostate Cancer Subgroup. Clinical Cancer Research, 2017, 23, 7072-7083.	3.2	87
364	Beyond the androgen receptor II: New approaches to understanding and treating metastatic prostate cancer; Report from the 2017 Coffeyâ€Holden Prostate Cancer Academy Meeting. Prostate, 2017, 77, 1478-1488.	1.2	7

#	Article	IF	Citations
365	Targeting androgen-independent pathways: new chances for patients with prostate cancer?. Critical Reviews in Oncology/Hematology, 2017, 118, 42-53.	2.0	25
366	Precision Oncology: The Road Ahead. Trends in Molecular Medicine, 2017, 23, 874-898.	3.5	131
367	Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer. Nature Communications, 2017, 8, 374.	5.8	180
368	Stromal and epithelial transcriptional map of initiation progression and metastatic potential of human prostate cancer. Nature Communications, 2017, 8, 420.	5.8	91
369	O-GlcNAcylation modulates Bmi-1 protein stability and potential oncogenic function in prostate cancer. Oncogene, 2017, 36, 6293-6305.	2.6	38
370	Developing new targeting strategy for androgen receptor variants in castration resistant prostate cancer. International Journal of Cancer, 2017, 141, 2121-2130.	2.3	25
371	Tumor-Associated Mutations in Caspase-6 Negatively Impact Catalytic Efficiency. Biochemistry, 2017, 56, 4568-4577.	1.2	7
372	Nuclear mTOR acts as a transcriptional integrator of the androgen signaling pathway in prostate cancer. Genes and Development, 2017, 31, 1228-1242.	2.7	103
373	Prognostic and predictive biomarkers in prostate cancer: latest evidence and clinical implications. Therapeutic Advances in Medical Oncology, 2017, 9, 565-573.	1.4	58
375	Induction of alpha-methylacyl-CoA racemase by miR-138 via up-regulation of \hat{l}^2 -catenin in prostate cancer cells. Journal of Cancer Research and Clinical Oncology, 2017, 143, 2201-2210.	1.2	6
376	Recent advances in circulating tumor cells and cell-free DNA in metastatic prostate cancer: a review. Expert Review of Anticancer Therapy, 2017, 17, 939-949.	1.1	6
377	Molecular genetics and targeted therapy of WNT-related human diseases (Review). International Journal of Molecular Medicine, 2017, 40, 587-606.	1.8	144
378	Improved Outcomes in Men with Advanced Prostate Cancer. New England Journal of Medicine, 2017, 377, 388-390.	13.9	6
379	Gene Copy Number Estimation from Targeted Next-Generation Sequencing of Prostate Cancer Biopsies: Analytic Validation and Clinical Qualification. Clinical Cancer Research, 2017, 23, 6070-6077.	3.2	30
380	Integrative clinical genomics of metastatic cancer. Nature, 2017, 548, 297-303.	13.7	685
381	Human metastases under scrutiny. Nature, 2017, 548, 287-288.	13.7	2
382	AIM1 is an actin-binding protein that suppresses cell migration and micrometastatic dissemination. Nature Communications, 2017, 8, 142.	5.8	36
383	Intratumoural evolutionary landscape of high-risk prostate cancer: the PROGENY study of genomic and immune parameters. Annals of Oncology, 2017, 28, 2472-2480.	0.6	45

#	Article	IF	CITATIONS
384	Bypassing Drug Resistance Mechanisms of Prostate Cancer with Small Molecules that Target Androgen Receptor–Chromatin Interactions. Molecular Cancer Therapeutics, 2017, 16, 2281-2291.	1.9	22
386	The biology of prostate cancer metastases. Current Opinion in Urology, 2017, 27, 542-546.	0.9	8
387	MSH2 Loss in Primary Prostate Cancer. Clinical Cancer Research, 2017, 23, 6863-6874.	3.2	122
388	Histopathological Evaluation in Prostate Cancer. , 2017, , 169-189.		O
389	Targeting a Single Alternative Polyadenylation Site Coordinately Blocks Expression of Androgen Receptor mRNA Splice Variants in Prostate Cancer. Cancer Research, 2017, 77, 5228-5235.	0.4	52
390	Allosteric alterations in the androgen receptor and activity in prostate cancer. Endocrine-Related Cancer, 2017, 24, R335-R348.	1.6	10
391	Therapeutic Targeting of the CBP/p300 Bromodomain Blocks the Growth of Castration-Resistant Prostate Cancer. Cancer Research, 2017, 77, 5564-5575.	0.4	105
392	Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiological Reviews, 2017, 97, 1235-1294.	13.1	658
393	The Combination of Metformin and Valproic Acid Induces Synergistic Apoptosis in the Presence of p53 and Androgen Signaling in Prostate Cancer. Molecular Cancer Therapeutics, 2017, 16, 2689-2700.	1.9	26
394	Opposing effects of cancer-type-specific SPOP mutants on BET protein degradation and sensitivity to BET inhibitors. Nature Medicine, 2017, 23, 1046-1054. Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and	15.2	145
395	Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Nonâ€"Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors. Advances in Anatomic Pathology, 2017, 24,	2.4	530
396	ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncology, The, 2017, 18, 1360-1372.	5.1	377
397	A Systems Approach to Prostate Cancer Classification—Response. Cancer Research, 2017, 77, 7133-7135.	0.4	2
398	Aberrant Activation of a Gastrointestinal Transcriptional Circuit in Prostate Cancer Mediates Castration Resistance. Cancer Cell, 2017, 32, 792-806.e7.	7.7	61
399	Characterization, Detection, and Treatment Approaches for Homologous Recombination Deficiency in Cancer. Trends in Molecular Medicine, 2017, 23, 1121-1137.	3.5	48
400	Combining immunotherapies for the treatment of prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2017, 35, 694-700.	0.8	36
401	PTEN loss and activation of K-RAS and \hat{l}^2 -catenin cooperate to accelerate prostate tumourigenesis. Journal of Pathology, 2017, 243, 442-456.	2.1	23
402	PTEN is a protein phosphatase that targets active PTK6 and inhibits PTK6 oncogenic signaling in prostate cancer. Nature Communications, 2017, 8, 1508.	5.8	71

#	Article	IF	CITATIONS
403	Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nature Communications, 2017, 8, 1324.	5.8	584
404	A First-Time-in-Human Study of GSK2636771, a Phosphoinositide 3 Kinase Beta-Selective Inhibitor, in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2017, 23, 5981-5992.	3.2	107
405	Impact of novel miR-145-3p regulatory networks on survival in patients with castration-resistant prostate cancer. British Journal of Cancer, 2017, 117, 409-420.	2.9	88
406	Redefining Hormonal Therapy for Advanced Prostate Cancer: Results from the LATITUDE and STAMPEDE Studies. Cancer Cell, 2017, 32, 6-8.	7.7	12
407	Inhibition of the androgen receptor induces a novel tumor promoter, ZBTB46, for prostate cancer metastasis. Oncogene, 2017, 36, 6213-6224.	2.6	43
408	Identification of FBXL4 as a Metastasis Associated Gene in Prostate Cancer. Scientific Reports, 2017, 7, 5124.	1.6	17
409	A germline FANCA alteration that is associated with increased sensitivity to DNA damaging agents. Journal of Physical Education and Sports Management, 2017, 3, a001487.	0.5	25
410	Telomeres and telomerase in prostate cancer development and therapy. Nature Reviews Urology, 2017, 14, 607-619.	1.9	85
411	Mutations in BRCA2 and taxane resistance in prostate cancer. Scientific Reports, 2017, 7, 4574.	1.6	32
412	Discussing the predictive, prognostic, and therapeutic value of germline DNA-repair gene mutations in metastatic prostate cancer patients. Cancer Biology and Therapy, 2017, 18, 545-546.	1.5	2
413	The Path of Most Resistance: Transdifferentiation Underlies Exceptional Nonresponses to Androgen Receptor Pathway Inhibition in Prostate Cancer. Cancer Discovery, 2017, 7, 673-674.	7.7	6
414	Identification of endonuclease domain-containing $\bf 1$ as a novel tumor suppressor in prostate cancer. BMC Cancer, 2017, 17, 360.	1.1	8
415	Intersect-then-combine approach: improving the performance of somatic variant calling in whole exome sequencing data using multiple aligners and callers. Genome Medicine, 2017, 9, 35.	3.6	48
416	Long-term complete remission with ipilimumab in metastatic castrate-resistant prostate cancer: case report of two patients., 2017, 5, 31.		45
417	Germline genetic variants in men with prostate cancer and one or more additional cancers. Cancer, 2017, 123, 3925-3932.	2.0	45
418	Concordance of Circulating Tumor DNA and Matched Metastatic Tissue Biopsy in Prostate Cancer. Journal of the National Cancer Institute, 2017, 109, .	3.0	288
419	Relevance of DNA damage repair in the management of prostate cancer. Current Problems in Cancer, 2017, 41, 287-301.	1.0	16
420	Prostate cancer: Developing novel approaches to castrationâ€sensitive disease. Cancer, 2017, 123, 29-42.	2.0	8

#	Article	IF	CITATIONS
421	Meeting Report From the Prostate Cancer Foundation Scientific Working Group on Radiumâ€223. Prostate, 2017, 77, 245-254.	1.2	6
422	Block one, unleash a hundred. Mechanisms of DAB2IP inactivation in cancer. Cell Death and Differentiation, 2017, 24, 15-25.	5.0	50
423	Systematic and functional characterization of novel androgen receptor variants arising from alternative splicing in the ligand-binding domain. Oncogene, 2017, 36, 1440-1450.	2.6	6
424	The molecular underpinnings of prostate cancer: impacts on management and pathology practice. Journal of Pathology, 2017, 241, 173-182.	2.1	36
425	TET2 binds the androgen receptor and loss is associated with prostate cancer. Oncogene, 2017, 36, 2172-2183.	2.6	56
426	C-terminally truncated constitutively active androgen receptor variants and their biologic and clinical significance in castration-resistant prostate cancer. Journal of Steroid Biochemistry and Molecular Biology, 2017, 166, 38-44.	1.2	17
427	mTOR Inhibitors in Castration-Resistant Prostate Cancer: A Systematic Review. Targeted Oncology, 2017, 12, 47-59.	1.7	59
428	The Emergence of Precision Urologic Oncology: A Collaborative Review on Biomarker-driven Therapeutics. European Urology, 2017, 71, 237-246.	0.9	62
429	Whole Genomic Copy Number Alterations in Circulating Tumor Cells from Men with Abiraterone or Enzalutamide-Resistant Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2017, 23, 1346-1357.	3.2	58
430	DNA Repair in Prostate Cancer: Biology and Clinical Implications. European Urology, 2017, 71, 417-425.	0.9	169
431	Expanding the Armamentarium for Castrate-resistant Prostate Cancer. European Urology, 2017, 71, 328-329.	0.9	1
432	Exploitation of Castration-Resistant Prostate Cancer Transcription Factor Dependencies by the Novel BET Inhibitor ABBV-075. Molecular Cancer Research, 2017, 15, 35-44.	1.5	54
433	Exceptional Duration of Radium-223 in Prostate Cancer With a BRCA2 Mutation. Clinical Genitourinary Cancer, 2017, 15, e69-e71.	0.9	28
434	Beyond Seed and Soil: Understanding and Targeting Metastatic Prostate Cancer; Report From the 2016 Coffey–Holden Prostate Cancer Academy Meeting. Prostate, 2017, 77, 123-144.	1.2	6
435	A Phase II Trial of Abiraterone Combined with Dutasteride for Men with Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2017, 23, 935-945.	3.2	30
436	Interplay between Cytoplasmic and Nuclear Androgen Receptor Splice Variants Mediates Castration Resistance. Molecular Cancer Research, 2017, 15, 59-68.	1.5	57
437	Extreme Response to High-dose Testosterone in BRCA2- and ATM-mutated Prostate Cancer. European Urology, 2017, 71, 499.	0.9	26
438	Beyond Just Androgen Deprivation Therapy: Novel Therapies Combined With Radiation. Seminars in Radiation Oncology, 2017, 27, 87-93.	1.0	2

#	Article	IF	CITATIONS
439	Intratumoral and Intertumoral Genomic Heterogeneity of Multifocal Localized Prostate Cancer Impacts Molecular Classifications and Genomic Prognosticators. European Urology, 2017, 71, 183-192.	0.9	171
440	Integrated Analysis of Multiple Biomarkers from Circulating Tumor Cells Enabled by Exclusion-Based Analyte Isolation. Clinical Cancer Research, 2017, 23, 746-756.	3.2	52
441	The Molecular Landscape of Recurrent and Metastatic Head and Neck Cancers. JAMA Oncology, 2017, 3, 244.	3.4	191
442	Branched Chain RNA <i>In Situ</i> Hybridization for Androgen Receptor Splice Variant AR-V7 as a Prognostic Biomarker for Metastatic Castration-Sensitive Prostate Cancer. Clinical Cancer Research, 2017, 23, 363-369.	3.2	23
443	Screening Men at Increased Risk for Prostate Cancer Diagnosis: Model Estimates of Benefits and Harms. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 222-227.	1.1	33
444	Strategies to avoid treatment-induced lineage crisis in advanced prostate cancer. Nature Reviews Clinical Oncology, 2017, 14, 269-283.	12.5	36
445	The role of GATA2 in lethal prostate cancer aggressiveness. Nature Reviews Urology, 2017, 14, 38-48.	1.9	71
446	Blind Biobanking of the Prostatectomy Specimen: Critical Evaluation of the Existing Techniques and Development of the New 4-Level Tissue Extraction Model With High Sampling Efficacy. Prostate, 2017, 77, 396-405.	1.2	3
447	Molecular Imaging and Precision Medicine in Prostate Cancer. PET Clinics, 2017, 12, 83-92.	1.5	9
448	Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene, 2017, 36, 1573-1584.	2.6	29
449	Beta-adrenergic signaling promotes tumor angiogenesis and prostate cancer progression through HDAC2-mediated suppression of thrombospondin-1. Oncogene, 2017, 36, 1525-1536.	2.6	65
450	Opposing roles of $TGF\hat{l}^2$ and BMP signaling in prostate cancer development. Genes and Development, 2017, 31, 2337-2342.	2.7	30
451	Functional characterization of a novel somatic oncogenic mutation of PIK3CB. Signal Transduction and Targeted Therapy, 2017, 2, 17063.	7.1	28
453	Adaptive phenotype drives resistance to androgen deprivation therapy in prostate cancer. Cell Communication and Signaling, 2017, 15, 51.	2.7	29
454	Trends in Gene Expression Profiling for Prostate Cancer Risk Assessment: A Systematic Review. Biomedicine Hub, 2017, 2, 1-15.	0.4	11
455	Heterogeneity of advanced prostate cancer: clinical implications of genomics. Trends in Urology & Men's Health, 2017, 8, 24-27.	0.2	0
456	Homologous Recombination and Replication Fork Protection: BRCA2 and More!. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 329-338.	2.0	54
457	Inherited Mutations in Men Undergoing Multigene Panel Testing for Prostate Cancer: Emerging Implications for Personalized Prostate Cancer Genetic Evaluation. JCO Precision Oncology, 2017, 1, 1-17.	1.5	27

#	Article	IF	Citations
458	Molecular Testing in Patients With Castration-Resistant Prostate Cancer and Its Impact on Clinical Decision Making. JCO Precision Oncology, 2017, 1, 1-11.	1.5	5
459	Genetic Testing for Prostate Cancer in Clinical Practice. JCO Precision Oncology, 2017, 1, 1-3.	1.5	2
460	Personalizing Therapy for Metastatic Prostate Cancer: The Role of Solid and Liquid Tumor Biopsies. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 358-369.	1.8	9
461	Beyond the Androgen Receptor: Targeting Actionable Drivers of Prostate Cancer. JCO Precision Oncology, 2017, 1, 1-3.	1.5	4
462	Rapid, ultra low coverage copy number profiling of cell-free DNA as a precision oncology screening strategy. Oncotarget, 2017, 8, 89848-89866.	0.8	45
463	A Standardized Wedelia chinensis Extract Overcomes the Feedback Activation of HER2/3 Signaling upon Androgen-Ablation in Prostate Cancer. Frontiers in Pharmacology, 2017, 8, 721.	1.6	10
464	Mass spectrometry-assisted gel-based proteomics in cancer biomarker discovery: approaches and application. Theranostics, 2017, 7, 3559-3572.	4.6	60
466	Immunotherapy for Prostate Cancer: Where We Are Headed. International Journal of Molecular Sciences, 2017, 18, 2627.	1.8	47
467	CK2 Molecular Targetingâ€"Tumor Cell-Specific Delivery of RNAi in Various Models of Cancer. Pharmaceuticals, 2017, 10, 25.	1.7	10
468	A Tale of Two Signals: AR and WNT in Development and Tumorigenesis of Prostate and Mammary Gland. Cancers, 2017, 9, 14.	1.7	38
469	Androgen Receptor-Dependent and -Independent Mechanisms Involved in Prostate Cancer Therapy Resistance. Cancers, 2017, 9, 67.	1.7	83
470	Androgen receptor splice variants and prostate cancer: From bench to bedside. Oncotarget, 2017, 8, 18550-18576.	0.8	100
471	AR-Signaling in Human Malignancies: Prostate Cancer and Beyond. Cancers, 2017, 9, 7.	1.7	49
472	Androgen Receptor Signaling in Salivary Gland Cancer. Cancers, 2017, 9, 17.	1.7	69
473	Supraphysiologic Testosterone Therapy in the Treatment of Prostate Cancer: Models, Mechanisms and Questions. Cancers, 2017, 9, 166.	1.7	33
474	MYC Deregulation in Primary Human Cancers. Genes, 2017, 8, 151.	1.0	281
475	Exploiting Epigenetic Alterations in Prostate Cancer. International Journal of Molecular Sciences, 2017, 18, 1017.	1.8	28
476	Quantitative Mass Spectrometry-Based Proteomic Profiling for Precision Medicine in Prostate Cancer. Frontiers in Oncology, 2017, 7, 267.	1.3	19

#	Article	IF	CITATIONS
477	Genotyping the High Altitude Mestizo Ecuadorian Population Affected with Prostate Cancer. BioMed Research International, 2017, 2017, 1-10.	0.9	7
478	Regulation of the glucocorticoid receptor via a BET-dependent enhancer drives antiandrogen resistance in prostate cancer. ELife, 2017, 6, .	2.8	154
480	Molecular determinants of prostate cancer metastasis. Oncotarget, 2017, 8, 88211-88231.	0.8	19
481	Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS. Oncotarget, 2017, 8, 7452-7463.	0.8	232
482	Mapping the STK4/Hippo signaling network in prostate cancer cell. PLoS ONE, 2017, 12, e0184590.	1.1	22
483	Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genetics, 2017, 13, e1007001.	1.5	34
484	Identification of novel prostate cancer drivers using RegNetDriver: a framework for integration of genetic and epigenetic alterations with tissue-specific regulatory network. Genome Biology, 2017, 18, 141.	3.8	31
485	Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: Opportunities for therapeutic targeting from multiple angles. Oncotarget, 2017, 8, 3724-3745.	0.8	95
486	Defective DNA repair mechanisms in prostate cancer: impact of olaparib. Drug Design, Development and Therapy, 2017, Volume11, 547-552.	2.0	26
487	Overcoming Oncogenic Mediated Tumor Immunity in Prostate Cancer. International Journal of Molecular Sciences, 2017, 18, 1542.	1.8	25
488	Therapeutic Approaches Targeting MYC-Driven Prostate Cancer. Genes, 2017, 8, 71.	1.0	78
489	<i>PTEN</i> loss is associated with prostate cancer recurrence and alterations in tumor DNA methylation profiles. Oncotarget, 2017, 8, 84338-84348.	0.8	32
490	Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May Affect Clinical Decision Making. JCO Precision Oncology, 2017, 2017, 1-16.	1.5	286
491	Altering the Natural History of Oligometastatic Prostate Cancer With Local Therapies: Reality Versus Illusion. Journal of Oncology Practice, 2017, 13, 21-24.	2.5	6
492	Genetic Testing: What Problem Are We Trying to Solve?. Journal of Clinical Oncology, 2017, 35, 3789-3791.	0.8	54
493	ls Low-Risk Prostate Cancer More Indolent in Younger Patients?. Journal of Clinical Oncology, 2017, 35, 1870-1871.	0.8	1
494	Genomic Resistance Patterns to Second-Generation Androgen Blockade in Paired Tumor Biopsies of Metastatic Castration-Resistant Prostate Cancer. JCO Precision Oncology, 2017, 1, 1-11.	1.5	13
495	Clinical Use of Precision Oncology Decision Support. JCO Precision Oncology, 2017, 2017, 1-12.	1.5	22

#	Article	IF	CITATIONS
496	Association Between Androgen Receptor Splice Variants and Prostate Cancer Resistance to Abiraterone and Enzalutamide. Journal of Clinical Oncology, 2017, 35, 2103-2105.	0.8	15
497	Clinical implications of PTEN loss in prostate cancer. Nature Reviews Urology, 2018, 15, 222-234.	1.9	408
499	Neuroendocrine Prostate Cancer. Molecular Pathology Library, 2018, , 323-341.	0.1	0
500	Molecular Targeted Therapies of Prostate Cancer. Molecular Pathology Library, 2018, , 523-546.	0.1	1
501	Olaparib is effective in combination with, and as maintenance therapy after, firstâ€line endocrine therapy in prostate cancer cells. Molecular Oncology, 2018, 12, 561-576.	2.1	21
502	Defining the Prognostic and Predictive Impact of Germline DNA Repair Mutations in Patients with Metastatic Castration-resistant Prostate Cancer. European Urology, 2018, 73, 694-695.	0.9	0
503	Precision Medicine in Prostate Cancer: Approach to the Patient. Molecular Pathology Library, 2018, , 3-12.	0.1	0
504	Copy Number Variation/Chromosomal Aberration. Molecular Pathology Library, 2018, , 129-135.	0.1	0
505	Metabolomic-Based Stratification in Prostate Cancer. Molecular Pathology Library, 2018, , 237-258.	0.1	1
506	A comprehensive evaluation of <i>CHEK2</i> germline mutations in men with prostate cancer. Prostate, 2018, 78, 607-615.	1.2	57
507	Targeting the Tumor Microenvironment with Immunotherapy for Genitourinary Malignancies. Current Treatment Options in Oncology, 2018, 19, 16.	1.3	5
508	Resistance to BET Inhibitor Leads to Alternative Therapeutic Vulnerabilities in Castration-Resistant Prostate Cancer. Cell Reports, 2018, 22, 2236-2245.	2.9	60
509	Most human introns are recognized via multiple and tissue-specific branchpoints. Genes and Development, 2018, 32, 577-591.	2.7	95
510	<scp>PRDM</scp> 4 mediates <scp>YAP</scp> â€induced cell invasion by activating leukocyteâ€specific integrin β2 expression. EMBO Reports, 2018, 19, .	2.0	41
511	Multi-faceted immunomodulatory and tissue-tropic clinical bacterial isolate potentiates prostate cancer immunotherapy. Nature Communications, 2018, 9, 1591.	5.8	64
512	Non-canonical functions of the RB protein in cancer. Nature Reviews Cancer, 2018, 18, 442-451.	12.8	138
513	Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nature Genetics, 2018, 50, 682-692.	9.4	182
514	The Evolutionary Landscape of Localized Prostate Cancers Drives Clinical Aggression. Cell, 2018, 173, 1003-1013.e15.	13.5	176

#	ARTICLE	IF	CITATIONS
515	Delineation of the androgen-regulated signaling pathways in prostate cancer facilitates the development of novel therapeutic approaches. Current Opinion in Pharmacology, 2018, 41, 1-11.	1.7	11
516	Genomic alterations in plasma DNA from patients with metastasized prostate cancer receiving abiraterone or enzalutamide. International Journal of Cancer, 2018, 143, 1236-1248.	2.3	37
517	Mitochondrial Complex I Inhibitors Expose a Vulnerability for Selective Killing of Pten-Null Cells. Cell Reports, 2018, 23, 58-67.	2.9	73
518	Molecular and cellular mechanisms of castration resistant prostate cancer (Review). Oncology Letters, 2018, 15, 6063-6076.	0.8	116
519	PD-1/PD-L1 pathway inhibitors in advanced prostate cancer. Expert Review of Clinical Pharmacology, 2018, 11, 475-486.	1.3	83
520	Emerging Therapies in Metastatic Prostate Cancer. Current Oncology Reports, 2018, 20, 46.	1.8	22
521	PARP inhibitors and breast cancer: highlights and hang-ups. Expert Review of Precision Medicine and Drug Development, 2018, 3, 83-94.	0.4	4
522	Multigene Profiling of CTCs in mCRPC Identifies a Clinically Relevant Prognostic Signature. Molecular Cancer Research, 2018, 16, 643-654.	1.5	33
523	BRD4 Promotes DNA Repair and Mediates the Formation of TMPRSS2-ERG Gene Rearrangements in Prostate Cancer. Cell Reports, 2018, 22, 796-808.	2.9	103
524	Loss of an Androgen-Inactivating and Isoform-Specific HSD17B4 Splice Form Enables Emergence of Castration-Resistant Prostate Cancer. Cell Reports, 2018, 22, 809-819.	2.9	32
525	The Heterogeneity of Prostate Cancer: A Practical Approach. Pathobiology, 2018, 85, 108-116.	1.9	93
526	Clinical applications of the CellSearch platform in cancer patients. Advanced Drug Delivery Reviews, 2018, 125, 102-121.	6.6	185
527	Clinical Outcome of Prostate Cancer Patients with Germline DNA Repair Mutations: Retrospective Analysis from an International Study. European Urology, 2018, 73, 687-693.	0.9	99
528	Circulating Tumor DNA Genomics Correlate with Resistance to Abiraterone and Enzalutamide in Prostate Cancer. Cancer Discovery, 2018, 8, 444-457.	7.7	376
529	Intraductal/ductal histology and lymphovascular invasion are associated with germline DNAâ€repair gene mutations in prostate cancer. Prostate, 2018, 78, 401-407.	1.2	105
530	Development of a personalized therapeutic strategy for ERBB-gene-mutated cancers. Therapeutic Advances in Medical Oncology, 2018, 10, 175883401774604.	1.4	11
531	Metastatic Prostate Cancer. New England Journal of Medicine, 2018, 378, 645-657.	13.9	386
532	Developing androgen receptor targeting for salivary gland cancers. Annals of Oncology, 2018, 29, 792-794.	0.6	1

#	Article	IF	CITATIONS
533	Clinical and Novel Biomarkers in the Management of Prostate Cancer. Current Treatment Options in Oncology, 2018, 19, 8.	1.3	16
534	When and how to use carboplatin in metastatic castration-resistant prostate cancer?. European Journal of Cancer, 2018, 92, 96-99.	1.3	2
535	Circulating tumor cells and survival in abiraterone†and enzalutamide†reated patients with castration†resistant prostate cancer. Prostate, 2018, 78, 435-445.	1.2	21
536	Blocking PD-1/PD-L1 in Genitourinary Malignancies. Cancer Journal (Sudbury, Mass), 2018, 24, 20-30.	1.0	17
537	Histone methyltransferase KMT2D sustains prostate carcinogenesis and metastasis via epigenetically activating LIFR and KLF4. Oncogene, 2018, 37, 1354-1368.	2.6	101
538	Nuclear receptors in cancer $\hat{a} \in \mathbb{C}^n$ uncovering new and evolving roles through genomic analysis. Nature Reviews Genetics, 2018, 19, 160-174.	7.7	74
539	Cancer transcriptome profiling at the juncture of clinical translation. Nature Reviews Genetics, 2018, 19, 93-109.	7.7	202
540	Predicting therapy response and resistance in metastatic prostate cancer with circulating tumor DNA. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 380-384.	0.8	13
541	Accelerating Discovery of Functional Mutant Alleles in Cancer. Cancer Discovery, 2018, 8, 174-183.	7.7	275
542	Role of Androgen Receptor Variants in Prostate Cancer: Report from the 2017 Mission Androgen Receptor Variants Meeting. European Urology, 2018, 73, 715-723.	0.9	105
543	Bone biopsy protocol for advanced prostate cancer in the era of precision medicine. Cancer, 2018, 124, 1008-1015.	2.0	42
544	CTC-derived AR-V7 detection as a prognostic and predictive biomarker in advanced prostate cancer. Expert Review of Molecular Diagnostics, 2018, 18, 155-163.	1.5	51
545	Role of Wnt signalling in advanced prostate cancer. Journal of Pathology, 2018, 245, 3-5.	2.1	24
546	\hat{l} -Tocopherol inhibits the development of prostate adenocarcinoma in prostate specific Ptenâ \hat{l} mice. Carcinogenesis, 2018, 39, 158-169.	1.3	12
547	Targeted AKT Inhibition in Prostate Cancer Cells and Spheroids Reduces Aerobic Glycolysis and Generation of Hyperpolarized [1-13C] Lactate. Molecular Cancer Research, 2018, 16, 453-460.	1.5	16
548	Deregulated PP1 $\hat{l}\pm$ phosphatase activity towards MAPK activation is antagonized by a tumor suppressive failsafe mechanism. Nature Communications, 2018, 9, 159.	5.8	39
549	An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nature Genetics, 2018, 50, 206-218.	9.4	229
550	p53 status in the primary tumor predicts efficacy of subsequent abiraterone and enzalutamide in castration-resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2018, 21, 260-268.	2.0	48

#	Article	IF	CITATIONS
551	Androgen Receptor Variants and Castration-resistant Prostate Cancer: Looking Back and Looking Forward. European Urology, 2018, 73, 724-726.	0.9	2
552	Diverse genetic-driven immune landscapes dictate tumor progression through distinct mechanisms. Nature Medicine, 2018, 24, 165-175.	15.2	137
553	Preclinical Models of Prostate Cancer: Patient-Derived Xenografts, Organoids, and Other Explant Models. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a030536.	2.9	65
554	Molecular Biomarkers in the Clinical Management of Prostate Cancer. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a030601.	2.9	11
555	Precision oncology in the age of integrative genomics. Nature Biotechnology, 2018, 36, 46-60.	9.4	104
556	Adipocyte-activated oxidative and ER stress pathways promote tumor survival in bone via upregulation of Heme Oxygenase 1 and Survivin. Scientific Reports, 2018, 8, 40.	1.6	32
557	A prospective genome-wide study of prostate cancer metastases reveals association of wnt pathway activation and increased cell cycle proliferation with primary resistance to abiraterone acetate–prednisone. Annals of Oncology, 2018, 29, 352-360.	0.6	70
558	Prostate cancers that â€Wnt' respond to abiraterone. Annals of Oncology, 2018, 29, 290-292.	0.6	3
559	The Genomics of Prostate Cancer: emerging understanding with technologic advances. Modern Pathology, 2018, 31, 1-11.	2.9	47
560	Identification of a Small Molecule That Selectively Inhibits ERG-Positive Cancer Cell Growth. Cancer Research, 2018, 78, 3659-3671.	0.4	44
561	From somatic variants towards precision oncology: Evidence-driven reporting of treatment options in molecular tumor boards. Genome Medicine, 2018, 10, 18.	3.6	36
562	Calcium and CaSR/IP3R in prostate cancer development. Cell and Bioscience, 2018, 8, .	2.1	14
563	Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4584-E4593.	3.3	73
564	Development of a stress response therapy targeting aggressive prostate cancer. Science Translational Medicine, 2018, 10, .	5.8	124
565	MEIS1 and MEIS2 Expression and Prostate Cancer Progression: A Role For HOXB13 Binding Partners in Metastatic Disease. Clinical Cancer Research, 2018, 24, 3668-3680.	3.2	56
566	Frizzled-8 integrates Wnt- 11 and transforming growth factor- \hat{l}^2 signaling in prostate cancer. Nature Communications, 2018, 9, 1747.	5.8	79
567	Virus Delivery of CRISPR Guides to the Murine Prostate for Gene Alteration. Journal of Visualized Experiments, 2018, , .	0.2	8
568	MAGI2 is an independent predictor of biochemical recurrence in prostate cancer. Prostate, 2018, 78, 616-622.	1.2	13

#	Article	IF	CITATIONS
569	Molecular model for neuroendocrine prostate cancer progression. BJU International, 2018, 122, 560-570.	1.3	46
570	Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping. Nature Chemistry, 2018, 10, 489-495.	6.6	68
571	The long tail of oncogenic drivers in prostate cancer. Nature Genetics, 2018, 50, 645-651.	9.4	601
572	PARP inhibitors for homologous recombination-deficient prostate cancer. Expert Opinion on Emerging Drugs, 2018, 23, 123-133.	1.0	24
573	Prostate Cancer Disseminated Tumor Cells are Rarely Detected in the Bone Marrow of Patients with Localized Disease Undergoing Radical Prostatectomy across Multiple Rare Cell Detection Platforms. Journal of Urology, 2018, 199, 1494-1501.	0.2	21
574	Sprouty2 lossâ€induced IL 6 drives castrationâ€resistant prostate cancer through scavenger receptor B1. EMBO Molecular Medicine, 2018, 10, .	3.3	19
575	The resounding effect of DNA repair deficiency in prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 385-388.	0.8	9
576	Integrative proteomics in prostate cancer uncovers robustness against genomic and transcriptomic aberrations during disease progression. Nature Communications, 2018, 9, 1176.	5.8	117
577	<i>PDGFRÎ\pm</i> ^{<i>+</i>} pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3173-E3181.	3.3	232
578	Comprehensive Evaluation of Programmed Death-Ligand 1 Expression in Primary and Metastatic Prostate Cancer. American Journal of Pathology, 2018, 188, 1478-1485.	1.9	119
579	Development and Application of Liquid Biopsies in Metastatic Prostate Cancer. Current Oncology Reports, 2018, 20, 35.	1.8	28
580	Raf1 is a prognostic factor for progression in patients with non‑small cell lung cancer after radiotherapy. Oncology Reports, 2018, 39, 1966-1974.	1.2	13
581	Molecular correlates of intermediate- and high-risk localized prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 368-374.	0.8	5
582	Patient-derived Hormone-naive Prostate Cancer Xenograft Models Reveal Growth Factor Receptor Bound Protein 10 as an Androgen Receptor-repressed Gene Driving the Development of Castration-resistant Prostate Cancer. European Urology, 2018, 73, 949-960.	0.9	19
583	Cholesterol Esterification Inhibition Suppresses Prostate Cancer Metastasis by Impairing the Wnt/ \hat{l}^2 -catenin Pathway. Molecular Cancer Research, 2018, 16, 974-985.	1.5	52
584	Dual inhibition of <scp>AKT</scp> â€m <scp>TOR</scp> and <scp>AR</scp> signaling by targeting <scp>HDAC</scp> 3 in <i> <scp>PTEN</scp> </i> â€or <i> <scp>SPOP</scp> </i> â€mutated prostate cancer. EMBO Molecular Medicine, 2018, 10, .	3 . 3	39
585	New Opportunities for Targeting the Androgen Receptor in Prostate Cancer. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a030478.	2.9	19
586	Revisiting the role of Wnt/ \hat{l}^2 -catenin signaling in prostate cancer. Molecular and Cellular Endocrinology, 2018, 462, 3-8.	1.6	88

#	Article	IF	CITATIONS
587	Human Microbiome and Learning Healthcare Systems: Integrating Research and Precision Medicine for Inflammatory Bowel Disease. OMICS A Journal of Integrative Biology, 2018, 22, 119-126.	1.0	19
588	Prognostic Value of Androgen Receptor Splice Variant 7 in the Treatment of Castration-resistant Prostate Cancer with Next generation Androgen Receptor Signal Inhibition: A Systematic Review and Meta-analysis. European Urology Focus, 2018, 4, 529-539.	1.6	30
589	Bromodomain-containing proteins in prostate cancer. Molecular and Cellular Endocrinology, 2018, 462, 31-40.	1.6	25
590	Human Hairless Protein Roles in Skin/Hair and Emerging Connections to Brain and Other Cancers. Journal of Cellular Biochemistry, 2018, 119, 69-80.	1.2	12
591	Management of Patients with Advanced Prostate Cancer: The Report of the Advanced Prostate Cancer Consensus Conference APCCC 2017. European Urology, 2018, 73, 178-211.	0.9	488
592	Baseline and longitudinal plasma caveolinâ€1 level as a biomarker in active surveillance for earlyâ€stage prostate cancer. BJU International, 2018, 121, 69-76.	1.3	10
593	Current and Future Applications of Novel Immunotherapies in Urological Oncology: A Critical Review of the Literature. European Urology Focus, 2018, 4, 442-454.	1.6	10
594	Naming disease states for clinical utility in prostate cancer: a rose by any other name might not smell as sweet. Annals of Oncology, 2018, 29, 23-25.	0.6	6
595	A regulatory circuit $HP1\hat{1}^3/miR-451a/c-Myc$ promotes prostate cancer progression. Oncogene, 2018, 37, 415-426.	2.6	33
596	Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 89-101.	1.8	40
597	Genito-urinary genomics and emerging biomarkers for immunomodulatory cancer treatment. Seminars in Cancer Biology, 2018, 52, 216-227.	4.3	14
598	Preclinical and Coclinical Studies in Prostate Cancer. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a030544.	2.9	3
599	Cell-Cycle and DNA-Damage Response Pathway Is Involved in Leptomeningeal Metastasis of Non–Small Cell Lung Cancer. Clinical Cancer Research, 2018, 24, 209-216.	3.2	47
600	Drug development for noncastrate prostate cancer in a changed therapeutic landscape. Nature Reviews Clinical Oncology, 2018, 15, 168-182.	12.5	7
601	Intraductal carcinoma of the prostate can evade androgen deprivation, with emergence of castrateâ€tolerant cells. BJU International, 2018, 121, 971-978.	1.3	39
602	The role of TET-mediated DNA hydroxymethylation in prostate cancer. Molecular and Cellular Endocrinology, 2018, 462, 41-55.	1.6	15
603	Multiparametric Magnetic Resonance Imaging of Prostate Cancer Bone Disease. Investigative Radiology, 2018, 53, 96-102.	3.5	36
604	Whole-genome and Transcriptome Sequencing of Prostate Cancer Identify New Genetic Alterations Driving Disease Progression. European Urology, 2018, 73, 322-339.	0.9	130

#	Article	IF	CITATIONS
605	Treatment-induced changes in the androgen receptor axis: Liquid biopsies as diagnostic/prognostic tools for prostate cancer. Molecular and Cellular Endocrinology, 2018, 462, 56-63.	1.6	12
606	Clinical utility of emerging liquid biomarkers in advanced prostate cancer. Cancer Genetics, 2018, 228-229, 151-158.	0.2	11
607	Glycan Stimulation Enables Purification of Prostate Cancer Circulating Tumor Cells on PEDOT NanoVelcro Chips for RNA Biomarker Detection. Advanced Healthcare Materials, 2018, 7, 1700701.	3.9	38
608	Prostate cancer immunotherapy. Current Opinion in Urology, 2018, 28, 15-24.	0.9	40
609	Treatment of Advanced Prostate Cancer—A Review of Current Therapies and Future Promise. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a030635.	2.9	128
610	PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2018, 24, 834-846.	3.2	48
611	GOLM1 promotes prostate cancer progression through activating PI3Kâ€AKTâ€mTOR signaling. Prostate, 2018, 78, 166-177.	1.2	60
612	Utility of Single-Cell Genomics in Diagnostic Evaluation of Prostate Cancer. Cancer Research, 2018, 78, 348-358.	0.4	24
613	A unifying biology of sex steroid-induced apoptosis in prostate and breast cancers. Endocrine-Related Cancer, 2018, 25, R83-R113.	1.6	21
614	Contemporary prognostic indicators for prostate cancer incorporating International Society of Urological Pathology recommendations. Pathology, 2018, 50, 60-73.	0.3	29
615	Expanding the use of abiraterone in prostate cancer: Is earlier always better?. Cancer Biology and Therapy, 2018, 19, 97-100.	1.5	1
616	Regulation of Androgen Receptor Activity by Transient Interactions of Its Transactivation Domain with General Transcription Regulators. Structure, 2018, 26, 145-152.e3.	1.6	45
617	Prostate Organogenesis. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a030353.	2.9	17
618	Metabolic Vulnerabilities of Prostate Cancer: Diagnostic and Therapeutic Opportunities. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a030569.	2.9	48
619	Bipolar androgen therapy in men with metastatic castration-resistant prostate cancer after progression on enzalutamide: an open-label, phase 2, multicohort study. Lancet Oncology, The, 2018, 19, 76-86.	5.1	149
620	Germline BRCA mutation in male carriers—ripe for precision oncology?. Prostate Cancer and Prostatic Diseases, 2018, 21, 48-56.	2.0	13
621	Overexpression of nuclear AR-V7 protein in primary prostate cancer is an independent negative prognostic marker in men with high-risk disease receiving adjuvant therapy. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 161.e19-161.e30.	0.8	26
622	Homology-Directed Repair and the Role of BRCA1, BRCA2, and Related Proteins in Genome Integrity and Cancer. Annual Review of Cancer Biology, 2018, 2, 313-336.	2.3	230

#	Article	IF	Citations
623	Lineage Plasticity in Cancer Progression and Treatment. Annual Review of Cancer Biology, 2018, 2, 271-289.	2.3	66
624	Targeting the MYCN–PARP–DNA Damage Response Pathway in Neuroendocrine Prostate Cancer. Clinical Cancer Research, 2018, 24, 696-707.	3.2	80
625	Analysis of Tumor Biology to Advance Cancer Health Disparity Research. American Journal of Pathology, 2018, 188, 304-316.	1.9	24
626	MYC Overexpression at the Protein and mRNA Level and Cancer Outcomes among Men Treated with Radical Prostatectomy for Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 201-207.	1.1	21
627	SEOM clinical guidelines for the treatment of metastatic prostate cancer (2017). Clinical and Translational Oncology, 2018, 20, 57-68.	1.2	17
628	The mediator complex in genomic and non-genomic signaling in cancer. Steroids, 2018, 133, 8-14.	0.8	20
629	Positron Emission Tomography/Computed Tomography–Based Assessments of Androgen Receptor Expression and Glycolytic Activity as a Prognostic Biomarker for Metastatic Castration-Resistant Prostate Cancer. JAMA Oncology, 2018, 4, 217.	3.4	93
630	Evaluation of CDK12 Protein Expression as a Potential Novel Biomarker for DNA Damage Response–Targeted Therapies in Breast Cancer. Molecular Cancer Therapeutics, 2018, 17, 306-315.	1.9	52
631	Applying Precision Oncology Principles in Radiation Oncology. JCO Precision Oncology, 2018, 2, 1-23.	1.5	12
632	Reversal of docetaxel resistance in prostate cancer by Notch signaling inhibition. Anti-Cancer Drugs, 2018, 29, 871-879.	0.7	22
633	Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. Journal of Clinical Oncology, 2018, 36, 2492-2503.	0.8	477
634	STOMPing Out Hormone-Sensitive Metastases With Local Therapies in Prostate Cancer. Journal of Clinical Oncology, 2018, 36, 435-437.	0.8	6
635	Practical Methods for Integrating Genetic Testing Into Clinical Practice for Advanced Prostate Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2018, 38, 372-381.	1.8	25
636	BRCA2-Associated Prostate Cancer in a Patient With Spinal and Bulbar Muscular Atrophy. JCO Precision Oncology, 2018, 2, 1-10.	1.5	4
637	Polyclonal <i>BRCA2</i> Reversion Mutations Detected in Circulating Tumor DNA After Platinum Chemotherapy in a Patient With Metastatic Prostate Cancer. JCO Precision Oncology, 2018, 2, 1-5.	1.5	16
638	Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. Journal of Clinical Investigation, 2018, 129, 192-208.	3.9	266
639	Targeting DNA Repair in Prostate Cancer. Journal of Clinical Oncology, 2018, 36, 1017-1019.	0.8	4
640	Langfristige Vollremission mit Ipilimumab bei metastasiertem kastrationsresistentem Prostatakrebs: Fallbericht von zwei Patienten. Karger Kompass Onkologie, 2018, 5, 180-185.	0.0	0

#	Article	IF	Citations
641	Targeting Androgen Receptor and DNA Repair in Metastatic Castration-Resistant Prostate Cancer: Results From NCI 9012. Journal of Clinical Oncology, 2018, 36, 991-999.	0.8	169
642	The Winds of Change: Emerging Therapeutics in Prostate Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2018, 38, 382-390.	1.8	2
643	Men with a susceptibility to prostate cancer and the role of genetic based screening. Translational Andrology and Urology, 2018, 7, 61-69.	0.6	19
644	Mechanisms of Drug Resistance in Cancer Therapy. Handbook of Experimental Pharmacology, 2018, , .	0.9	1
645	SIRT1 contributes to neuroendocrine differentiation of prostate cancer. Oncotarget, 2018, 9, 2002-2016.	0.8	21
646	Tumor heterogeneity, aggressiveness, and immune cell composition in a novel syngeneic PSAâ€targeted <i>Pten</i> knockout mouse prostate cancer (MuCaP) model. Prostate, 2018, 78, 1013-1023.	1.2	4
647	Prostate Cancer: Pathology and Genetics. , 2018, , .		0
648	Ipilimumab plus nivolumab and DNA-repair defects in AR-V7-expressing metastatic prostate cancer. Oncotarget, 2018, 9, 28561-28571.	0.8	129
649	Prostatic cancers: understanding their molecular pathology and the 2016 WHO classification. Oncotarget, 2018, 9, 14723-14737.	0.8	39
650	Immunogenomic analyses associate immunological alterations with mismatch repair defects in prostate cancer. Journal of Clinical Investigation, 2018, 128, 4441-4453.	3.9	155
651	Poly (ADP-Ribose) Polymerase Inhibitors for De Novo BRCA2-Null Small-Cell Prostate Cancer. JCO Precision Oncology, 2018, 2, 1-8.	1.5	2
652	Aggressive-Variant Microsatellite-Stable POLE Mutant Prostate Cancer With High Mutation Burden and Durable Response to Immune Checkpoint Inhibitor Therapy. JCO Precision Oncology, 2018, 2, 1-8.	1.5	9
653	Frontiers in Precision Medicine III: Will Precision Medicine Improve Population Health?. SSRN Electronic Journal, 2018, , .	0.4	0
654	Genetic Susceptibility. Molecular Pathology Library, 2018, , 57-78.	0.1	0
655	From Single Level Analysis to Multi-Omics Integrative Approaches: A Powerful Strategy towards the Precision Oncology. High-Throughput, 2018, 7, 33.	4.4	48
656	Exploring the transcriptome of hormone-naive multifocal prostate cancer and matched lymph node metastases. British Journal of Cancer, 2018, 119, 1527-1537.	2.9	10
657	ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nature Medicine, 2018, 24, 1887-1898.	15.2	113
658	TRIM28 protects TRIM24 from SPOP-mediated degradation and promotes prostate cancer progression. Nature Communications, 2018, 9, 5007.	5.8	70

#	Article	IF	CITATIONS
659	Cell-free DNA profiling of metastatic prostate cancer reveals microsatellite instability, structural rearrangements and clonal hematopoiesis. Genome Medicine, 2018, 10, 85.	3.6	94
660	Radiobiological Characterization of 64CuCl2 as a Simple Tool for Prostate Cancer Theranostics. Molecules, 2018, 23, 2944.	1.7	15
661	Utility of cell-free nucleic acid and circulating tumor cell analyses in prostate cancer. Asian Journal of Andrology, 2018, 20, 230.	0.8	9
662	High-throughput screens identify HSP90 inhibitors as potent therapeutics that target inter-related growth and survival pathways in advanced prostate cancer. Scientific Reports, 2018, 8, 17239.	1.6	29
663	PARPâ€1 regulates DNA repair factor availability. EMBO Molecular Medicine, 2018, 10, .	3.3	52
664	Enzalutamide-resistant castration-resistant prostate cancer: challenges and solutions. OncoTargets and Therapy, 2018, Volume 11, 7353-7368.	1.0	58
665	Targeting CD46 for both adenocarcinoma and neuroendocrine prostate cancer. JCI Insight, 2018, 3, .	2.3	43
666	Molecular Basis of Drug Resistance and Insights for New Treatment Approaches in mCRPC. Anticancer Research, 2018, 38, 6029-6039.	0.5	18
667	Discovery of Novel Androgen Receptor Ligands by Structure-based Virtual Screening and Bioassays. Genomics, Proteomics and Bioinformatics, 2018, 16, 416-427.	3.0	32
668	HNF1B expression regulates ECI2 gene expression, potentially serving a role in prostate cancer progression. Oncology Letters, 2019, 17, 1094-1100.	0.8	5
669	Mutations in an Innate Immunity Pathway Are Associated with Poor Overall Survival Outcomes and Hypoxic Signaling in Cancer. Cell Reports, 2018, 25, 3721-3732.e6.	2.9	22
670	Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. , 2018, 6, 141.		214
671	NSD2 is a conserved driver of metastatic prostate cancer progression. Nature Communications, 2018, 9, 5201.	5.8	66
672	Advanced prostate cancer update 2018. Asia-Pacific Journal of Clinical Oncology, 2018, 14, 9-12.	0.7	6
673	PI3K pathway in prostate cancer: All resistant roads lead to PI3K. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 198-206.	3.3	27
674	Recent Advances in Liquid Biopsy in Patients With Castration Resistant Prostate Cancer. Frontiers in Oncology, 2018, 8, 397.	1.3	20
675	Germline Genetic Testing in Prostate Cancer – Further Enrichment in Variant Histologies?. Oncoscience, 2018, 5, 62-64.	0.9	7
676	Loss of dihydrotestosterone-inactivation activity promotes prostate cancer castration resistance detectable by functional imaging. Journal of Biological Chemistry, 2018, 293, 17829-17837.	1.6	28

#	Article	IF	CITATIONS
677	MiPanda: A Resource for Analyzing and Visualizing Next-Generation Sequencing Transcriptomics Data. Neoplasia, 2018, 20, 1144-1149.	2.3	20
678	Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers. Nature Communications, 2018, 9, 4080.	5.8	138
679	Cell-Free DNA and Neuromediators in Detecting Aggressive Variant Prostate Cancer. Oncology Research and Treatment, 2018, 41, 627-633.	0.8	3
680	Frequent mutation of the FOXA1 untranslated region in prostate cancer. Communications Biology, 2018, 1, 122.	2.0	21
681	Mechanisms of Lysophosphatidic Acid-Mediated Lymphangiogenesis in Prostate Cancer. Cancers, 2018, 10, 413.	1.7	21
682	Design of Peptoid-peptide Macrocycles to Inhibit the \hat{I}^2 -catenin TCF Interaction in Prostate Cancer. Nature Communications, 2018, 9, 4396.	5.8	66
683	Developing prognostic models for advanced prostate cancer when the goal line keeps changing. Annals of Oncology, 2018, 29, 2155-2157.	0.6	1
684	Identification of the Transcription Factor Relationships Associated with Androgen Deprivation Therapy Response and Metastatic Progression in Prostate Cancer. Cancers, 2018, 10, 379.	1.7	21
686	Castration-Resistant Prostate Cancer: Mechanisms, Targets and Treatment. Advances in Experimental Medicine and Biology, 2018, 1096, 117-133.	0.8	58
687	The influence of PSA flare in mCRPC patients treated with alpha-emitting radiopharmaceuticals. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 2253-2255.	3.3	0
688	Plasma androgen receptor and serum chromogranin A in advanced prostate cancer. Scientific Reports, 2018, 8, 15442.	1.6	21
689	Human endogenous retrovirus-K (HML-2): a comprehensive review. Critical Reviews in Microbiology, 2018, 44, 715-738.	2.7	143
690	Die HeterogenitĤdes Prostatakrebses: Ein praxisorientierter Ansatz. Karger Kompass Onkologie, 2018, 5, 149-157.	0.0	0
691	Heterozygous deletion of chromosome 17p renders prostate cancer vulnerable to inhibition of RNA polymerase II. Nature Communications, 2018, 9, 4394.	5.8	27
692	Whole-Genome Sequencing Reveals Elevated Tumor Mutational Burden and Initiating Driver Mutations in African Men with Treatment-NaÃve, High-Risk Prostate Cancer. Cancer Research, 2018, 78, 6736-6746.	0.4	66
693	ERG alterations and mTOR pathway activation in primary prostate carcinomas developing castration-resistance. Pathology Research and Practice, 2018, 214, 1675-1680.	1.0	1
694	A Human Adult Stem Cell Signature Marks Aggressive Variants across Epithelial Cancers. Cell Reports, 2018, 24, 3353-3366.e5.	2.9	80
695	Recurrent WNT pathway alterations are frequent in relapsed small cell lung cancer. Nature Communications, 2018, 9, 3787.	5.8	112

#	ARTICLE	IF	CITATIONS
696	Modulation in the microRNA repertoire is responsible for the stage-specific effects of Akt suppression on murine neuroendocrine prostate cancer. Heliyon, 2018, 4, e00796.	1.4	6
697	Autophagosome-based strategy to monitor apparent tumor-specific CD8 T cells in patients with prostate cancer. Oncolmmunology, 2018, 7, e1466766.	2.1	3
698	Characterization of the effects of defined, multidimensional culture conditions on conditionally reprogrammed primary human prostate cells. Oncotarget, 2018, 9, 2193-2207.	0.8	16
699	RNAs as Candidate Diagnostic and Prognostic Markers of Prostate Cancer—From Cell Line Models to Liquid Biopsies. Diagnostics, 2018, 8, 60.	1.3	15
700	Dural Cells Release Factors Which Promote Cancer Cell Malignancy and Induce Immunosuppressive Markers in Bone Marrow Myeloid Cells. Neurosurgery, 2018, 83, 1306-1316.	0.6	6
701	Genetic Alterations of TRAF Proteins in Human Cancers. Frontiers in Immunology, 2018, 9, 2111.	2.2	67
702	Development and validation of a prognostic model for overall survival in chemotherapy-na \tilde{A} -ve men with metastatic castration-resistant prostate cancer. Annals of Oncology, 2018, 29, 2200-2207.	0.6	47
703	Mechanisms Behind Resistance to PI3K Inhibitor Treatment Induced by the PIM Kinase. Molecular Cancer Therapeutics, 2018, 17, 2710-2721.	1.9	38
704	Genome-Based Classification and Therapy of Prostate Cancer. Diagnostics, 2018, 8, 62.	1.3	16
705	New Insights in Prostate Cancer Development and Tumor Therapy: Modulation of Nuclear Receptors and the Specific Role of Liver X Receptors. International Journal of Molecular Sciences, 2018, 19, 2545.	1.8	10
706	Next-Generation Sequencing Assay Raises New Questions in a Case of Metastatic Prostate Cancer. journal of applied laboratory medicine, The, 2018, 2, 960-964.	0.6	0
707	Genetics and biology of prostate cancer. Genes and Development, 2018, 32, 1105-1140.	2.7	434
708	Is combining PARP and androgen receptor inhibition really a winning strategy in metastatic castration-resistant prostate cancer?. Lancet Oncology, The, 2018, 19, e437.	5.1	0
709	Systematic analysis reveals molecular characteristics of ERG-negative prostate cancer. Scientific Reports, 2018, 8, 12868.	1.6	13
710	Analysis of the androgen receptor–regulated lncRNA landscape identifies a role for ARLNC1 in prostate cancer progression. Nature Genetics, 2018, 50, 814-824.	9.4	196
711	An <i>In Vivo</i> Screen Identifies PYGO2 as a Driver for Metastatic Prostate Cancer. Cancer Research, 2018, 78, 3823-3833.	0.4	16
712	SREBF1 Activity Is Regulated by an AR/mTOR Nuclear Axis in Prostate Cancer. Molecular Cancer Research, 2018, 16, 1396-1405.	1.5	53
713	Multiâ€'layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/βâ€'catenin signaling activation (Review). International Journal of Molecular Medicine, 2018, 42, 713-725.	1.8	125

#	ARTICLE	IF	Citations
714	MicroRNAs as potential therapeutics to enhance chemosensitivity in advanced prostate cancer. Scientific Reports, 2018, 8, 7820.	1.6	33
715	Identification of mutations in patients with acquired pure red cell aplasia. Acta Biochimica Et Biophysica Sinica, 2018, 50, 685-692.	0.9	7
716	The long non-coding RNA PCSEAT exhibits an oncogenic property in prostate cancer and functions as a competing endogenous RNA that associates with EZH2. Biochemical and Biophysical Research Communications, 2018, 502, 262-268.	1.0	22
717	Diverse AR-V7 cistromes in castration-resistant prostate cancer are governed by HoxB13. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6810-6815.	3.3	120
718	<i>TMPRSS2-ERG</i> Controls Luminal Epithelial Lineage and Antiandrogen Sensitivity in <i>PTEN</i> and <i>TP53</i> -Mutated Prostate Cancer. Clinical Cancer Research, 2018, 24, 4551-4565.	3.2	51
719	Molecular Subtypes of Prostate Cancer. Current Oncology Reports, 2018, 20, 58.	1.8	77
720	Targeting Rac and Cdc42 GTPases in Cancer. Cancer Research, 2018, 78, 3101-3111.	0.4	197
721	Prostate Power Play: Does Pik3ca Accelerate Pten-Deficient Cancer Progression?. Cancer Discovery, 2018, 8, 682-685.	7.7	7
723	Integrative (epi) Genomic Analysis to Predict Response to Androgen-Deprivation Therapy in Prostate Cancer. EBioMedicine, 2018, 31, 110-121.	2.7	15
724	Targeted Next-Generation Sequencing in Men with Metastatic Prostate Cancer: a Pilot Study. Targeted Oncology, 2018, 13, 495-500.	1.7	12
725	βKlotho inhibits androgen/androgen receptorâ€'associated epithelialâ€'mesenchymal transition in prostate cancer through inactivation of ERK1/2 signaling. Oncology Reports, 2018, 40, 217-225.	1.2	10
726	IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature, 2018, 559, 363-369.	13.7	258
727	Assessment of the Validity of Nuclear-Localized Androgen Receptor Splice Variant 7 in Circulating Tumor Cells as a Predictive Biomarker for Castration-Resistant Prostate Cancer. JAMA Oncology, 2018, 4, 1179.	3.4	190
728	Synthetic lethal therapies for cancer: what's next after PARP inhibitors?. Nature Reviews Clinical Oncology, 2018, 15, 564-576.	12.5	303
729	Role of RNF20 in cancer development and progression – a comprehensive review. Bioscience Reports, 2018, 38, .	1.1	34
730	FusionHub: A unified web platform for annotation and visualization of gene fusion events in human cancer. PLoS ONE, 2018, 13, e0196588.	1.1	41
731	Castration-resistance prostate cancer: what is in the pipeline?. Minerva Urology and Nephrology, 2018, 70, 22-41.	1.3	17
732	CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature, 2018, 559, 285-289.	13.7	297

#	ARTICLE	IF	Citations
733	11-Oxygenated androgen precursors are the preferred substrates for aldo-keto reductase 1C3 (AKR1C3): Implications for castration resistant prostate cancer. Journal of Steroid Biochemistry and Molecular Biology, 2018, 183, 192-201.	1.2	51
734	Prostate Disease Overview., 2018, , 334-340.		O
735	Circulating Tumor Cell Number as a Response Measure of Prolonged Survival for Metastatic Castration-Resistant Prostate Cancer: A Comparison With Prostate-Specific Antigen Across Five Randomized Phase III Clinical Trials. Journal of Clinical Oncology, 2018, 36, 572-580.	0.8	187
736	CD38 Inhibits Prostate Cancer Metabolism and Proliferation by Reducing Cellular NAD+ Pools. Molecular Cancer Research, 2018, 16, 1687-1700.	1.5	39
737	The Promise and Perils of Sequencing Individual Prostate Cancer Nuclei. European Urology, 2018, 74, 560-561.	0.9	0
738	Patient-derived Models of Abiraterone- and Enzalutamide-resistant Prostate Cancer Reveal Sensitivity to Ribosome-directed Therapy. European Urology, 2018, 74, 562-572.	0.9	80
739	Synthesis and PI 3-Kinase Inhibition Activity of Some Novel 2,4,6-Trisubstituted 1,3,5-Triazines. Molecules, 2018, 23, 1628.	1.7	2
740	Landscape of CDKN1B Mutations in Luminal Breast Cancer and Other Hormone-Driven Human Tumors. Frontiers in Endocrinology, 2018, 9, 393.	1.5	26
741	SPOP-Mutated/CHD1-Deleted Lethal Prostate Cancer and Abiraterone Sensitivity. Clinical Cancer Research, 2018, 24, 5585-5593.	3.2	113
742	Impact of Phosphoproteomics in the Era of Precision Medicine for Prostate Cancer. Frontiers in Oncology, 2018, 8, 28.	1.3	18
743	Phenotypic Plasticity, Bet-Hedging, and Androgen Independence in Prostate Cancer: Role of Non-Genetic Heterogeneity. Frontiers in Oncology, 2018, 8, 50.	1.3	122
744	Function of Tumor Suppressors in Resistance to Antiandrogen Therapy and Luminal Epithelial Plasticity of Aggressive Variant Neuroendocrine Prostate Cancers. Frontiers in Oncology, 2018, 8, 69.	1.3	9
745	Supraphysiological Testosterone Therapy as Treatment for Castration-Resistant Prostate Cancer. Frontiers in Oncology, 2018, 8, 167.	1.3	11
746	Genomic Deletion at 10q23 in Prostate Cancer: More Than PTEN Loss?. Frontiers in Oncology, 2018, 8, 246.	1.3	18
748	Systems pharmacology using mass spectrometry identifies critical response nodes in prostate cancer. Npj Systems Biology and Applications, 2018, 4, 26.	1.4	13
749	Molecular underpinnings of enzalutamide resistance. Endocrine-Related Cancer, 2018, 25, R545-R557.	1.6	28
750	Constitutively active androgen receptor splice variants AR-V3, AR-V7 and AR-V9 are co-expressed in castration-resistant prostate cancer metastases. British Journal of Cancer, 2018, 119, 347-356.	2.9	63
751	Prostate Cancer Genomics: Recent Advances and the Prevailing Underrepresentation from Racial and Ethnic Minorities. International Journal of Molecular Sciences, 2018, 19, 1255.	1.8	50

#	Article	IF	CITATIONS
752	Biallelic tumour suppressor loss and DNA repair defects in <i>de novo</i> small ell prostate carcinoma. Journal of Pathology, 2018, 246, 244-253.	2.1	32
7 53	BMX-Mediated Regulation of Multiple Tyrosine Kinases Contributes to Castration Resistance in Prostate Cancer. Cancer Research, 2018, 78, 5203-5215.	0.4	16
754	Recent Advances in Prostate Cancer Treatment and Drug Discovery. International Journal of Molecular Sciences, 2018, 19, 1359.	1.8	183
755	Now the dust has settled over immune checkpoint blockade in metastatic prostate cancer. Annals of Oncology, 2018, 29, 1620-1622.	0.6	5
756	Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell, 2018, 174, 758-769.e9.	13.5	459
757	Construction of a set of novel and robust gene expression signatures predicting prostate cancer recurrence. Molecular Oncology, 2018, 12, 1559-1578.	2.1	28
758	Dancing with the DNA damage response: next-generation anti-cancer therapeutic strategies. Therapeutic Advances in Medical Oncology, 2018, 10, 175883591878665.	1.4	105
759	Emerging biomarkers in the diagnosis of prostate cancer. Pharmacogenomics and Personalized Medicine, 2018, Volume 11, 83-94.	0.4	71
760	Cribriform and intraductal prostate cancer are associated with increased genomic instability and distinct genomic alterations. BMC Cancer, 2018, 18, 8.	1.1	93
761	Indel detection from DNA and RNA sequencing data with transIndel. BMC Genomics, 2018, 19, 270.	1.2	28
762	Eukaryotic Translation Initiation Factor 4 Gamma 1 (elF4G1) is upregulated during Prostate cancer progression and modulates cell growth and metastasis. Scientific Reports, 2018, 8, 7459.	1.6	31
763	Personalization of prostate cancer therapy through phosphoproteomics. Nature Reviews Urology, 2018, 15, 483-497.	1.9	25
764	A PDX/Organoid Biobank of Advanced Prostate Cancers Captures Genomic and Phenotypic Heterogeneity for Disease Modeling and Therapeutic Screening. Clinical Cancer Research, 2018, 24, 4332-4345.	3.2	154
765	MAPK Reliance via Acquired CDK4/6 Inhibitor Resistance in Cancer. Clinical Cancer Research, 2018, 24, 4201-4214.	3.2	77
766	Synthesis and PI3 Kinase Inhibition Activity of Some Novel Trisubstituted Morpholinopyrimidines. Molecules, 2018, 23, 1675.	1.7	3
767	A New Strategy to Uncover the Anticancer Mechanism of Chinese Compound Formula by Integrating Systems Pharmacology and Bioinformatics. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-19.	0.5	8
768	Functional Linkage of RKIP to the Epithelial to Mesenchymal Transition and Autophagy during the Development of Prostate Cancer. Cancers, 2018, 10, 273.	1.7	27
769	Synthetic Lethality: From Research to Precision Cancer Nanomedicine. Current Cancer Drug Targets, 2018, 18, 337-346.	0.8	17

#	Article	IF	Citations
770	BRCA1 Interacting Protein COBRA1 Facilitates Adaptation to Castrate-Resistant Growth Conditions. International Journal of Molecular Sciences, 2018, 19, 2104.	1.8	6
771	Analysis of cabazitaxelâ€resistant mechanism in human castrationâ€resistant prostate cancer. Cancer Science, 2018, 109, 2937-2945.	1.7	29
772	De novo metastatic castration sensitive prostate cancer: State of art and future perspectives. Cancer Treatment Reviews, 2018, 70, 67-74.	3.4	41
773	A novel mechanism of SRRM4 in promoting neuroendocrine prostate cancer development via a pluripotency gene network. EBioMedicine, 2018, 35, 167-177.	2.7	36
774	Prostate cancer in the era of "Omic―medicine: recognizing the importance of DNA damage repair pathways. Annals of Translational Medicine, 2018, 6, 161-161.	0.7	7
775	Relevance of poly (ADP-ribose) polymerase inhibitors in prostate cancer. Current Opinion in Supportive and Palliative Care, 2018, 12, 339-343.	0.5	9
776	Nuclear Pores Promote Lethal Prostate Cancer by Increasing POM121-Driven E2F1, MYC, and AR Nuclear Import. Cell, 2018, 174, 1200-1215.e20.	13.5	96
777	Single-Cell Analyses of Prostate Cancer Liquid Biopsies Acquired by Apheresis. Clinical Cancer Research, 2018, 24, 5635-5644.	3.2	88
778	Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. Journal of Extracellular Vesicles, 2018, 7, 1505403.	5.5	286
779	DNA Repair Gene Alterations and PARP Inhibitor Response in Patients With Metastatic Castration-Resistant Prostate Cancer. Journal of the National Comprehensive Cancer Network: JNCCN, 2018, 16, 933-937.	2.3	8
780	BRCAness and prostate cancer: diagnostic and therapeutic considerations. Prostate Cancer and Prostatic Diseases, 2018, 21, 488-498.	2.0	12
781	Mutant allele quantification reveals a genetic basis for TP53 mutation-driven castration resistance in prostate cancer cells. Scientific Reports, 2018, 8, 12507.	1.6	5
782	Prognostic association of plasma cell-free DNA-based androgen receptor amplification and circulating tumor cells in pre-chemotherapy metastatic castration-resistant prostate cancer patients. Prostate Cancer and Prostatic Diseases, 2018, 21, 411-418.	2.0	32
783	Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncology, The, 2018, 19, 975-986.	5.1	296
784	Abiraterone plus olaparib in prostate cancer: a new form of synthetic lethality?. Lancet Oncology, The, 2018, 19, 860-861.	5.1	7
785	Liquid biopsy approach in the management of prostate cancer. Translational Research, 2018, 201, 60-70.	2.2	12
786	Serum chromogranin-A-based prognosis in metastatic castration-resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2018, 21, 431-437.	2.0	20
787	Intratumor heterogeneity in prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 349-360.	0.8	64

#	Article	IF	CITATIONS
788	Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate Cancer. Cell, 2018, 173, 1770-1782.e14.	13.5	400
789	A Somatically Acquired Enhancer of the Androgen Receptor Is a Noncoding Driver in Advanced Prostate Cancer. Cell, 2018, 174, 422-432.e13.	13.5	234
790	Changes in the Epigenetic Landscape of Prostate Cancer. , 2018, , 59-85.		0
791	Androgen receptor in salivary gland carcinoma: A review of an old marker as a possible new target. Journal of Oral Pathology and Medicine, 2018, 47, 691-695.	1.4	17
792	FGF-2 is a driving force for chromosomal instability and a stromal factor associated with adverse clinico-pathological features in prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 365.e15-365.e26.	0.8	12
793	Patient derived organoids to model rare prostate cancer phenotypes. Nature Communications, 2018, 9, 2404.	5.8	246
794	Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing. Cell, 2018, 174, 433-447.e19.	13.5	258
795	Biomarkers of aggressiveness in genitourinary tumors with emphasis on kidney, bladder, and prostate cancer. Expert Review of Molecular Diagnostics, 2018, 18, 645-655.	1.5	20
796	$TGF\hat{I}^2$ signaling limits lineage plasticity in prostate cancer. PLoS Genetics, 2018, 14, e1007409.	1.5	9
797	Docetaxel Treatment in PTEN- and ERG-aberrant Metastatic Prostate Cancers. European Urology Oncology, 2018, 1, 71-77.	2.6	24
798	Neoadjuvant-Intensive Androgen Deprivation Therapy Selects for Prostate Tumor Foci with Diverse Subclonal Oncogenic Alterations. Cancer Research, 2018, 78, 4716-4730.	0.4	56
799	Randomized Phase II Study Evaluating Akt Blockade with Ipatasertib, in Combination with Abiraterone, in Patients with Metastatic Prostate Cancer with and without PTEN Loss. Clinical Cancer Research, 2019, 25, 928-936.	3.2	232
800	Genomic Heterogeneity Within Individual Prostate Cancer Foci Impacts Predictive Biomarkers of Targeted Therapy. European Urology Focus, 2019, 5, 416-424.	1.6	20
801	Neuroendocrine Differentiation in Prostate Cancer: Emerging Biology, Models, and Therapies. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a030593.	2.9	76
802	Hormone-Responsive Cancers. , 2019, , 717-741.e8.		2
803	Sequencing strategies in the new treatment landscape of prostate cancer. Future Oncology, 2019, 15, 2967-2982.	1.1	6
804	Genomic and clinical characterization of pulmonaryâ€only metastatic prostate cancer: A unique molecular subtype. Prostate, 2019, 79, 1572-1579.	1.2	23
805	Genomic profile of urine has high diagnostic sensitivity compared to cytology in nonâ€invasive urothelial bladder cancer. Cancer Science, 2019, 110, 3235-3243.	1.7	24

#	Article	IF	CITATIONS
806	Pathological Assessment of Prostate Cancer., 2019, , 159-177.		0
807	Defining End Points in Phase II Trials of Metastatic Castration-Resistant Prostate Cancer. Re: Impact of Addition of Metformin to Abiraterone in Metastatic Castration-Resistant Prostate Cancer Patients With Disease Progressing While Receiving Abiraterone Treatment (MetAb-Pro): Phase 2 Pilot Study. Clinical Genitourinary Cancer. 2019. 17. e886-e887.	0.9	1
808	Circular RNAs add diversity to androgen receptor isoform repertoire in castration-resistant prostate cancer. Oncogene, 2019, 38, 7060-7072.	2.6	31
810	Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. Medicines (Basel, Switzerland), 2019, 6, 82.	0.7	68
811	Clinical implications of mismatch repair deficiency in prostate cancer. Future Oncology, 2019, 15, 2395-2411.	1.1	29
812	The Genomic Landscape of Centromeres in Cancers. Scientific Reports, 2019, 9, 11259.	1.6	22
813	<i>BRN4</i> Is a Novel Driver of Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer and Is Selectively Released in Extracellular Vesicles with <i>BRN2</i> . Clinical Cancer Research, 2019, 25, 6532-6545.	3.2	46
814	Synthetic lethality of a cell-penetrating anti-RAD51 antibody in PTEN-deficient melanoma and glioma cells. Oncotarget, 2019, 10, 1272-1283.	0.8	21
815	Clinical outcomes associated with pathogenic genomic instability mutations in prostate cancer: a retrospective analysis of US pharmacy and medical claims data. Journal of Medical Economics, 2019, 22, 1080-1087.	1.0	4
816	LSD1 Activates PI3K/AKT Signaling Through Regulating p85 Expression in Prostate Cancer Cells. Frontiers in Oncology, 2019, 9, 721.	1.3	14
817	Reply to L. Dirix, B. De Laere et al, and A. Sharp et al. Journal of Clinical Oncology, 2019, 37, 2184-2186.	0.8	7
818	Emergence of <i>ERBB2</i> Mutation as a Biomarker and an Actionable Target in Solid Cancers. Oncologist, 2019, 24, e1303-e1314.	1.9	64
819	The Polycomb Repressor Complex 1 Drives Double-Negative Prostate Cancer Metastasis by Coordinating Stemness and Immune Suppression. Cancer Cell, 2019, 36, 139-155.e10.	7.7	131
820	Efficacy and Safety of Carboplatin Plus Paclitaxel as the First-, Second-, and Third-line Chemotherapy in Men With Castration-resistant Prostate Cancer. Clinical Genitourinary Cancer, 2019, 17, e923-e929.	0.9	9
821	Forkhead domain mutations in FOXA1 drive prostate cancer progression. Cell Research, 2019, 29, 770-772.	5.7	25
822	Single-Cell Omics: Deciphering Tumor Clonal Architecture. , 2019, , 61-97.		3
823	Japanese Case of Enzalutamide-Resistant Prostate Cancer Harboring a SPOP Mutation With Scattered Allelic Imbalance: Response to Platinum-Based Therapy. Clinical Genitourinary Cancer, 2019, 17, e897-e902.	0.9	9
824	Whole Exome Sequencing Identifies Putative Predictors of Recurrent Prostate Cancer with High Accuracy. OMICS A Journal of Integrative Biology, 2019, 23, 380-388.	1.0	5

#	Article	IF	CITATIONS
825	RUNX2 overexpression and PTEN haploinsufficiency cooperate to promote CXCR7 expression and cellular trafficking, AKT hyperactivation and prostate tumorigenesis. Theranostics, 2019, 9, 3459-3475.	4.6	22
826	Clinical utility of FoundationOne tissue molecular profiling in men with metastatic prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2019, 37, 813.e1-813.e9.	0.8	16
827	Recent advances in microfluidic methods in cancer liquid biopsy. Biomicrofluidics, 2019, 13, 041503.	1.2	39
829	Molecular Underpinnings Governing Genetic Complexity of ETS-Fusion-Negative Prostate Cancer. Trends in Molecular Medicine, 2019, 25, 1024-1038.	3.5	10
830	Prostate-specific Membrane Antigen Heterogeneity and DNA Repair Defects in Prostate Cancer. European Urology, 2019, 76, 469-478.	0.9	269
831	PARP Inhibitors in Prostate Cancerâ€"The Preclinical Rationale and Current Clinical Development. Genes, 2019, 10, 565.	1.0	46
832	Loss of the tumor suppressor, Tp53, enhances the androgen receptor-mediated oncogenic transformation and tumor development in the mouse prostate. Oncogene, 2019, 38, 6507-6520.	2.6	7
833	The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clinical Cancer Research, 2019, 25, 6916-6924.	3.2	200
834	Identification of Novel Biomarkers of Homologous Recombination Defect in DNA Repair to Predict Sensitivity of Prostate Cancer Cells to PARP-Inhibitors. International Journal of Molecular Sciences, 2019, 20, 3100.	1.8	32
835	KLF4 as a rheostat of osteolysis and osteogenesis in prostate tumors in the bone. Oncogene, 2019, 38, 5766-5777.	2.6	8
836	DNA-Dependent Protein Kinase Drives Prostate Cancer Progression through Transcriptional Regulation of the Wnt Signaling Pathway. Clinical Cancer Research, 2019, 25, 5608-5622.	3.2	17
837	Phytochemicals in Prostate Cancer: From Bioactive Molecules to Upcoming Therapeutic Agents. Nutrients, 2019, 11, 1483.	1.7	59
838	Clonal Evolution and Epithelial Plasticity in the Emergence of AR-Independent Prostate Carcinoma. Trends in Cancer, 2019, 5, 440-455.	3.8	29
839	Circulating Tumor Cell–Based Molecular Classifier for Predicting Resistance to Abiraterone and Enzalutamide in Metastatic Castration-Resistant Prostate Cancer. Neoplasia, 2019, 21, 802-809.	2.3	32
840	Personalised treatment for prostate cancer patients: are we there yet?. AME Medical Journal, 2019, 4, 2-2.	0.4	1
841	Rapid and structure-specific cellular uptake of selected steroids. PLoS ONE, 2019, 14, e0224081.	1.1	17
842	Inflammatory Biomarkers as Predictors of Response to Immunotherapy in Urological Tumors. Journal of Oncology, 2019, 2019, 1-11.	0.6	6
843	Histone lysine demethylase KDM4B regulates the alternative splicing of the androgen receptor in response to androgen deprivation. Nucleic Acids Research, 2019, 47, 11623-11636.	6.5	30

#	Article	IF	CITATIONS
844	The novel BETâ€CBP/p300 dual inhibitor NEO2734 is active in SPOP mutant and wildâ€ŧype prostate cancer. EMBO Molecular Medicine, 2019, 11, e10659.	3.3	56
845	Plasma Androgen Receptor in Prostate Cancer. Cancers, 2019, 11, 1719.	1.7	13
846	The Regulation of Bone Metabolism and Disorders by Wnt Signaling. International Journal of Molecular Sciences, 2019, 20, 5525.	1.8	214
847	Radium-223 mechanism of action: implications for use in treatment combinations. Nature Reviews Urology, 2019, 16, 745-756.	1.9	71
848	Characterization of HMGB1/2 Interactome in Prostate Cancer by Yeast Two Hybrid Approach: Potential Pathobiological Implications. Cancers, 2019, 11, 1729.	1.7	12
849	Cistrome Partitioning Reveals Convergence of Somatic Mutations and Risk Variants on Master Transcription Regulators in Primary Prostate Tumors. Cancer Cell, 2019, 36, 674-689.e6.	7.7	52
850	Association of Genomic Domains in <i>BRCA1</i> and <i>BRCA2</i> with Prostate Cancer Risk and Aggressiveness. Cancer Research, 2020, 80, 624-638.	0.4	39
851	Network-based analysis of prostate cancer cell lines reveals novel marker gene candidates associated with radioresistance and patient relapse. PLoS Computational Biology, 2019, 15, e1007460.	1.5	27
852	Prostate Organoid Cultures as Tools to Translate Genotypes and Mutational Profiles to Pharmacological Responses. Journal of Visualized Experiments, 2019, , .	0.2	13
853	An overview of publicly available patient-centered prostate cancer datasets. Translational Andrology and Urology, 2019, 8, S64-S77.	0.6	15
854	The use of PanDrugs to prioritize anticancer drug treatments in a case of T-ALL based on individual genomic data. BMC Cancer, 2019, 19, 1005.	1.1	5
855	A first Japanese case of neuroendocrine prostate cancer accompanied by lung and brain metastasis with somatic and germline BRCA2 mutation. Pathology International, 2019, 69, 715-720.	0.6	14
856	Metronomic Oral Cyclophosphamide in 2 HeavilyÂPretreated Patients With Metastatic Castration-resistant Prostate Cancer With Homologous Recombination Deficiency (HRD): A Case Report. Clinical Genitourinary Cancer, 2019, 17, 157-160.	0.9	3
857	CDK7 Inhibition Suppresses Castration-Resistant Prostate Cancer through MED1 Inactivation. Cancer Discovery, 2019, 9, 1538-1555.	7.7	88
858	p53 nuclear accumulation as an early indicator of lethal prostate cancer. British Journal of Cancer, 2019, 121, 578-583.	2.9	10
859	The role of WNT10B in normal prostate gland development and prostate cancer. Prostate, 2019, 79, 1692-1704.	1.2	15
860	A systematic review of the prevalence of DNA damage response gene mutations in prostate cancer. International Journal of Oncology, 2019, 55, 597-616.	1.4	45
861	Immunotherapy in Metastatic Castration-Resistant Prostate Cancer: Past and Future Strategies for Optimization. Current Urology Reports, 2019, 20, 64.	1.0	21

#	Article	IF	Citations
862	Emerging therapeutic agents for genitourinary cancers. Journal of Hematology and Oncology, 2019, 12, 89.	6.9	33
863	Role of Androgen Receptor in Prostate Cancer: A Review. World Journal of Men?s Health, 2019, 37, 288.	1.7	270
864	Metastatic Hormone-Sensitive Prostate Cancer: Clinical Decision Making in a Rapidly Evolving Landscape of Life-Prolonging Therapy. Journal of Clinical Oncology, 2019, 37, 2961-2967.	0.8	13
865	Systematically understanding the immunity leading to CRPC progression. PLoS Computational Biology, 2019, 15, e1007344.	1.5	23
866	PEG10 Promoter–Driven Expression of Reporter Genes Enables Molecular Imaging of Lethal Prostate Cancer. Cancer Research, 2019, 79, 5668-5680.	0.4	7
867	Role of GDF15 in methylseleninic acid-mediated inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. PLoS ONE, 2019, 14, e0222812.	1.1	5
868	Low Abundance of Circulating Tumor DNA in Localized Prostate Cancer. JCO Precision Oncology, 2019, 3, 1-13.	1.5	36
869	ZBTB7A Mediates the Transcriptional Repression Activity of the Androgen Receptor in Prostate Cancer. Cancer Research, 2019, 79, 5260-5271.	0.4	19
870	The Need for Multi-Omics Biomarker Signatures in Precision Medicine. International Journal of Molecular Sciences, 2019, 20, 4781.	1.8	287
871	Targeting Wnt/EZH2/microRNA-708 signaling pathway inhibits neuroendocrine differentiation in prostate cancer. Cell Death Discovery, 2019, 5, 139.	2.0	41
873	Identification of the PTEN-ARID4B-PI3K pathway reveals the dependency on ARID4B by PTEN-deficient prostate cancer. Nature Communications, 2019, 10, 4332.	5.8	38
874	Cholesterol metabolism plays a crucial role in the regulation of autophagy for cell differentiation of granular convoluted tubules in male mouse submandibular glands. Development (Cambridge), 2019, 146, .	1.2	13
875	Towards precision oncology in advanced prostate cancer. Nature Reviews Urology, 2019, 16, 645-654.	1.9	156
876	Interfocal heterogeneity challenges the clinical usefulness of molecular classification of primary prostate cancer. Scientific Reports, 2019, 9, 13579.	1.6	38
877	Replication timing and epigenome remodelling are associated with the nature of chromosomal rearrangements in cancer. Nature Communications, 2019, 10, 416.	5.8	71
878	A ZNRF3-dependent Wnt/ \hat{l}^2 -catenin signaling gradient is required for adrenal homeostasis. Genes and Development, 2019, 33, 209-220.	2.7	74
879	Treatment of Advanced Prostate Cancer. Annual Review of Medicine, 2019, 70, 479-499.	5.0	417
881	Deletion of the p16INK4a tumor suppressor and expression of the androgen receptor induce sarcomatoid carcinomas with signet ring cells in the mouse prostate. PLoS ONE, 2019, 14, e0211153.	1.1	3

#	Article	IF	CITATIONS
882	IRE1 $\hat{1}\pm$ -XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nature Communications, 2019, 10, 323.	5.8	158
883	Rational drug design for androgen receptor and glucocorticoids receptor dual antagonist. European Journal of Medicinal Chemistry, 2019, 166, 232-242.	2.6	8
884	A New Molecular Taxonomy to Predict Immune Checkpoint Inhibitor Sensitivity in Prostate Cancer. Oncologist, 2019, 24, 430-432.	1.9	19
885	Expression and significance of PTEN and Claudinâ€'3 in prostate cancer. Oncology Letters, 2019, 17, 5628-5634.	0.8	7
886	Evaluation of Commercial Circulating Tumor DNA Test in Metastatic Prostate Cancer. JCO Precision Oncology, 2019, 3, 1-9.	1.5	26
887	Dysregulated Transcriptional Control in Prostate Cancer. International Journal of Molecular Sciences, 2019, 20, 2883.	1.8	20
888	The metastasis suppressor CD82/KAl1 represses the TGFâ€Î² ₁ and Wnt signalings inducing epithelialâ€toâ€mesenchymal transition linked to invasiveness of prostate cancer cells. Prostate, 2019, 79, 1394-1405.	1.2	20
889	Evolution of the Liquid Biopsy in Metastatic Prostate Cancer. Urology, 2019, 132, 1-9.	0.5	13
890	Controversies in oncology: are genomic tests quantifying homologous recombination repair deficiency (HRD) useful for treatment decision making?. ESMO Open, 2019, 4, e000480.	2.0	47
891	DNA Repair Deficiency in Breast Cancer: Opportunities for Immunotherapy. Journal of Oncology, 2019, 2019, 1-14.	0.6	18
892	FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature, 2019, 571, 408-412.	13.7	163
893	Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature, 2019, 571, 413-418.	13.7	192
894	Systemic Treatment of Prostate Cancer in Elderly Patients: Current Role and Safety Considerations of Androgen-Targeting Strategies. Drugs and Aging, 2019, 36, 701-717.	1.3	14
895	Crosstalk Between Prostate Cancer Stem Cells and Immune Cells: Implications for Tumor Progression and Resistance to Immunotherapy. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 173-221.	0.1	3
896	Overexpression of NCAPH is upregulated and predicts a poor prognosis in prostate cancer. Oncology Letters, 2019, 17, 5768-5776.	0.8	23
897	Lineage relationship between prostate adenocarcinoma and small cell carcinoma. BMC Cancer, 2019, 19, 518.	1.1	5
898	Pharmacodynamic study of radium-223 in men with bone metastatic castration resistant prostate cancer. PLoS ONE, 2019, 14, e0216934.	1.1	14
900	ZBTB46, SPDEF, and ETV6: Novel Potential Biomarkers and Therapeutic Targets in Castration-Resistant Prostate Cancer. International Journal of Molecular Sciences, 2019, 20, 2802.	1.8	18

#	Article	IF	CITATIONS
901	<i>RAD51</i> and <i> XRCC3</i> Polymorphisms Are Associated with Increased Risk of Prostate Cancer. Journal of Oncology, 2019, 2019, 1-8.	0.6	11
902	Updated recommendations of the International Society of Geriatric Oncology on prostate cancer management in older patients. European Journal of Cancer, 2019, 116, 116-136.	1.3	134
903	Predicting clinical outcome of therapy-resistant prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11090-11092.	3.3	8
904	NES1/KLK10 and hNIS gene therapy enhanced iodine-131 internal radiation in PC3 proliferation inhibition. Frontiers of Medicine, 2019, 13, 646-657.	1.5	2
905	Targeting Nuclear Receptors with PROTAC degraders. Molecular and Cellular Endocrinology, 2019, 493, 110452.	1.6	58
906	Oligometastatic Prostate Cancer: A Shrinking Subset or an Opportunity for Cure?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2019, 39, 309-320.	1.8	42
907	Long non-coding RNAs in genitourinary malignancies: a whole new world. Nature Reviews Urology, 2019, 16, 484-504.	1.9	80
908	BRD4 Regulates Metastatic Potential of Castration-Resistant Prostate Cancer through AHNAK. Molecular Cancer Research, 2019, 17, 1627-1638.	1.5	37
909	Genomic correlates of clinical outcome in advanced prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11428-11436.	3.3	839
910	The PHLPP2 phosphatase is a druggable driver of prostate cancer progression. Journal of Cell Biology, 2019, 218, 1943-1957.	2.3	33
911	Reprogramming of Isocitrate Dehydrogenases Expression and Activity by the Androgen Receptor in Prostate Cancer. Molecular Cancer Research, 2019, 17, 1699-1709.	1.5	19
912	Going towards a precise definition of the therapeutic management of de-novo metastatic castration sensitive prostate cancer patients: How prognostic classification impact treatment decisions. Critical Reviews in Oncology/Hematology, 2019, 139, 83-86.	2.0	7
913	Oligometastases in prostate cancer: Ablative treatment. World Journal of Clinical Oncology, 2019, 10, 38-51.	0.9	27
914	Transcriptional Reprogramming and Novel Therapeutic Approaches for Targeting Prostate Cancer Stem Cells. Frontiers in Oncology, 2019, 9, 385.	1.3	12
915	Prospective Comprehensive Genomic Profiling of Primary and Metastatic Prostate Tumors. JCO Precision Oncology, 2019, 3, 1-23.	1.5	63
916	Circulating oestrogen receptor mutations and splice variants in advanced prostate cancer. BJU International, 2019, 124, 50-56.	1.3	9
917	Monitoring dynamic cytotoxic chemotherapy response in castration-resistant prostate cancer using plasma cell-free DNA (cfDNA). BMC Research Notes, 2019, 12, 275.	0.6	19
918	R-spondin 2-LGR4 system regulates growth, migration and invasion, epithelial-mesenchymal transition and stem-like properties of tongue squamous cell carcinoma via Wnt/l²-catenin signaling. EBioMedicine, 2019, 44, 275-288.	2.7	31

#	Article	IF	CITATIONS
919	Separating the Dreadful from the Merely Bad: Towards Prognostic and Predictive Biomarkers in Metastatic Castration-resistant Prostate Cancer. European Urology, 2019, 76, 572-573.	0.9	O
920	Outcomes of universal germline testing for men with prostate cancer in an Australian tertiary center. Asia-Pacific Journal of Clinical Oncology, 2019, 15, 257-261.	0.7	5
921	PTENâ€deficient prostate cancer is associated with an immunosuppressive tumor microenvironment mediated by increased expression of IDO1 and infiltrating FoxP3+ T regulatory cells. Prostate, 2019, 79, 969-979.	1.2	58
922	Differential expression of androgen receptor variants in hormoneâ€sensitive prostate cancer xenografts, castrationâ€resistant sublines, and patient specimens according to the treatment sequence. Prostate, 2019, 79, 1043-1052.	1.2	4
923	State of the Art and Future Direction for the Analysis of Cell-Free Circulating DNA. , 2019, , 133-188.		2
924	Comparative Analysis of AR Variant AR-V567es mRNA Detection Systems Reveals Eminent Variability and Questions the Role as a Clinical Biomarker in Prostate Cancer. Clinical Cancer Research, 2019, 25, 3856-3864.	3.2	17
926	Functional genomic studies reveal the androgen receptor as a master regulator of cellular energy metabolism in prostate cancer. Journal of Steroid Biochemistry and Molecular Biology, 2019, 191, 105367.	1.2	41
928	A Phase II Study of PX-866 in Patients With Recurrent or Metastatic Castration-resistant Prostate Cancer: Canadian Cancer Trials Group Study IND205. Clinical Genitourinary Cancer, 2019, 17, 201-208.e1.	0.9	29
929	A Novel Mechanism Driving Poor-Prognosis Prostate Cancer: Overexpression of the DNA Repair Gene, Ribonucleotide Reductase Small Subunit M2 (RRM2). Clinical Cancer Research, 2019, 25, 4480-4492.	3.2	96
930	Cancer overdiagnosis: a biological challenge and clinical dilemma. Nature Reviews Cancer, 2019, 19, 349-358.	12.8	220
931	High Yield of RNA Sequencing for Targetable Kinase Fusions in Lung Adenocarcinomas with No Mitogenic Driver Alteration Detected by DNA Sequencing and Low Tumor Mutation Burden. Clinical Cancer Research, 2019, 25, 4712-4722.	3.2	292
932	The association of <i>BRCA1</i> and <i>BRCA2</i> mutations with prostate cancer risk, frequency, and mortality: A metaâ€analysis. Prostate, 2019, 79, 880-895.	1.2	100
933	A novel DNA-binding motif in prostate tumor overexpressed-1 (PTOV1) required for the expression of ALDH1A1 and CCNG2 in cancer cells. Cancer Letters, 2019, 452, 158-167.	3.2	2
934	Characterization of the ERG-regulated Kinome in Prostate Cancer Identifies TNIK as a Potential Therapeutic Target. Neoplasia, 2019, 21, 389-400.	2.3	20
935	Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell, 2019, 35, 347-367.	7.7	533
936	Relevance of radium-223 in hospital clinical practice from a medical oncologist point of view. Revista Espanola De Medicina Nuclear E Imagen Molecular, 2019, 38, 106-111.	0.1	0
937	Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Science Translational Medicine, $2019,11,\ldots$	5.8	105
938	APOBEC Mutagenesis and Copy-Number Alterations Are Drivers of Proteogenomic Tumor Evolution and Heterogeneity in Metastatic Thoracic Tumors. Cell Reports, 2019, 26, 2651-2666.e6.	2.9	92

#	Article	IF	CITATIONS
939	Cholesterol Sulfotransferase SULT2B1b Modulates Sensitivity to Death Receptor Ligand TNF \hat{l}_{\pm} in Castration-Resistant Prostate Cancer. Molecular Cancer Research, 2019, 17, 1253-1263.	1.5	7
940	CoPhosK: A method for comprehensive kinase substrate annotation using co-phosphorylation analysis. PLoS Computational Biology, 2019, 15, e1006678.	1.5	30
942	Darolutamide is a potent androgen receptor antagonist with strong efficacy in prostate cancer models. International Journal of Cancer, 2019, 145, 1382-1394.	2.3	54
943	Reactive oxygen species and cancer: A complex interaction. Cancer Letters, 2019, 452, 132-143.	3.2	154
944	Discovery and biological evaluation of novel androgen receptor antagonist for castration-resistant prostate cancer. European Journal of Medicinal Chemistry, 2019, 171, 265-281.	2.6	12
945	A Prospective Correlation of Tissue Histopathology With Nucleic Acid Yield in Metastatic Castration-Resistant Prostate Cancer Biopsy Specimens. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2019, 3, 14-22.	1.2	8
946	The Tumor Immune Contexture of Prostate Cancer. Frontiers in Immunology, 2019, 10, 603.	2.2	143
947	Whole-Genome and Transcriptional Analysis of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer Demonstrates Intraclass Heterogeneity. Molecular Cancer Research, 2019, 17, 1235-1240.	1.5	51
948	Targeting DNA Repair Defects for Precision Medicine in Prostate Cancer. Current Oncology Reports, 2019, 21, 42.	1.8	15
949	TP53 missense mutation is associated with increased tumor-infiltrating T cells in primary prostate cancer. Human Pathology, 2019, 87, 95-102.	1.1	34
950	Clinical determinants for successful circulating tumor DNA analysis in prostate cancer. Prostate, 2019, 79, 701-708.	1.2	18
951	Wholeâ€exome sequencing revealed mutational profiles of giant cell glioblastomas. Brain Pathology, 2019, 29, 782-792.	2.1	11
952	Systemic treatment for metastatic prostate cancer. Asian Journal of Urology, 2019, 6, 162-168.	0.5	31
953	BRCA2 and Other DDR Genes in Prostate Cancer. Cancers, 2019, 11, 352.	1.7	72
954	Long non-coding RNA CHRF promotes proliferation and mesenchymal transition (EMT) in prostate cancer cell line PC3 requiring up-regulating microRNA-10b. Biological Chemistry, 2019, 400, 1035-1045.	1.2	20
955	Splicing Factors Have an Essential Role in Prostate Cancer Progression and Androgen Receptor Signaling. Biomolecules, 2019, 9, 131.	1.8	36
956	Genetic Alterations Detected in Cell-Free DNA Are Associated With Enzalutamide and Abiraterone Resistance in Castration-Resistant Prostate Cancer. JCO Precision Oncology, 2019, 3, 1-14.	1.5	23
957	Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nature Reviews Urology, 2019, 16, 302-317.	1.9	86

#	Article	IF	CITATIONS
958	Enzalutamide therapy for advanced prostate cancer: efficacy, resistance and beyond. Endocrine-Related Cancer, 2019, 26, R31-R52.	1.6	49
959	NMR quantification of lactate production and efflux and glutamate fractional enrichment in living human prostate biopsies cultured with [1,6â€≺sup>13C ₂]glucose. Magnetic Resonance in Medicine, 2019, 82, 566-576.	1.9	7
960	Genomic Drivers of Poor Prognosis and Enzalutamide Resistance in Metastatic Castration-resistant Prostate Cancer. European Urology, 2019, 76, 562-571.	0.9	104
961	The Contributions of Prostate Cancer Stem Cells in Prostate Cancer Initiation and Metastasis. Cancers, 2019, 11, 434.	1.7	74
962	Epigenetics of Prostate Cancer and Novel Chemopreventive and Therapeutic Approaches. , 2019, , 287-308.		1
963	Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Science Translational Medicine, 2019, 11, .	5. 8	210
964	Prevalence of Germline Variants in Prostate Cancer and Implications for Current Genetic Testing Guidelines. JAMA Oncology, 2019, 5, 523.	3.4	240
965	The Landscape of Circular RNA in Cancer. Cell, 2019, 176, 869-881.e13.	13.5	1,095
966	Importancia del radio-223 en la práctica hospitalaria. Visión del oncólogo médico. Revista Espanola De Medicina Nuclear E Imagen Molecular, 2019, 38, 106-111.	0.0	0
967	High FOXM1 expression is a prognostic marker for poor clinical outcomes in prostate cancer. Journal of Cancer, 2019, 10, 749-756.	1.2	25
968	The Secret Life of Translation Initiation in Prostate Cancer. Frontiers in Genetics, 2019, 10, 14.	1.1	14
969	PIK3CA in cancer: The past 30 years. Seminars in Cancer Biology, 2019, 59, 36-49.	4.3	122
970	Evolution of the genomic landscape of circulating tumor DNA (ctDNA) in metastatic prostate cancer over treatment and time. Cancer Treatment and Research Communications, 2019, 19, 100120.	0.7	10
971	MEK-ERK signaling is a therapeutic target in metastatic castration resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2019, 22, 531-538.	2.0	66
972	The influence of BRCA2 mutation on localized prostate cancer. Nature Reviews Urology, 2019, 16, 281-290.	1.9	53
973	MiR-644a Disrupts Oncogenic Transformation and Warburg Effect by Direct Modulation of Multiple Genes of Tumor-Promoting Pathways. Cancer Research, 2019, 79, 1844-1856.	0.4	35
975	Increased Serine and One-Carbon Pathway Metabolism by PKCl̂» \hat{l}^1 Deficiency Promotes Neuroendocrine Prostate Cancer. Cancer Cell, 2019, 35, 385-400.e9.	7.7	128
976	A positive role of c-Myc in regulating androgen receptor and its splice variants in prostate cancer. Oncogene, 2019, 38, 4977-4989.	2.6	80

#	ARTICLE	IF	CITATIONS
977	LncRNA PCAT1 activates AKT and NF-κB signaling in castration-resistant prostate cancer by regulating the PHLPP/FKBP51/IKKα complex. Nucleic Acids Research, 2019, 47, 4211-4225.	6.5	129
978	Current progress and questions in germline genetics of prostate cancer. Asian Journal of Urology, 2019, 6, 3-9.	0.5	11
979	PI3Kβ—A Versatile Transducer for GPCR, RTK, and Small GTPase Signaling. Endocrinology, 2019, 160, 536-555.	1.4	35
980	Therapeutic effects of human monoclonal PSMA antibody-mediated TRIM24 siRNA delivery in PSMA-positive castration-resistant prostate cancer. Theranostics, 2019, 9, 1247-1263.	4.6	39
981	Integrative Epigenomics of Prostate Cancer. , 2019, , 247-263.		2
982	Targeting androgen receptor-independent pathways in therapy-resistant prostate cancer. Asian Journal of Urology, 2019, 6, 91-98.	0.5	6
983	MicroRNAâ€200a suppresses prostate cancer progression through BRD4/AR signaling pathway. Cancer Medicine, 2019, 8, 1474-1485.	1.3	37
984	ARv7 Represses Tumor-Suppressor Genes in Castration-Resistant Prostate Cancer. Cancer Cell, 2019, 35, 401-413.e6.	7.7	127
985	Circulating tumor cell-based or tissue biopsy-based AR-V7 detection: which provides the greatest clinical utility?. Annals of Translational Medicine, 2019, 7, S354-S354.	0.7	4
986	Genomic alterations of Tenascin C in highly aggressive prostate cancer: a meta-analysis. Genes and Cancer, 2019, 10, 150-159.	0.6	10
987	Genome atlas analysis based profiling of Akt pathway genes in the early and advanced human prostate cancer. Oncoscience, 2019, 6, 317-336.	0.9	6
988	Molecular Characterization and Clinical Outcomes of Primary Gleason Pattern 5 Prostate Cancer After Radical Prostatectomy. JCO Precision Oncology, 2019, 3, 1-13.	1.5	12
989	Clinical Significance of AR-V567es in Prostate Cancerâ€"Letter. Clinical Cancer Research, 2019, 25, 6009-6009.	3.2	1
990	Transcriptomic Heterogeneity of Androgen Receptor Activity Defines a <i>de novo</i> low AR-Active Subclass in Treatment NaÃ-ve Primary Prostate Cancer. Clinical Cancer Research, 2019, 25, 6721-6730.	3.2	74
991	Considerations for AR-V7 testing in clinical routine practice. Annals of Translational Medicine, 2019, 7, S378-S378.	0.7	4
992	The treatment of neuroendocrine prostate cancer; current status and future directions. International Journal of Endocrine Oncology, 2019, 6, IJE18.	0.4	0
993	The genomic landscape of metastatic castration-resistant prostate cancers reveals multiple distinct genotypes with potential clinical impact. Nature Communications, 2019, 10, 5251.	5.8	130
994	Genomic Characterization of Prostatic Ductal Adenocarcinoma Identifies a High Prevalence of DNA Repair Gene Mutations. JCO Precision Oncology, 2019, 3, 1-9.	1.5	47

#	Article	IF	CITATIONS
995	Multilevel Analysis of Readmissions After Radical Cystectomy for Bladder Cancer in the USA: Does the Hospital Make a Difference?. European Urology Oncology, 2019, 2, 349-354.	2.6	6
996	Transcriptomic and Clinical Characterization of Neuropeptide Y Expression in Localized and Metastatic Prostate Cancer: Identification of Novel Prostate Cancer Subtype with Clinical Implications. European Urology Oncology, 2019, 2, 405-412.	2.6	14
997	SOX30, a target gene of miR-653-5p, represses the proliferation and invasion of prostate cancer cells through inhibition of Wnt/ \hat{l}^2 -catenin signaling. Cellular and Molecular Biology Letters, 2019, 24, 71.	2.7	27
998	Sequencing Small Non-coding RNA from Formalin-fixed Tissues and Serum-derived Exosomes from Castration-resistant Prostate Cancer Patients. Journal of Visualized Experiments, 2019, , .	0.2	5
999	Nanotheranostics., 2019,,.		8
1000	Characterization of a Prostate- and Prostate Cancer-Specific Circular RNA Encoded by the Androgen Receptor Gene. Molecular Therapy - Nucleic Acids, 2019, 18, 916-926.	2.3	30
1001	Identification of key pathways and genes in PTEN mutation prostate cancer by bioinformatics analysis. BMC Medical Genetics, 2019, 20, 191.	2.1	30
1002	Clinical implications of genetic aberrations in metastatic prostate cancer. Current Opinion in Urology, 2019, 29, 319-325.	0.9	0
1004	PPP2R2A prostate cancer haploinsufficiency is associated with worse prognosis and a high vulnerability to $855\hat{1}\pm/PP2A$ reconstitution that triggers centrosome destabilization. Oncogenesis, 2019, 8, 72.	2.1	20
1005	Genomic Alteration Burden in Advanced Prostate Cancer and Therapeutic Implications. Frontiers in Oncology, 2019, 9, 1287.	1.3	22
1006	Targeting the androgen receptor and overcoming resistance in prostate cancer. Current Opinion in Oncology, 2019, 31, 175-182.	1.1	36
1007	mRNA expressions of androgen receptor and its variants in matched hormone-sensitive and castration-resistant prostate cancer. Scandinavian Journal of Urology, 2019, 53, 365-371.	0.6	5
1008	Multifocal Signal Modulation Therapy by Celecoxib: A Strategy for Managing Castration-Resistant Prostate Cancer. International Journal of Molecular Sciences, 2019, 20, 6091.	1.8	10
1009	Exceptional Response to ¹⁷⁷ Lutetium Prostate-Specific Membrane Antigen in Prostate Cancer Harboring DNA Repair Defects. JCO Precision Oncology, 2019, 3, 1-5.	1.5	10
1010	Prevalence of DNA repair gene mutations in localized prostate cancer according to clinical and pathologic features: association of Gleason score and tumor stage. Prostate Cancer and Prostatic Diseases, 2019, 22, 59-65.	2.0	67
1011	Epigenetic Therapy with Panobinostat Combined with Bicalutamide Rechallenge in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2019, 25, 52-63.	3.2	44
1012	A Phase II Trial of the Aurora Kinase A Inhibitor Alisertib for Patients with Castration-resistant and Neuroendocrine Prostate Cancer: Efficacy and Biomarkers. Clinical Cancer Research, 2019, 25, 43-51.	3.2	177
1013	NPRL2 enhances autophagy and the resistance to Everolimus in castrationâ€resistant prostate cancer. Prostate, 2019, 79, 44-53.	1.2	33

#	Article	IF	CITATIONS
1014	Immunotherapy for Prostate Cancer. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a030627.	2.9	41
1015	<i>TP53</i> Outperforms Other Androgen Receptor Biomarkers to Predict Abiraterone or Enzalutamide Outcome in Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2019, 25, 1766-1773.	3.2	117
1016	Development of High-Throughput Screening Assays for Inhibitors of ETS Transcription Factors. SLAS Discovery, 2019, 24, 77-85.	1.4	2
1017	Phosphatidylinositol 3â€kinase pathway genomic alterations in 60,991 diverse solid tumors informs targeted therapy opportunities. Cancer, 2019, 125, 1185-1199.	2.0	36
1018	Targeting NPRL2 to enhance the efficacy of Olaparib in castration-resistant prostate cancer. Biochemical and Biophysical Research Communications, 2019, 508, 620-625.	1.0	9
1019	Patient Selection for Radium-223 Therapy in Patients With Bone Metastatic Castration-Resistant Prostate Cancer: New Recommendations and Future Perspectives. Clinical Genitourinary Cancer, 2019, 17, 79-87.	0.9	18
1020	Inhibition of de novo lipogenesis targets androgen receptor signaling in castration-resistant prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 631-640.	3.3	198
1021	Analysis of the Prevalence of Microsatellite Instability in Prostate Cancer and Response to Immune Checkpoint Blockade. JAMA Oncology, 2019, 5, 471.	3.4	426
1022	AR-Variant–Positive CTC: A Surrogate for a Surrogate for Taxane Therapy Outcome?. Clinical Cancer Research, 2019, 25, 1696-1698.	3.2	6
1023	Structure and function of the Fgd family of divergent FYVE domain proteins. Biochemistry and Cell Biology, 2019, 97, 257-264.	0.9	17
1024	Biomarkers for Programmed Deathâ€1 Inhibition in Prostate Cancer. Oncologist, 2019, 24, 444-448.	1.9	18
1025	Reversibility of castration resistance status after Radium-223 dichloride treatment: clinical evidence and review of the literature. International Journal of Radiation Biology, 2019, 95, 554-561.	1.0	20
1026	A Targeted Bivalent Androgen Receptor Binding Compound for Prostate Cancer Therapy. Hormones and Cancer, 2019, 10, 24-35.	4.9	6
1027	An overview of translational prostate cancer cohorts for prognostic and predictive studies. Histopathology, 2019, 74, 161-170.	1.6	1
1028	Prostate-specific markers to identify rare prostate cancer cells in liquid biopsies. Nature Reviews Urology, 2019, 16, 7-22.	1.9	39
1029	Circulating tumor DNA in advanced prostate cancer: transitioning from discovery to a clinically implemented test. Prostate Cancer and Prostatic Diseases, 2019, 22, 195-205.	2.0	39
1030	Downregulation of IQGAP2 Correlates with Prostate Cancer Recurrence and Metastasis. Translational Oncology, 2019, 12, 236-244.	1.7	17
1031	Mutant Kras-induced upregulation of CD24 enhances prostate cancer stemness and bone metastasis. Oncogene, 2019, 38, 2005-2019.	2.6	33

#	Article	IF	CITATIONS
1032	Towards a New Classification for Metastatic Prostate Cancer. European Urology, 2019, 75, 383-384.	0.9	0
1033	Germline Genetics of Prostate Cancer: Time to Incorporate Genetics into Early Detection Tools. Clinical Chemistry, 2019, 65, 74-79.	1.5	19
1034	DNA damage repair alterations are frequent in prostatic adenocarcinomas with focal pleomorphic giantâ€cell features. Histopathology, 2019, 74, 836-843.	1.6	15
1035	Low Expression of the Androgen-Induced Tumor Suppressor Gene <i>PLZF</i> and Lethal Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 707-714.	1.1	11
1036	TP53 and Prognosis in mCRPC Survival: Biology or Coincidence?. Clinical Cancer Research, 2019, 25, 1699-1701.	3.2	4
1037	Circulating tumor DNA alterations in patients with metastatic castrationâ€resistant prostate cancer. Cancer, 2019, 125, 1459-1469.	2.0	38
1038	Molecular Mechanisms Related to Hormone Inhibition Resistance in Prostate Cancer. Cells, 2019, 8, 43.	1.8	38
1039	Circulating Tumor DNA Abundance and Potential Utility in De Novo Metastatic Prostate Cancer. European Urology, 2019, 75, 667-675.	0.9	131
1040	Next-generation sequencing of prostate cancer: genomic and pathway alterations, potential actionability patterns, and relative rate of use of clinical-grade testing. Cancer Biology and Therapy, 2019, 20, 219-226.	1.5	30
1041	Genetic and Epigenetic Determinants of Aggressiveness in Cribriform Carcinoma of the Prostate. Molecular Cancer Research, 2019, 17, 446-456.	1.5	44
1042	Clinical Features and Therapeutic Outcomes in Men with Advanced Prostate Cancer and DNA Mismatch Repair Gene Mutations. European Urology, 2019, 75, 378-382.	0.9	137
1043	Genomic Analysis of Three Metastatic Prostate Cancer Patients with Exceptional Responses to Carboplatin Indicating Different Types of DNA Repair Deficiency. European Urology, 2019, 75, 184-192.	0.9	69
1044	Exploring the spatiotemporal genetic heterogeneity in metastatic lung adenocarcinoma using a nuclei flowâ€sorting approach. Journal of Pathology, 2019, 247, 199-213.	2.1	8
1045	Prostate Cancer Research at the Crossroads. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a036277.	2.9	3
1046	Long non-coding RNAs in prostate cancer: Biological and clinical implications. Molecular and Cellular Endocrinology, 2019, 480, 142-152.	1.6	12
1047	Systemic Treatment of Castration-Resistant Metastatic Prostate Cancer. , 2019, , 1-14.		O
1048	Germline Mutations in ATM and BRCA1/2 Are Associated with Grade Reclassification in Men on Active Surveillance for Prostate Cancer. European Urology, 2019, 75, 743-749.	0.9	138
1049	Strategies to Identify and Target Cells of Origin in Prostate Cancer. Journal of the National Cancer Institute, 2019, 111, 221-223.	3.0	4

#	Article	IF	CITATIONS
1050	Evolution of Our Understanding of the Hyperparathyroid Syndromes: A Historical Perspective. Journal of Bone and Mineral Research, 2019, 34, 22-37.	3.1	23
1051	Utilizing precision medicine to modulate the prostate tumor microenvironment and enhance immunotherapy. Urologic Oncology: Seminars and Original Investigations, 2019, 37, 535-542.	0.8	2
1052	Synergistic Interactions: Targeted Radiopharmaceuticals and Homologous Recombination Repair Alterations in Prostate Cancer. European Urology, 2019, 76, 177-178.	0.9	1
1053	PARP inhibition â€" not all gene mutations are created equal. Nature Reviews Urology, 2019, 16, 4-6.	1.9	17
1054	Management of advanced prostate cancer: A systematic review of existing guidelines and recommendations. Cancer Treatment Reviews, 2019, 73, 54-61.	3.4	28
1055	Molecules targeting the androgen receptor (AR) signaling axis beyond the ARâ€Ligand binding domain. Medicinal Research Reviews, 2019, 39, 910-960.	5.0	41
1056	Pathological Assessment of Prostate Cancer. , 2019, , 1-19.		0
1057	Expression of AR-V7 and ARv567es in Circulating Tumor Cells Correlates with Outcomes to Taxane Therapy in Men with Metastatic Prostate Cancer Treated in TAXYNERGY. Clinical Cancer Research, 2019, 25, 1880-1888.	3.2	92
1058	SMC1A is associated with radioresistance in prostate cancer and acts by regulating epithelialâ€mesenchymal transition and cancer stemâ€like properties. Molecular Carcinogenesis, 2019, 58, 113-125.	1.3	26
1059	Efficacy of Radium-223 in Bone-metastatic Castration-resistant Prostate Cancer with and Without Homologous Repair Gene Defects. European Urology, 2019, 76, 170-176.	0.9	71
1060	RB1 Heterogeneity in Advanced Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2019, 25, 687-697.	3.2	43
1061	Is Androgen Deprivation Therapy "Another Deficient Therapy―for Gleason Score 9-10 Prostate Cancer?. European Urology, 2019, 75, 42-43.	0.9	1
1062	DNA repair defects in prostate cancer: impact for screening, prognostication and treatment. BJU International, 2019, 123, 769-776.	1.3	35
1063	DNA Damage Response in Prostate Cancer. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a030486.	2.9	40
1064	Genetically Engineered Mouse Models of Prostate Cancer in the Postgenomic Era. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a030528.	2.9	36
1065	Primary Mutational Landscape Linked with Pre-Docetaxel Lactate Dehydrogenase Levels Predicts Docetaxel Response in Metastatic Castrate-Resistant Prostate Cancer. European Urology Focus, 2019, 5, 831-841.	1.6	11
1066	The Genomics of Prostate Cancer: A Historic Perspective. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034942.	2.9	11
1067	Integrative Genomic Analysis of Coincident Cancer Foci Implicates CTNNB1 and PTEN Alterations in Ductal Prostate Cancer. European Urology Focus, 2019, 5, 433-442.	1.6	27

#	ARTICLE	IF	Citations
1068	Taxane-based Combination Therapies for Metastatic Prostate Cancer. European Urology Focus, 2019, 5, 369-380.	1.6	23
1070	Role of the DNA damage response in prostate cancer formation, progression and treatment. Prostate Cancer and Prostatic Diseases, 2020, 23, 24-37.	2.0	37
1071	Epigenetic polypharmacology: A new frontier for epiâ€drug discovery. Medicinal Research Reviews, 2020, 40, 190-244.	5.0	74
1072	Wnt-pathway Activating Mutations Are Associated with Resistance to First-line Abiraterone and Enzalutamide in Castration-resistant Prostate Cancer. European Urology, 2020, 77, 14-21.	0.9	51
1073	ETS transcription factors as emerging drug targets in cancer. Medicinal Research Reviews, 2020, 40, 413-430.	5.0	63
1074	Phase 2 clinical trial of TORC1 inhibition with everolimus in men with metastatic castration-resistant prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 79.e15-79.e22.	0.8	21
1075	PTEN Mouse Models of Cancer Initiation and Progression. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a037283.	2.9	14
1076	An evaluation of current prostate cancer diagnostic approaches with emphasis on liquid biopsies and prostate cancer. Expert Review of Molecular Diagnostics, 2020, 20, 207-217.	1.5	5
1077	Clinical Outcomes in Cyclin-dependent Kinase 12 Mutant Advanced Prostate Cancer. European Urology, 2020, 77, 333-341.	0.9	65
1078	Tumor Liquid Biopsies. Recent Results in Cancer Research, 2020, , .	1.8	11
1079	Targeting DNA repair in cancer: current state and novel approaches. Cellular and Molecular Life Sciences, 2020, 77, 677-703.	2.4	65
1080	ZNFX1 anti-sense RNA 1 promotes the tumorigenesis of prostate cancer by regulating c-Myc expression via a regulatory network of competing endogenous RNAs. Cellular and Molecular Life Sciences, 2020, 77, 1135-1152.	2.4	15
1081	Supraphysiologic Testosterone Solutions for Enzalutamide-resistant Prostate Cancer. European Urology, 2020, 77, 156-157.	0.9	5
1082	Molecular Biology and Evolution of Cancer: From Discovery to Action. Molecular Biology and Evolution, 2020, 37, 320-326.	3.5	43
1083	Discordant and heterogeneous clinically relevant genomic alterations in circulating tumor cells vs plasma DNA from men with metastatic castration resistant prostate cancer. Genes Chromosomes and Cancer, 2020, 59, 225-239.	1.5	18
1084	How Do We Respond to Men with BRCA Mutations when They Ask About Prostate Cancer?. European Urology, 2020, 77, 36-37.	0.9	0
1085	Cytoreductive treatment strategies for de novo metastatic prostate cancer. Nature Reviews Clinical Oncology, 2020, 17, 168-182.	12.5	36
1086	Androgen receptor degraders overcome common resistance mechanisms developed during prostate cancer treatment. Neoplasia, 2020, 22, 111-119.	2.3	101

#	Article	IF	CITATIONS
1087	BCOR-coupled H2A monoubiquitination represses a subset of androgen receptor target genes regulating prostate cancer proliferation. Oncogene, 2020, 39, 2391-2407.	2.6	9
1088	Activation of \hat{l}^2 -Catenin Cooperates with Loss of Pten to Drive AR-Independent Castration-Resistant Prostate Cancer. Cancer Research, 2020, 80, 576-590.	0.4	26
1089	BRCA2 gene mutation and prostate cancer risk. Journal of King Abdulaziz University, Islamic Economics, 2020, 41, 9-17.	0.5	13
1090	SIRPB1 promotes prostate cancer cell proliferation via Akt activation. Prostate, 2020, 80, 352-364.	1.2	12
1091	Novel immunotherapy combinations for genitourinary cancers. Expert Opinion on Biological Therapy, 2020, 20, 253-262.	1.4	11
1092	ABEMUS: platform-specific and data-informed detection of somatic SNVs in cfDNA. Bioinformatics, 2020, 36, 2665-2674.	1.8	7
1093	Identification of altered biological processes in heterogeneous RNA-sequencing data by discretization of expression profiles. Nucleic Acids Research, 2020, 48, 1730-1747.	6.5	8
1094	Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer. Asian Journal of Urology, 2020, 7, 203-218.	0.5	33
1095	The conflicting role of E2F1 in prostate cancer: A matter of cell context or interpretational flexibility?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188336.	3.3	35
1096	The value of endothelin receptor type B promoter methylation as a biomarker for the risk assessment and diagnosis of prostate cancer: A meta-analysis. Pathology Research and Practice, 2020, 216, 152796.	1.0	2
1097	LRP11 activates \hat{I}^2 -catenin to induce PD-L1 expression in prostate cancer. Journal of Drug Targeting, 2020, 28, 508-515.	2.1	18
1098	Improving radio-chemotherapy efficacy of prostate cancer by co-deliverying docetaxel and dbait with biodegradable nanoparticles. Artificial Cells, Nanomedicine and Biotechnology, 2020, 48, 305-314.	1.9	11
1099	R-spondin3 promotes the tumor growth of choriocarcinoma JEG-3 cells. American Journal of Physiology - Cell Physiology, 2020, 318, C664-C674.	2.1	7
1100	An Accessible and Unique Insight into Metastasis Mutational Content Through Whole-exome Sequencing of Circulating Tumor Cells in Metastatic Prostate Cancer. European Urology Oncology, 2020, 3, 498-508.	2.6	27
1101	Improving research for prostate cancer survivorship: A statement from the Survivorship Research in Prostate Cancer (SuRECaP) working group. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 83-93.	0.8	24
1102	WNT and β-Catenin in Cancer: Genes and Therapy. Annual Review of Cancer Biology, 2020, 4, 177-196.	2.3	39
1103	Identification of Therapeutic Vulnerabilities in Small-cell Neuroendocrine Prostate Cancer. Clinical Cancer Research, 2020, 26, 1667-1677.	3.2	30
1104	Aberrant activation of hepatocyte growth factor/MET signaling promotes β-catenin–mediated prostatic tumorigenesis. Journal of Biological Chemistry, 2020, 295, 631-644.	1.6	6

#	Article	IF	CITATIONS
1105	Noncanonical Wnt as a prognostic marker in prostate cancer: "you can't always get what you Wnt― Expert Review of Molecular Diagnostics, 2020, 20, 245-254.	1.5	4
1106	The Genomic and Molecular Pathology of Prostate Cancer: Clinical Implications for Diagnosis, Prognosis, and Therapy. Advances in Anatomic Pathology, 2020, 27, 11-19.	2.4	12
1107	Synthetic lethality: a step forward for personalized medicine in cancer. Drug Discovery Today, 2020, 25, 305-320.	3.2	17
1108	Systematic characterization of chromatin modifying enzymes identifies KDM3B as a critical regulator in castration resistant prostate cancer. Oncogene, 2020, 39, 2187-2201.	2.6	28
1109	Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncology, The, 2020, 21, 162-174.	5.1	450
1110	Identification of Hypermutation and Defective Mismatch Repair in ctDNA from Metastatic Prostate Cancer. Clinical Cancer Research, 2020, 26, 1114-1125.	3.2	57
1111	SOX2 has dual functions as a regulator in the progression of neuroendocrine prostate cancer. Laboratory Investigation, 2020, 100, 570-582.	1.7	21
1112	Germline polymorphisms associated with impaired survival outcomes and somatic tumor alterations in advanced prostate cancer. Prostate Cancer and Prostatic Diseases, 2020, 23, 316-323.	2.0	6
1113	Dickkopf-1 Can Lead to Immune Evasion in Metastatic Castration-Resistant Prostate Cancer. JCO Precision Oncology, 2020, 4, 1167-1179.	1.5	28
1116	Development and prevalence of castration-resistant prostate cancer subtypes. Neoplasia, 2020, 22, 566-575.	2.3	65
1117	Genomic Profiling Identified ERCC2 E606Q Mutation in Helicase Domain Respond to Platinum-Based Neoadjuvant Therapy in Urothelial Bladder Cancer. Frontiers in Oncology, 2020, 10, 1643.	1.3	4
1118	The Androgen Receptor in Prostate Cancer: Effect of Structure, Ligands and Spliced Variants on Therapy. Biomedicines, 2020, 8, 422.	1.4	40
1119	ARe we there yet? Understanding androgen receptor signaling in breast cancer. Npj Breast Cancer, 2020, 6, 47.	2.3	57
1120	Combination Strategies to Improve Targeted Radionuclide Therapy. Journal of Nuclear Medicine, 2020, 61, 1544-1552.	2.8	42
1121	Identification of a distinct luminal subgroup diagnosing and stratifying early stage prostate cancer by tissue-based single-cell RNA sequencing. Molecular Cancer, 2020, 19, 147.	7.9	50
1122	Genetic biomarkers to guide poly(ADPâ€ribose) polymeraseÂinhibitor precision treatment of prostate cancer. Pharmacogenomics, 2020, 21, 1101-1115.	0.6	0
1123	Poly(ADP-Ribose) Polymerase Inhibitors in Prostate Cancer: Molecular Mechanisms, and Preclinical and Clinical Data. Targeted Oncology, 2020, 15, 709-722.	1.7	17
1124	Precision Oncology for Metastatic Prostate Cancer: Translation into Practice. European Urology, 2020, 78, 771-774.	0.9	3

#	ARTICLE	IF	CITATIONS
1125	Computational methods-guided design of modulators targeting protein-protein interactions (PPIs). European Journal of Medicinal Chemistry, 2020, 207, 112764.	2.6	26
1126	The DNA damaging revolution. Critical Reviews in Oncology/Hematology, 2020, 156, 103117.	2.0	9
1127	PIK Carefully, AKT Accordingly: Towards Precision Medicine in Prostate Cancer. European Urology, 2020, 78, 845-846.	0.9	1
1128	Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nature Genetics, 2020, 52, 790-799.	9.4	174
1129	TIP5 primes prostate luminal cells for the oncogenic transformation mediated by <i>PTEN</i> loss. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3637-3647.	3.3	17
1130	Genomic and Clinicopathologic Characterization of <i> ATM </i> - deficient Prostate Cancer. Clinical Cancer Research, 2020, 26, 4869-4881.	3.2	18
1131	The DNA methylation landscape of advanced prostate cancer. Nature Genetics, 2020, 52, 778-789.	9.4	198
1132	Mechanisms of Androgen Receptor Agonist- and Antagonist-Mediated Cellular Senescence in Prostate Cancer. Cancers, 2020, 12, 1833.	1.7	35
1133	NCL Inhibition Exerts Antineoplastic Effects against Prostate Cancer Cells by Modulating Oncogenic MicroRNAs. Cancers, 2020, 12, 1861.	1.7	6
1134	Prostate cancer biology & genomics. Translational Andrology and Urology, 2020, 9, 1481-1491.	0.6	4
1135	Hereditary Predisposition to Prostate Cancer: From Genetics to Clinical Implications. International Journal of Molecular Sciences, 2020, 21, 5036.	1.8	38
1136	Phenotypic plasticity and lineage switching in prostate cancer. , 2020, , 591-615.		3
1137	MEIS1 down-regulation by MYC mediates prostate cancer development through elevated HOXB13 expression and AR activity. Oncogene, 2020, 39, 5663-5674.	2.6	16
1138	Genomic Profiling of Prostate Cancers from Men with African and European Ancestry. Clinical Cancer Research, 2020, 26, 4651-4660.	3.2	68
1139	Accelerating precision medicine in metastatic prostate cancer. Nature Cancer, 2020, 1, 1041-1053.	5.7	45
1140	Clinical Actionability of the Genomic Landscape of Metastatic Castration Resistant Prostate Cancer. Cells, 2020, 9, 2494.	1.8	13
1141	Prostate cancer, new treatment advances — Immunotherapy. Actas Urológicas Españolas (English) Tj ETQq0	0 0 rgBT /	Overlock 10 ⁻
1142	Case Report: Co-Existence of BRCA2 and PALB2 Germline Mutations in Familial Prostate Cancer With Solitary Lung Metastasis. Frontiers in Oncology, 2020, 10, 564694.	1.3	6

#	Article	IF	Citations
1143	Cell Plasticity-Related Phenotypes and Taxanes Resistance in Castration-Resistant Prostate Cancer. Frontiers in Oncology, 2020, 10, 594023.	1.3	7
1144	Therapeutic Potential of PARP Inhibitors in the Treatment of Metastatic Castration-Resistant Prostate Cancers, 2020, 12, 3467.	1.7	13
1145	Identification of transcription factor co-regulators that drive prostate cancer progression. Scientific Reports, 2020, 10, 20332.	1.6	19
1146	Recent Scientific Developments in Metastatic Prostate Cancer. Cancers, 2020, 12, 3280.	1.7	1
1147	Cellular growth factors as prospective therapeutic targets for combination therapy in androgen independent prostate cancer (AIPC). Life Sciences, 2020, 259, 118208.	2.0	6
1148	The emerging role of PARP inhibitors in prostate cancer. Expert Review of Anticancer Therapy, 2020, 20, 715-726.	1.1	12
1149	Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Advanced Drug Delivery Reviews, 2020, 159, 245-293.	6.6	316
1150	The Movember Prostate Cancer Landscape Analysis: an assessment of unmet research needs. Nature Reviews Urology, 2020, 17, 499-512.	1.9	15
1151	Copy Number Loss of 17q22 Is Associated with Enzalutamide Resistance and Poor Prognosis in Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2020, 26, 4616-4624.	3.2	10
1152	Genomic Profiles of De Novo High- and Low-Volume Metastatic Prostate Cancer: Results From a 2-Stage Feasibility and Prevalence Study in the STAMPEDE Trial. JCO Precision Oncology, 2020, 4, 882-897.	1.5	22
1153	Multiplex Digital PCR to Detect Amplifications of Specific Androgen Receptor Loci in Cell-Free DNA for Prognosis of Metastatic Castration-Resistant Prostate Cancer. Cancers, 2020, 12, 2139.	1.7	8
1154	Prognostic significance of p16 expression in highâ€grade prostate adenocarcinoma. Pathology International, 2020, 70, 743-751.	0.6	1
1155	Genomic Analysis of Localized High-Risk Prostate Cancer Circulating Tumor Cells at the Single-Cell Level. Cells, 2020, 9, 1863.	1.8	18
1156	Assessment of STAT5 as a potential therapy target in enzalutamide-resistant prostate cancer. PLoS ONE, 2020, 15, e0237248.	1.1	11
1157	Biomarkers of response to immune checkpoint inhibitors for metastatic castration resistant prostate cancer: looking for the needle in the haystack. Annals of Translational Medicine, 2020, 8, 894-894.	0.7	0
1158	<p>Novel Therapeutic Strategies for CDK4/6 Inhibitors in Metastatic Castrate-Resistant Prostate Cancer</p> . OncoTargets and Therapy, 2020, Volume 13, 10499-10513.	1.0	16
1159	Targetable gene fusions and aberrations in genitourinary oncology. Nature Reviews Urology, 2020, 17, 613-625.	1.9	35
1160	Clinical Characterization of Mismatch Repair Gene-Deficient Metastatic Castration-Resistant Prostate Cancer. Frontiers in Oncology, 2020, 10, 533282.	1.3	5

#	Article	IF	CITATIONS
1161	Transcriptional repression of SIRT3 potentiates mitochondrial aconitase activation to drive aggressive prostate cancer to the bone. Cancer Research, 2021, 81, canres.1708.2020.	0.4	24
1162	PIK3CG Is a Potential Therapeutic Target in Androgen Receptor–Indifferent Metastatic Prostate Cancer. American Journal of Pathology, 2020, 190, 2194-2202.	1.9	9
1163	A copy number gain on 18q present in primary prostate tumors is associated with metastatic outcome. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 932.e1-932.e7.	0.8	1
1164	Is There Any Role for 18F-Fluciclovine PET/CT in the Presence of Undetectable PSA in Prostate Cancer Patients After Definitive Treatment?. Clinical Nuclear Medicine, 2020, 45, 672-678.	0.7	9
1165	Impact of H19 Polymorphisms on Prostate Cancer Clinicopathologic Characteristics. Diagnostics, 2020, 10, 656.	1.3	8
1166	Potential biomarkers and risk assessment models to enhance the tumor-node-metastasis (TNM) staging classification of urologic cancers. Expert Review of Molecular Diagnostics, 2020, 20, 921-932.	1.5	2
1167	Aggressive prostate cancer phenotype and genome-wide association studies: where are we now?. Pharmacogenomics, 2020, 21, 487-503.	0.6	4
1168	Omics Derived Biomarkers and Novel Drug Targets for Improved Intervention in Advanced Prostate Cancer. Diagnostics, 2020, 10, 658.	1.3	7
1169	Genetic testing for the clinician in prostate cancer. Expert Review of Molecular Diagnostics, 2020, 20, 933-946.	1.5	4
1170	BRCA Mutations in Prostate Cancer: Prognostic and Predictive Implications. Journal of Oncology, 2020, 2020, 1-7.	0.6	58
1171	<p>PARP Inhibitors in Metastatic Prostate Cancer: Evidence to Date</p> . Cancer Management and Research, 2020, Volume 12, 8105-8114.	0.9	58
1172	Inferring clonal composition from multiple tumor biopsies. Npj Systems Biology and Applications, 2020, 6, 27.	1.4	5
1173	Genetic alterations in the 3q26.31-32 locus confer an aggressive prostate cancer phenotype. Communications Biology, 2020, 3, 440.	2.0	4
1174	Exploiting defects in homologous recombination repair for metastatic, castration-resistant prostate cancer. Cancer Biology and Therapy, 2020, 21, 884-887.	1.5	2
1175	Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer. Nature Genetics, 2020, 52, 1011-1017.	9.4	78
1176	Is There a Role for Immunotherapy in Prostate Cancer?. Cells, 2020, 9, 2051.	1.8	65
1177	A fourâ€gene signature associated with clinical features can better predict prognosis in prostate cancer. Cancer Medicine, 2020, 9, 8202-8215.	1.3	8
1178	Dynamics of the cell-free DNA methylome of metastatic prostate cancer during androgen-targeting treatment. Epigenomics, 2020, 12, 1317-1332.	1.0	15

#	Article	IF	CITATIONS
1179	Targeting Oligometastasis with Stereotactic Ablative Radiation Therapy or Surgery in Metastatic Hormone-sensitive Prostate Cancer: A Systematic Review of Prospective Clinical Trials. European Urology Oncology, 2020, 3, 582-593.	2.6	32
1180	Aberrant activation of super enhancer and choline metabolism drive antiandrogen therapy resistance in prostate cancer. Oncogene, 2020, 39, 6556-6571.	2.6	29
1181	ACK1â€"AR and ARâ€"HOXB13 signaling axes: epigenetic regulation of lethal prostate cancers. NAR Cancer, 2020, 2, zcaa018.	1.6	22
1182	AKR1C3 mediates panâ€AR antagonist resistance in castrationâ€resistant prostate cancer. Prostate, 2020, 80, 1223-1232.	1.2	3
1183	Fundamentals of liquid biopsies in metastatic prostate cancer: from characterization to stratification. Current Opinion in Oncology, 2020, 32, 527-534.	1.1	5
1185	When and How to Use PARP Inhibitors in Prostate Cancer: A Systematic Review of the Literature with an Update on On-Going Trials. European Urology Oncology, 2020, 3, 594-611.	2.6	63
1186	Histone methyltransferase DOT1L coordinates AR and MYC stability in prostate cancer. Nature Communications, 2020, 11, 4153.	5.8	62
1187	Targeting defective DNA repair in prostate cancer. Current Opinion in Oncology, 2020, 32, 503-509.	1.1	4
1188	Artificial Intelligence to Decode Cancer Mechanism: Beyond Patient Stratification for Precision Oncology. Frontiers in Pharmacology, 2020, 11, 1177.	1.6	34
1189	A Multi-Analyte Approach for Improved Sensitivity of Liquid Biopsies in Prostate Cancer. Cancers, 2020, 12, 2247.	1.7	18
1190	<p>Metastatic Castration-Resistant Prostate Cancer with Neuroendocrine Transformation and BRCA 1 Germ-Line Mutation: A Case Report and Literature Review</p> . OncoTargets and Therapy, 2020, Volume 13, 8049-8054.	1.0	8
1191	Application of Anti-Inflammatory Agents in Prostate Cancer. Journal of Clinical Medicine, 2020, 9, 2680.	1.0	12
1192	Non-epigenetic induction of HEXIM1 by DNMT1 inhibitors and functional relevance. Scientific Reports, 2020, 10, 21015.	1.6	2
1193	Neuroendocrine and Aggressive-Variant Prostate Cancer. Cancers, 2020, 12, 3792.	1.7	42
1194	Prior PSMA PET-CT Imaging and Hounsfield Unit Impact on Tumor Yield and Success of Molecular Analyses from Bone Biopsies in Metastatic Prostate Cancer. Cancers, 2020, 12, 3756.	1.7	4
1195	Mutation Spectra of the MRN (MRE11, RAD50, NBS1/NBN) Break Sensor in Cancer Cells. Cancers, 2020, 12, 3794.	1.7	10
1196	Convergent network effects along the axis of gene expression during prostate cancer progression. Genome Biology, 2020, 21, 302.	3.8	17
1197	Calcium cytotoxicity sensitizes prostate cancer cells to standard-of-care treatments for locally advanced tumors. Cell Death and Disease, 2020, 11, 1039.	2.7	20

#	Article	IF	CITATIONS
1198	Involvement of the MEN1 Gene in Hormone-Related Cancers: Clues from Molecular Studies, Mouse Models, and Patient Investigations. Endocrines, 2020, 1, 58-81.	0.4	2
1199	Clinical implications of genomic evaluations for prostate cancer risk stratification, screening, and treatment: a narrative review. Prostate International, 2020, 8, 99-106.	1.2	16
1200	Targeting DNA Damage Response in Prostate and Breast Cancer. International Journal of Molecular Sciences, 2020, 21, 8273.	1.8	50
1201	Expression and Prognostic Values of the Roof Plate-Specific Spondin Family in Bladder Cancer. DNA and Cell Biology, 2020, 39, 1072-1089.	0.9	6
1202	Therapeutic targeting of the DNA damage response in prostate cancer. Current Opinion in Oncology, 2020, 32, 216-222.	1.1	11
1203	Single-Cell Circulating Tumor Cell Analysis Reveals Genomic Instability as a Distinctive Feature of Aggressive Prostate Cancer. Clinical Cancer Research, 2020, 26, 4143-4153.	3.2	50
1204	Molecular and Clinical Relevance of ZBTB38 Expression Levels in Prostate Cancer. Cancers, 2020, 12, 1106.	1.7	9
1205	Oncogenic Genomic Alterations, Clinical Phenotypes, and Outcomes in Metastatic Castration-Sensitive Prostate Cancer. Clinical Cancer Research, 2020, 26, 3230-3238.	3.2	112
1206	Chromatin Regulator CHD1 Remodels the Immunosuppressive Tumor Microenvironment in PTEN-Deficient Prostate Cancer. Cancer Discovery, 2020, 10, 1374-1387.	7.7	60
1207	Challenges, applications and future directions of precision medicine in prostate cancer – the role of organoids and patientâ€derived xenografts. BJU International, 2020, 126, 65-72.	1.3	9
1208	Somatic Tissue Engineering in Mouse Models Reveals an Actionable Role for WNT Pathway Alterations in Prostate Cancer Metastasis. Cancer Discovery, 2020, 10, 1038-1057.	7.7	37
1209	Sequential Ras/MAPK and PI3K/AKT/mTOR pathways recruitment drives basal extrusion in the prostate-like gland of Drosophila. Nature Communications, 2020, 11, 2300.	5.8	15
1210	Ribonucleotide reductase small subunit M2 is a master driver of aggressive prostate cancer. Molecular Oncology, 2020, 14, 1881-1897.	2.1	22
1211	ALDH1A3 serves as a predictor for castration resistance in prostate cancer patients. BMC Cancer, 2020, 20, 387.	1.1	11
1212	Immune Checkpoint Blockade for Prostate Cancer: Niche Role or Next Breakthrough?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, e89-e106.	1.8	17
1213	The impact of TP53BP1 and MLH1 on metastatic capability in cases of locally advanced prostate cancer and their usefulness in clinical practice. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 600.e17-600.e26.	0.8	0
1214	Moving beyond PARP Inhibition in ATM-Deficient Prostate Cancer. Cancer Research, 2020, 80, 2085-2086.	0.4	3
1215	Emerging Subtypes and New Treatments for Castration-Resistant Prostate Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, e319-e332.	1.8	3

#	Article	IF	CITATIONS
1216	Battling the two-headed dragon of prostate cancer targeted therapy. Molecular and Cellular Oncology, 2020, 7, 1745037.	0.3	1
1217	The association between androgen receptor splice variant 7 status and prognosis of metastatic castrationâ€resistant prostate cancer: A systematic review and meta†analysis. Andrologia, 2020, 52, e13642.	1.0	2
1218	Targeting DNA Repair to Drive Immune Responses: It's Time to Reconsider the Strategy for Clinical Translation. Clinical Cancer Research, 2020, 26, 2452-2456.	3.2	10
1219	Effects of estrogen receptor signaling on prostate cancer carcinogenesis. Translational Research, 2020, 222, 56-66.	2.2	7
1220	Dietary Tomato or Lycopene Do Not Reduce Castration-Resistant Prostate Cancer Progression in a Murine Model. Journal of Nutrition, 2020, 150, 1808-1817.	1.3	11
1221	Mismatch repair deficiency in metastatic prostate cancer: Response to PD-1 blockade and standard therapies. PLoS ONE, 2020, 15, e0233260.	1.1	63
1222	Phase 2 Study of Seviteronel (INO-464) in Patients With Metastatic Castration-Resistant Prostate Cancer After Enzalutamide Treatment. Clinical Genitourinary Cancer, 2020, 18, 258-267.e1.	0.9	11
1223	The role of the histone H3 variant CENPA in prostate cancer. Journal of Biological Chemistry, 2020, 295, 8537-8549.	1.6	43
1224	Poly(ADP-ribose) polymerase inhibitors in prostate and urothelial cancer. Current Opinion in Urology, 2020, 30, 519-526.	0.9	15
1225	CUDCâ€907, a novel dual PI3K and HDAC inhibitor, in prostate cancer: Antitumour activity and molecular mechanism of action. Journal of Cellular and Molecular Medicine, 2020, 24, 7239-7253.	1.6	35
1226	Therapeutic Potential of Combining PARP Inhibitor and Immunotherapy in Solid Tumors. Frontiers in Oncology, 2020, 10, 570.	1.3	127
1227	Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers. I. Molecular Biomarkers in Prostate Cancer. American Journal of Surgical Pathology, 2020, 44, e15-e29.	2.1	40
1228	Alternative splicing regulation by the androgen receptor in prostate cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2020, 202, 105710.	1.2	8
1229	Immune-checkpoint inhibitors and metastatic prostate cancer therapy: Learning by making mistakes. Cancer Treatment Reviews, 2020, 88, 102057.	3.4	28
1230	Impact of tumor heterogeneity and tissue sampling for genetic mutation testing: a systematic review and post hoc analysis. Journal of Clinical Epidemiology, 2020, 126, 45-55.	2.4	6
1231	Prostate carcinogenesis: inflammatory storms. Nature Reviews Cancer, 2020, 20, 455-469.	12.8	114
1232	PARP inhibitors in prostate cancer: time to narrow patient selection?. Expert Review of Anticancer Therapy, 2020, 20, 523-526.	1.1	4
1233	Androgen receptor-induced integrin $\hat{l}\pm6\hat{l}^21$ and Bnip3 promote survival and resistance to PI3K inhibitors in castration-resistant prostate cancer. Oncogene, 2020, 39, 5390-5404.	2.6	22

#	Article	IF	CITATIONS
1234	A Systematic Review and Meta-Analysis on the Predictive Value of Cell-Free DNA–Based Androgen Receptor Copy Number Gain in Patients With Castration-Resistant Prostate Cancer. JCO Precision Oncology, 2020, 4, 714-729.	1.5	18
1235	Microstructure-based techniques for single-cell manipulation and analysis. TrAC - Trends in Analytical Chemistry, 2020, 129, 115940.	5.8	23
1236	DNA Damage Repair Deficiency in Prostate Cancer. Trends in Cancer, 2020, 6, 974-984.	3.8	25
1237	KLF5 inhibits STAT3 activity and tumor metastasis in prostate cancer by suppressing IGF1 transcription cooperatively with HDAC1. Cell Death and Disease, 2020, 11, 466.	2.7	31
1238	Clinical Applications of Molecular Biomarkers in Prostate Cancer. Cancers, 2020, 12, 1550.	1.7	21
1239	RGS2 is prognostic for development of castration resistance and cancerâ€specific survival in castrationâ€resistant prostate cancer. Prostate, 2020, 80, 799-810.	1.2	7
1240	Propagation of human prostate tissue from induced pluripotent stem cells. Stem Cells Translational Medicine, 2020, 9, 734-745.	1.6	24
1241	Cellular rewiring in lethal prostate cancer: the architect of drug resistance. Nature Reviews Urology, 2020, 17, 292-307.	1.9	59
1242	Polyclonal BRCA2 mutations following carboplatin treatment confer resistance to the PARP inhibitor rucaparib in a patient with mCRPC: a case report. BMC Cancer, 2020, 20, 215.	1.1	30
1243	Prognostic Value of Germline DNA Repair Gene Mutations in De Novo Metastatic and Castration-Sensitive Prostate Cancer. Oncologist, 2020, 25, e1042-e1050.	1.9	17
1244	Intratumoral heterogeneity and genetic characteristics of prostate cancer. International Journal of Cancer, 2020, 146, 3369-3378.	2.3	29
1245	SLFN11 Expression in Advanced Prostate Cancer and Response to Platinum-based Chemotherapy. Molecular Cancer Therapeutics, 2020, 19, 1157-1164.	1.9	44
1246	Plasma cell-free DNA-based predictors of response to abiraterone acetate/prednisone and prognostic factors in metastatic castration-resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2020, 23, 705-713.	2.0	17
1247	FHIR Genomics: enabling standardization for precision medicine use cases. Npj Genomic Medicine, 2020, 5, 13.	1.7	32
1248	Wnt Signaling Drives Prostate Cancer Bone Metastatic Tropism and Invasion. Translational Oncology, 2020, 13, 100747.	1.7	36
1249	A genomic and epigenomic atlas of prostate cancer in Asian populations. Nature, 2020, 580, 93-99.	13.7	183
1250	Curcumin: a phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacological Research, 2020, 156, 104765.	3.1	51
1251	Development of Prostate Cancer Organoid Culture Models in Basic Medicine and Translational Research. Cancers, 2020, 12, 777.	1.7	37

#	Article	IF	CITATIONS
1252	Integrative proteomics of prostate cancer. Current Opinion in Endocrine and Metabolic Research, 2020, 10, 43-49.	0.6	0
1253	Dual-mTOR Inhibitor Rapalink-1 Reduces Prostate Cancer Patient-Derived Xenograft Growth and Alters Tumor Heterogeneity. Frontiers in Oncology, 2020, 10, 1012.	1.3	24
1254	Chemerin Reactivates PTEN and Suppresses PD-L1 in Tumor Cells via Modulation of a Novel CMKLR1-mediated Signaling Cascade. Clinical Cancer Research, 2020, 26, 5019-5035.	3.2	61
1255	<p>ELL2 Is Required for the Growth and Survival of AR-Negative Prostate Cancer Cells</p> . Cancer Management and Research, 2020, Volume 12, 4411-4427.	0.9	6
1256	Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 2020, 31, 1119-1134.	0.6	485
1257	Androgen receptor variants: RNA-based mechanisms and therapeutic targets. Human Molecular Genetics, 2020, 29, R19-R26.	1.4	14
1258	Impact of DNA damage repair defects on response to radium-223 and overall survival in metastatic castration-resistant prostate cancer. European Journal of Cancer, 2020, 136, 16-24.	1.3	41
1259	Imaging Fibroblast Activation Protein Alpha Improves Diagnosis of Metastatic Prostate Cancer with Positron Emission Tomography. Clinical Cancer Research, 2020, 26, 4882-4891.	3.2	32
1260	Decoding the evolutionary response to prostate cancer therapy by plasma genome sequencing. Genome Biology, 2020, 21, 162.	3.8	14
1261	The rapidly evolving treatment landscape of advanced prostate, bladder, and renal cell carcinomas. Cancer Treatment and Research Communications, 2020, 24, 100190.	0.7	0
1262	Sex differences in SARS-CoV-2 infection rates and the potential link to prostate cancer. Communications Biology, 2020, 3, 374.	2.0	112
1263	Gene fusion characterisation of rare aggressive prostate cancer variants—adenosquamous carcinoma, pleomorphic giantâ€cell carcinoma, and sarcomatoid carcinoma: an analysis of 19 cases. Histopathology, 2020, 77, 890-899.	1.6	15
1264	Update on Circulating Tumor Cells in Genitourinary Tumors with Focus on Prostate Cancer. Cells, 2020, 9, 1495.	1.8	8
1265	Clinical and genomic insights into circulating tumor DNA-based alterations across the spectrum of metastatic hormone-sensitive and castrate-resistant prostate cancer. EBioMedicine, 2020, 54, 102728.	2.7	65
1266	The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. International Journal of Molecular Sciences, 2020, 21, 4507.	1.8	289
1267	Dynamics of Cellular Plasticity in Prostate Cancer Progression. Frontiers in Molecular Biosciences, 2020, 7, 130.	1.6	22
1268	Combined TP53 and RB1 Loss Promotes Prostate Cancer Resistance to a Spectrum of Therapeutics and Confers Vulnerability to Replication Stress. Cell Reports, 2020, 31, 107669.	2.9	167
1269	SETD2 Restricts Prostate Cancer Metastasis by Integrating EZH2 and AMPK Signaling Pathways. Cancer Cell, 2020, 38, 350-365.e7.	7.7	113

#	Article	IF	CITATIONS
1270	Association of SPOP Mutations with Outcomes in Men with De Novo Metastatic Castration-sensitive Prostate Cancer. European Urology, 2020, 78, 652-656.	0.9	64
1271	Engineering Prostate Cancer from Induced Pluripotent Stem Cells—New Opportunities to Develop Preclinical Tools in Prostate and Prostate Cancer Studies. International Journal of Molecular Sciences, 2020, 21, 905.	1.8	15
1273	Polypoidal giant cancer cells in metastatic castration-resistant prostate cancer: observations from the Michigan Legacy Tissue Program. Medical Oncology, 2020, 37, 16.	1.2	13
1274	Epigenetic modulations and lineage plasticity in advanced prostate cancer. Annals of Oncology, 2020, 31, 470-479.	0.6	103
1275	Therapeutic opportunities for PLK1 inhibitors: Spotlight on BRCA1-deficiency and triple negative breast cancers. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2020, 821, 111693.	0.4	16
1276	The prognostic impact of tumour NSD2 expression in advanced prostate cancer. Biomarkers, 2020, 25, 268-273.	0.9	6
1277	Identification of Novel Prognosis and Prediction Markers in Advanced Prostate Cancer Tissues Based on Quantitative Proteomics. Cancer Genomics and Proteomics, 2020, 17, 195-208.	1.0	21
1278	Integrative comparison of the genomic and transcriptomic landscape between prostate cancer patients of predominantly African or European genetic ancestry. PLoS Genetics, 2020, 16, e1008641.	1.5	78
1279	Regulation of androgen receptor variants in prostate cancer. Asian Journal of Urology, 2020, 7, 251-257.	0.5	19
1280	A phase I dose-escalation study of enzalutamide in combination with theÂAKT inhibitor AZD5363 (capivasertib) in patients with metastatic castration-resistant prostate cancer. Annals of Oncology, 2020, 31, 619-625.	0.6	54
1281	DNA-PK, Nuclear mTOR, and the Androgen Pathway in Prostate Cancer. Trends in Cancer, 2020, 6, 337-347.	3.8	20
1282	Copy number alterations are associated with metastatic-lethal progression in prostate cancer. Prostate Cancer and Prostatic Diseases, 2020, 23, 494-506.	2.0	12
1283	Pathway-guided analysis identifies Myc-dependent alternative pre-mRNA splicing in aggressive prostate cancers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5269-5279.	3.3	44
1284	Androgen receptor with short polyglutamine tract preferably enhances Wnt/β-catenin-mediated prostatic tumorigenesis. Oncogene, 2020, 39, 3276-3291.	2.6	9
1285	<p>IncRNA ZFAS1 Is Involved in the Proliferation, Invasion and Metastasis of Prostate Cancer Cells Through Competitively Binding to miR-135a-5p</p> . Cancer Management and Research, 2020, Volume 12, 1135-1149.	0.9	23
1286	Mutational and transcriptomic landscapes of a rare human prostate basal cell carcinoma. Prostate, 2020, 80, 508-517.	1.2	12
1287	Novel patient-derived 3D culture models to guide clinical decision-making in prostate cancer. Current Opinion in Endocrine and Metabolic Research, 2020, 10, 7-15.	0.6	6
1288	<i>CDKN1B</i> Deletions are Associated with Metastasis in African American Men with Clinically Localized, Surgically Treated Prostate Cancer. Clinical Cancer Research, 2020, 26, 2595-2602.	3.2	16

#	Article	IF	CITATIONS
1289	A Phase I Trial of IGF-1R Inhibitor Cixutumumab and mTOR Inhibitor Temsirolimus in Metastatic Castration-resistant Prostate Cancer. Clinical Genitourinary Cancer, 2020, 18, 171-178.e2.	0.9	25
1290	Emerging treatments for metastatic castration-resistant prostate cancer: Immunotherapy, PARP inhibitors, and PSMA-targeted approaches. Cancer Treatment and Research Communications, 2020, 23, 100164.	0.7	22
1291	Genetic Testing in Prostate Cancer. Current Oncology Reports, 2020, 22, 5.	1.8	25
1292	Circulating cell-free DNA: Translating prostate cancer genomics into clinical care. Molecular Aspects of Medicine, 2020, 72, 100837.	2.7	6
1293	Ras-Mediated Activation of NF-κB and DNA Damage Response in Carcinogenesis. Cancer Investigation, 2020, 38, 185-208.	0.6	16
1294	Molecular profiling for precision cancer therapies. Genome Medicine, 2020, 12, 8.	3.6	447
1295	Comprehensive Analysis of <i>AR</i> Alterations in Circulating Tumor DNA from Patients with Advanced Prostate Cancer. Oncologist, 2020, 25, 327-333.	1.9	27
1296	MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer. Nature Communications, 2020, 11, 338.	5.8	87
1297	Aggressive prostate cancer with somatic loss of the homologous recombination repair gene FANCA: a case report. Diagnostic Pathology, 2020, 15, 5.	0.9	7
1298	A Novel Prostate Cell Type-Specific Gene Signature to Interrogate Prostate Tumor Differentiation Status and Monitor Therapeutic Response. Cancers, 2020, 12, 176.	1.7	9
1299	Biomarkers of response to advanced prostate cancer therapy. Expert Review of Molecular Diagnostics, 2020, 20, 195-205.	1.5	12
1300	AR-V7 Protein Expression in Circulating Tumour Cells Is Not Predictive of Treatment Response in mCRPC. Urologia Internationalis, 2020, 104, 253-262.	0.6	4
1301	DNA hypermethylation associated with upregulated gene expression in prostate cancer demonstrates the diversity of epigenetic regulation. BMC Medical Genomics, 2020, 13, 6.	0.7	81
1302	Amrubicin for Patients With Platinum-refractory Small-cell Prostate Cancer: Two Case Reports. Clinical Genitourinary Cancer, 2020, 18, e324-e329.	0.9	4
1303	Noncoding mutations target cis-regulatory elements of the FOXA1 plexus in prostate cancer. Nature Communications, 2020, 11, 441.	5.8	51
1304	Olaparib for Metastatic Castration-Resistant Prostate Cancer. New England Journal of Medicine, 2020, 382, 2091-2102.	13.9	1,327
1305	Intron retention is a hallmark and spliceosome represents a therapeutic vulnerability in aggressive prostate cancer. Nature Communications, 2020, 11, 2089.	5.8	83
1306	Loss of Ceacam1 promotes prostate cancer progression in Pten haploinsufficient male mice. Metabolism: Clinical and Experimental, 2020, 107, 154215.	1.5	5

#	Article	IF	CITATIONS
1307	BRCA1 and homologous recombination: implications from mouse embryonic development. Cell and Bioscience, 2020, 10, 49.	2.1	24
1308	A panâ€cancer integrative pathway analysis of multiâ€omics data. Quantitative Biology, 2020, 8, 130-142.	0.3	3
1309	Principles of bioreactor design for tissue engineering. , 2020, , 179-203.		4
1310	Loss of CHD1 Promotes Heterogeneous Mechanisms of Resistance to AR-Targeted Therapy via Chromatin Dysregulation. Cancer Cell, 2020, 37, 584-598.e11.	7.7	96
1311	Trop2 is a driver of metastatic prostate cancer with neuroendocrine phenotype via PARP1. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2032-2042.	3.3	85
1312	The M6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation. Journal of Cancer, 2020, 11, 3588-3595.	1.2	78
1313	The genetic landscapes of urological cancers and their clinical implications in the era of highâ€throughput genome analysis. BJU International, 2020, 126, 26-54.	1.3	5
1314	Randomized phase II study of the Bruton tyrosine kinase inhibitor acalabrutinib, alone or with pembrolizumab in patients with advanced pancreatic cancer., 2020, 8, e000587.		62
1315	Pan-cancer Analysis of CDK12 Alterations Identifies a Subset of Prostate Cancers with Distinct Genomic and Clinical Characteristics. European Urology, 2020, 78, 671-679.	0.9	72
1316	<i>ATM</i> Loss Confers Greater Sensitivity to ATR Inhibition Than PARP Inhibition in Prostate Cancer. Cancer Research, 2020, 80, 2094-2100.	0.4	71
1317	Application of magnetic nanoparticles in nucleic acid detection. Journal of Nanobiotechnology, 2020, 18, 62.	4.2	157
1319	Cancer syndromes. , 2020, , 85-108.		О
1320	Intermediate Risk Prostate Cancer: Disease Heterogeneity Linked to Measurable Biological Features. Clinical Oncology, 2020, 32, 298-302.	0.6	1
1321	Genetic characterization of a unique neuroendocrine transdifferentiation prostate circulating tumor cell-derived eXplant model. Nature Communications, 2020, 11, 1884.	5.8	62
1322	Metastatic castration-resistant prostate cancer: Academic insights and perspectives through bibliometric analysis. Medicine (United States), 2020, 99, e19760.	0.4	34
1323	Shaping Chromatin States in Prostate Cancer by Pioneer Transcription Factors. Cancer Research, 2020, 80, 2427-2436.	0.4	54
1324	Diverse <i>AR</i> Gene Rearrangements Mediate Resistance to Androgen Receptor Inhibitors in Metastatic Prostate Cancer. Clinical Cancer Research, 2020, 26, 1965-1976.	3.2	55
1325	An Emerging Landscape for Canonical and Actionable Molecular Alterations in Primary and Metastatic Prostate Cancer. Molecular Cancer Therapeutics, 2020, 19, 1373-1382.	1.9	20

#	Article	IF	CITATIONS
1326	<i>CDK12</i> -Altered Prostate Cancer: Clinical Features and Therapeutic Outcomes to Standard Systemic Therapies, Poly (ADP-Ribose) Polymerase Inhibitors, and PD-1 Inhibitors. JCO Precision Oncology, 2020, 4, 370-381.	1.5	138
1327	PARP inhibitor combinations in prostate cancer. Therapeutic Advances in Medical Oncology, 2020, 12, 175883591989753.	1.4	21
1328	Molecular Trajectory of BRCA1 and BRCA2 Mutations. Frontiers in Oncology, 2020, 10, 361.	1.3	31
1329	High prevalence of DNA damage repair gene defects and TP53 alterations in men with treatment-naÃ⁻ve metastatic prostate cancer –Results from a prospective pilot study using a 37 gene panel. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 637.e17-637.e27.	0.8	12
1330	Levenshtein Distance, Sequence Comparison and Biological Database Search. IEEE Transactions on Information Theory, 2021, 67, 3287-3294.	1.5	51
1331	Hot or Not: Tumor Mutational Burden (TMB) as a Biomarker of Immunotherapy Response in Genitourinary Cancers. Urology, 2021, 147, 119-126.	0.5	19
1332	FDA Approval Summary: Rucaparib for the Treatment of Patients with Deleterious <i>BRCA</i> Metastatic Castrate-Resistant Prostate Cancer. Oncologist, 2021, 26, 139-146.	1.9	42
1333	Genomic control of metastasis. British Journal of Cancer, 2021, 124, 3-12.	2.9	27
1334	The FGF/FGFR system in the physiopathology of the prostate gland. Physiological Reviews, 2021, 101, 569-610.	13.1	37
1335	Prevalence of comprehensive <scp>DNA</scp> damage repair gene germline mutations in Chinese prostate cancer patients. International Journal of Cancer, 2021, 148, 673-681.	2.3	20
1336	Efficacy of PARP Inhibition in Metastatic Castration-resistant Prostate Cancer is Very Different with Non-BRCA DNA Repair Alterations: Reconstructing Prespecified Endpoints for Cohort B from the Phase 3 PROfound Trial of Olaparib. European Urology, 2021, 79, 442-445.	0.9	41
1337	Characterizing CDK12-Mutated Prostate Cancers. Clinical Cancer Research, 2021, 27, 566-574.	3.2	50
1338	Diagnosis and prognosis potential of four gene promoter hypermethylation in prostate cancer. Cell Biology International, 2021, 45, 117-126.	1.4	5
1339	A novel GPCR target in correlation with androgen deprivation therapy for prostate cancer drug discovery. Basic and Clinical Pharmacology and Toxicology, 2021, 128, 195-203.	1.2	4
1340	<scp>PARP</scp> inhibition in prostate cancer. Genes Chromosomes and Cancer, 2021, 60, 344-351.	1.5	2
1341	<scp>GRB10</scp> sustains <scp>AR</scp> activity by interacting with <scp>PP2A</scp> in prostate cancer cells. International Journal of Cancer, 2021, 148, 469-480.	2.3	3
1342	To treat or not to treat: is it acceptable to avoid active therapies in advanced prostate cancer today?. Expert Review of Anticancer Therapy, 2021, 21, 389-400.	1.1	2
1343	Characterization of Clonal Evolution in Microsatellite Unstable Metastatic Cancers through Multiregional Tumor Sequencing. Molecular Cancer Research, 2021, 19, 465-474.	1.5	2

#	Article	IF	Citations
1344	Interactions between androgen receptor signaling and other molecular pathways in prostate cancer progression: Current and future clinical implications. Critical Reviews in Oncology/Hematology, 2021, 157, 103185.	2.0	41
1345	TP53 alterations of hormone-na \tilde{A} -ve prostate cancer in the Chinese population. Prostate Cancer and Prostatic Diseases, 2021, 24, 482-491.	2.0	21
1346	Molecular pathology of prostate cancer: a practical approach. Pathology, 2021, 53, 36-43.	0.3	17
1347	One of These Things is Not Like the Others: Targeting ATM-mutant Prostate Cancer. European Urology, 2021, 79, 212-213.	0.9	1
1348	Mutational Landscape and Evolutionary Pattern of Liver and Brain Metastasis in Lung Adenocarcinoma. Journal of Thoracic Oncology, 2021, 16, 237-249.	0.5	36
1349	Tumor Frameshift Mutation Proportion Predicts Response to Immunotherapy in Mismatch Repair-Deficient Prostate Cancer. Oncologist, 2021, 26, e270-e278.	1.9	33
1350	Genetic ablation of <scp><i>FASN</i></scp> attenuates the invasive potential of prostate cancer driven by <scp><i>Pten</i></scp> loss. Journal of Pathology, 2021, 253, 292-303.	2.1	13
1351	The Nexus of Endocrine Signaling and Cancer: How Steroid Hormones Influence Genomic Stability. Endocrinology, 2021, 162, .	1.4	14
1352	Targeting transcriptional regulation of SARS-CoV-2 entry factors <i>ACE2</i> Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	142
1353	A detailed characterization of stepwise activation of the androgen receptor variant 7 in prostate cancer cells. Oncogene, 2021, 40, 1106-1117.	2.6	24
1354	Genomic and phenotypic heterogeneity in prostate cancer. Nature Reviews Urology, 2021, 18, 79-92.	1.9	215
1355	Identification of AR-V7 downstream genes commonly targeted by AR/AR-V7 and specifically targeted by AR-V7 in castration resistant prostate cancer. Translational Oncology, 2021, 14, 100915.	1.7	27
1356	Treatment and resistance mechanisms in castration-resistant prostate cancer: new implications for clinical decision making?. Expert Review of Anticancer Therapy, 2021, 21, 149-163.	1.1	4
1357	Genetic aberrations in DNA repair pathways: a cornerstone of precision oncology in prostate cancer. British Journal of Cancer, 2021, 124, 552-563.	2.9	63
1358	Epigenetic modifications in prostate cancer. International Journal of Urology, 2021, 28, 140-149.	0.5	47
1359	Targeting the BAF complex in advanced prostate cancer. Expert Opinion on Drug Discovery, 2021, 16, 173-181.	2.5	5
1360	Immortalization of human primary prostate epithelial cells via CRISPR inactivation of the CDKN2A locus and expression of telomerase. Prostate Cancer and Prostatic Diseases, 2021, 24, 233-243.	2.0	8
1361	PARP Inhibitors and Prostate Cancer: To Infinity and Beyond (i>BRCA / li>. Oncologist, 2021, 26, e115-e129.	1.9	51

#	Article	IF	CITATIONS
1363	Selective targeting of the androgen receptor-DNA binding domain by the novel antiandrogen SBF-1 and inhibition of the growth of prostate cancer cells. Investigational New Drugs, 2021, 39, 442-457.	1.2	6
1364	N6-methyladenosine RNA methylation regulators contribute to the progression of prostate cancer. Journal of Cancer, 2021, 12, 682-692.	1.2	30
1365	Phosphatase and tensin homolog deleted in chromosome 10., 2021,, 63-70.		0
1366	New Prognostic Biomarkers in Metastatic Castration-Resistant Prostate Cancer. Cells, 2021, 10, 193.	1.8	26
1367	Targeting the p300/CBP Axis in Lethal Prostate Cancer. Cancer Discovery, 2021, 11, 1118-1137.	7.7	124
1368	Androgen Receptors in the Pathology of Disease. , 2021, , 411-461.		O
1369	Early-onset metastatic and clinically advanced prostate cancer is a distinct clinical and molecular entity characterized by increased TMPRSS2–ERG fusions. Prostate Cancer and Prostatic Diseases, 2021, 24, 558-566.	2.0	9
1370	Metabolic reprogramming as an emerging mechanism of resistance to endocrine therapies in prostate cancer., 2021, 4, 143-162.		12
1371	A marrow-minded look at immune checkpoint blockade resistance in metastatic castration resistant prostate cancer. Translational Andrology and Urology, 2021, 10, 4009-4013.	0.6	0
1372	MED19 alters AR occupancy and gene expression in prostate cancer cells, driving MAOA expression and growth under low androgen. PLoS Genetics, 2021, 17, e1008540.	1.5	13
1373	Perspectives in immunotherapy: meeting report from the "Immunotherapy Bridge―(December 4th–5th,) 1	¯j Ę ŢQq0 0	0 ₃ rgBT /Over
1374	Genomic Profiling of Prostate Cancer: An Updated Review. World Journal of Men?s Health, 2022, 40, 368.	1.7	19
1375	Emerging role of circulating tumor cells in immunotherapy. Theranostics, 2021, 11, 8057-8075.	4.6	19
1376	In Vivo Assessment of Metastatic Cell Potential in Prostate Cancer. Methods in Molecular Biology, 2021, 2294, 253-267.	0.4	2
1377	Post-transcriptional Gene Regulation by MicroRNA-194 Promotes Neuroendocrine Transdifferentiation in Prostate Cancer. Cell Reports, 2021, 34, 108585.	2.9	33
1378	Current management of metastatic castration-sensitive prostate cancer. Cancer Treatment and Research Communications, 2021, 28, 100384.	0.7	7
1379	Benefits and pitfalls: Epigenetic modulators in prostate cancer intervention. Current Research in Chemical Biology, 2021, 1, 100006.	1.4	5
1380	PARP Inhibitors in Prostate Cancer. Anticancer Research, 2021, 41, 551-556.	0.5	15

#	Article	IF	CITATIONS
1381	Large remodeling of the Myc-induced cell surface proteome in B cells and prostate cells creates new opportunities for immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	8
1382	Current Status of Castration-Resistant Prostate Cancer Drug Therapy. International Journal of Surgery Oncology, 2021, 6, 41-49.	0.2	3
1383	Androgen metabolism in castration-resistant prostate cancer. , 2021, , 339-368.		0
1384	Finding the optimal treatment sequence in metastatic castration-resistant prostate cancerâ€"a narrative review. Translational Andrology and Urology, 2021, 10, 3931-3945.	0.6	3
1385	Refining Immuno-Oncology Approaches in Metastatic Prostate Cancer: Transcending Current Limitations. Current Treatment Options in Oncology, 2021, 22, 13.	1.3	12
1386	Correlation of integrated ERG/PTEN assessment with biochemical recurrence in prostate cancer. Cancer Treatment and Research Communications, 2021, 29, 100451.	0.7	4
1387	Clinical implications of genomic alterations in metastatic prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 310-322.	2.0	12
1388	The Mutational Landscape of Metastatic Castration-sensitive Prostate Cancer: The Spectrum Theory Revisited. European Urology, 2021, 80, 632-640.	0.9	61
1390	Cost-effectiveness analysis of cabazitaxel for metastatic castration resistant prostate cancer after docetaxel and androgen-signaling-targeted inhibitor resistance. BMC Cancer, 2021, 21, 35.	1.1	7
1391	Landscape of Cyclin Pathway Genomic Alterations Across 5,356 Prostate Cancers: Implications for Targeted Therapeutics. Oncologist, 2021, 26, e715-e718.	1.9	5
1392	SEOM clinical guidelines for the treatment of advanced prostate cancer (2020). Clinical and Translational Oncology, 2021, 23, 969-979.	1.2	18
1393	Data of relative mRNA and protein abundances of androgen receptor splice variants in castration-resistant prostate cancer. Data in Brief, 2021, 34, 106774.	0.5	2
1394	JMJD6 Is a Druggable Oxygenase That Regulates AR-V7 Expression in Prostate Cancer. Cancer Research, 2022, 81, 1087-1100.	0.4	23
1395	Nivolumab plus ipilimumab, with or without enzalutamide, in ARâ€V7â€expressing metastatic castrationâ€resistant prostate cancer: A phaseâ€2 nonrandomized clinical trial. Prostate, 2021, 81, 326-338.	1.2	35
1396	Plasma cells are enriched in localized prostate cancer in Black men and are associated with improved outcomes. Nature Communications, 2021, 12, 935.	5.8	56
1397	Antitumor Activity of NLG207 (Formerly CRLX101) in Combination with Enzalutamide in Preclinical Prostate Cancer Models. Molecular Cancer Therapeutics, 2021, 20, 915-924.	1.9	13
1398	Dual functions of SPOP and ERG dictate androgen therapy responses in prostate cancer. Nature Communications, 2021, 12, 734.	5.8	26
1399	Overcoming oncogene addiction in breast and prostate cancers: a comparative mechanistic overview. Endocrine-Related Cancer, 2021, 28, R31-R46.	1.6	3

#	ARTICLE	IF	CITATIONS
1400	Porcine model elucidates function of p53 isoform in carcinogenesis and reveals novel circTP53 RNA. Oncogene, 2021, 40, 1896-1908.	2.6	17
1401	Susceptibility-Associated Genetic Variation in <i>NEDD9</i> Contributes to Prostate Cancer Initiation and Progression. Cancer Research, 2021, 81, 3766-3776.	0.4	4
1402	A comparative study of PCS and PAM50 prostate cancer classification schemes. Prostate Cancer and Prostatic Diseases, 2021, 24, 733-742.	2.0	14
1403	Clinical considerations for the management of androgen indifferent prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 623-637.	2.0	30
1404	Molecular medicine tumor board: whole-genome sequencing to inform on personalized medicine for a man with advanced prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 786-793.	2.0	4
1405	Moving Beyond Reflexive and Prophylactic Gynecologic Surgery. Mayo Clinic Proceedings, 2021, 96, 291-294.	1.4	16
1406	Circulating tumor cell profiling for precision oncology. Molecular Oncology, 2021, 15, 1622-1646.	2.1	33
1407	Bayesian predictive model to assess BRCA2 mutational status according to clinical history: Early onset, metastatic phenotype or family history of breast/ovary cancer. Prostate, 2021, 81, 318-325.	1.2	7
1408	Genomic Analysis of Circulating Tumor DNA in 3,334 Patients with Advanced Prostate Cancer Identifies Targetable BRCA Alterations and AR Resistance Mechanisms. Clinical Cancer Research, 2021, 27, 3094-3105.	3.2	101
1409	Prostate cancer. Nature Reviews Disease Primers, 2021, 7, 9.	18.1	434
1410	Response prediction biomarkers and drug combinations of PARP inhibitors in prostate cancer. Acta Pharmacologica Sinica, 2021, 42, 1970-1980.	2.8	4
1411	Patient-derived xenografts and organoids model therapy response in prostate cancer. Nature Communications, 2021, 12, 1117.	5.8	76
1412	Neuroendocrine prostate cancer has distinctive, non-prostatic HOX code that is represented by the loss of HOXB13 expression. Scientific Reports, 2021, 11, 2778.	1.6	12
1413	Identification of Germline Genetic Variants that Increase Prostate Cancer Risk and Influence Development of Aggressive Disease. Cancers, 2021, 13, 760.	1.7	22
1414	NCCN Guidelines Insights: Prostate Cancer, Version 1.2021. Journal of the National Comprehensive Cancer Network: JNCCN, 2021, 19, 134-143.	2.3	299
1415	Cerebral Cavernous Malformation 1 Determines YAP/TAZ Signaling-Dependent Metastatic Hallmarks of Prostate Cancer Cells. Cancers, 2021, 13, 1125.	1.7	3
1416	Differential treatment outcomes in <i>BRCA1/2</i> â€, <i>CDK12</i> â€, and <i>ATM</i> â€mutated metastatic castrationâ€resistant prostate cancer. Cancer, 2021, 127, 1965-1973.	2.0	15
1417	Distinct DNA methylation patterns associated with treatment resistance in metastatic castration resistant prostate cancer. Scientific Reports, 2021, 11, 6630.	1.6	8

#	Article	IF	CITATIONS
1418	Niraparib with androgen receptor-axis-targeted therapy in patients with metastatic castration-resistant prostate cancer: safety and pharmacokinetic results from a phase 1b study (BEDIVERE). Cancer Chemotherapy and Pharmacology, 2021, 88, 25-37.	1.1	19
1419	Cyclin-Dependent Kinases (CDK) and Their Role in Diseases Development–Review. International Journal of Molecular Sciences, 2021, 22, 2935.	1.8	65
1420	Inter- and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling. Nature Communications, 2021, 12, 1426.	5.8	176
1421	MiRNAs and radical prostatectomy: Current data, bioinformatic analysis and utility as predictors of tumour relapse. Andrology, 2021, 9, 1092-1107.	1.9	2
1422	RUNX2 as a promising therapeutic target for malignant tumors. Cancer Management and Research, 2021, Volume 13, 2539-2548.	0.9	16
1423	Resistance to second-generation androgen receptor antagonists in prostate cancer. Nature Reviews Urology, 2021, 18, 209-226.	1.9	59
1424	Transcriptional mediators of treatment resistance in lethal prostate cancer. Nature Medicine, 2021, 27, 426-433.	15.2	90
1425	USP11 suppresses CHK1 activation by deubiquitinating CLASPIN. Genome Instability & Disease, 2021, 2, 184-194.	0.5	3
1426	Circulating Tumor Cell Genomic Evolution and Hormone Therapy Outcomes in Men with Metastatic Castration-Resistant Prostate Cancer. Molecular Cancer Research, 2021, 19, 1040-1050.	1.5	17
1427	Signaling Pathways in Cancer: Therapeutic Targets, Combinatorial Treatments, and New Developments. Cells, 2021, 10, 659.	1.8	77
1428	Effects of Medical Treatment of Prostate Cancer on Bone Health. Trends in Endocrinology and Metabolism, 2021, 32, 135-158.	3.1	21
1429	A Randomized Phase II Study of Androgen Deprivation Therapy with or without Palbociclib in RB-positive Metastatic Hormone-Sensitive Prostate Cancer. Clinical Cancer Research, 2021, 27, 3017-3027.	3.2	19
1430	Cancer Cell Intrinsic and Immunologic Phenotypes Determine Clinical Outcomes in Basal-like Breast Cancer. Clinical Cancer Research, 2021, 27, 3079-3093.	3.2	8
1431	Discovery of JNJ-63576253, a Next-Generation Androgen Receptor Antagonist Active Against Wild-Type and Clinically Relevant Ligand Binding Domain Mutations in Metastatic Castration-Resistant Prostate Cancer. Molecular Cancer Therapeutics, 2021, 20, 763-774.	1.9	2
1432	Metastatic Spread in Prostate Cancer Patients Influencing Radiotherapy Response. Frontiers in Oncology, 2020, 10, 627379.	1.3	24
1433	Androgen receptor enhancer amplification in matched patientâ€derived xenografts of primary and castrateâ€resistant prostate cancer. Journal of Pathology, 2021, 254, 121-134.	2.1	12
1434	Epidemiology and genomics of prostate cancer in Asian men. Nature Reviews Urology, 2021, 18, 282-301.	1.9	111
1435	Carbon ion irradiation-induced DNA damage evokes cell cycle arrest and apoptosis via the pRb/E2F1/c-Myc signaling pathway in p53-deficient prostate cancer PC-3 cells. Nuclear Science and Techniques/Hewuli, 2021 , 32 , 1 .	1.3	4

#	Article	IF	CITATIONS
1436	Nascent Prostate Cancer Heterogeneity Drives Evolution and Resistance to Intense Hormonal Therapy. European Urology, 2021, 80, 746-757.	0.9	50
1437	Epigenetic and transcriptional analysis reveals a core transcriptional program conserved in clonal prostate cancer metastases. Molecular Oncology, 2021, 15, 1942-1955.	2.1	10
1438	Organismal roles for the PI3K \hat{l}_{\pm} and \hat{l}^2 isoforms: their specificity, redundancy or cooperation is context-dependent. Biochemical Journal, 2021, 478, 1199-1225.	1.7	12
1439	Prostate cancer and PARP inhibitors: progress and challenges. Journal of Hematology and Oncology, 2021, 14, 51.	6.9	68
1440	Integrative Analysis of Methylation and Copy Number Variations of Prostate Adenocarcinoma Based on Weighted Gene Co-expression Network Analysis. Frontiers in Oncology, 2021, 11, 647253.	1.3	7
1442	Control of Breast Cancer Pathogenesis by Histone Methylation and the Hairless Histone Demethylase. Endocrinology, 2021, 162, .	1.4	7
1445	Germline Genetics of Prostate Cancer: Prevalence of Risk Variants and Clinical Implications for Disease Management. Cancers, 2021, 13, 2154.	1.7	13
1446	Application of metastatic biopsy based on "When, Who, Why, Where, How (4W1H)―principle in diagnosis and treatment of metastatic castration-resistance prostate cancer. Translational Andrology and Urology, 2021, 10, 1723-1733.	0.6	2
1447	Succinate Anaplerosis Has an Onco-Driving Potential in Prostate Cancer Cells. Cancers, 2021, 13, 1727.	1.7	13
1448	Comprehensive Analysis of Multiple Cohort Datasets Deciphers the Utility of Germline Single-Nucleotide Polymorphisms in Prostate Cancer Diagnosis. Cancer Prevention Research, 2021, 14, 741-752.	0.7	4
1449	Increased transcription and high translation efficiency lead to accumulation of androgen receptor splice variant after androgen deprivation therapy. Cancer Letters, 2021, 504, 37-48.	3.2	17
1450	Genomic Testing in Patients with Metastatic Castration-resistant Prostate Cancer: A Pragmatic Guide for Clinicians. European Urology, 2021, 79, 519-529.	0.9	30
1451	Construction and Analysis of mRNA and IncRNA Regulatory Networks Reveal the Key Genes Associated with Prostate Cancer Related Fatigue During Localized Radiation Therapy. Current Bioinformatics, 2021, 16, 230-239.	0.7	5
1452	Phase II Multicenter Study of Enzalutamide in Metastatic Castration-Resistant Prostate Cancer to Identify Mechanisms Driving Resistance. Clinical Cancer Research, 2021, 27, 3610-3619.	3.2	17
1453	Association between BRCA2 alterations and intraductal and cribriform histologies in prostate cancer. European Journal of Cancer, 2021, 147, 74-83.	1.3	42
1454	Undesirable Status of Prostate Cancer Cells after Intensive Inhibition of AR Signaling: Post-AR Era of CRPC Treatment. Biomedicines, 2021, 9, 414.	1.4	12
1455	A long-term survivor of metastatic neuroendocrine prostate cancer treated with multimodal therapy: genetic consideration from next-generation sequencing. International Cancer Conference Journal, 2021, 10, 174-180.	0.2	2
1456	Extracellular vesicles in prostate cancer: a narrative review. Translational Andrology and Urology, 2021, 10, 1890-1907.	0.6	17

#	Article	IF	CITATIONS
1457	Small-Molecule Inhibitors Targeting the Canonical WNT Signaling Pathway for the Treatment of Cancer. Journal of Medicinal Chemistry, 2021, 64, 4257-4288.	2.9	23
1458	Circulating Tumor Cell Chromosomal Instability and Neuroendocrine Phenotype by Immunomorphology and Poor Outcomes in Men with mCRPC Treated with Abiraterone or Enzalutamide. Clinical Cancer Research, 2021, 27, 4077-4088.	3.2	21
1459	Discovery of 2-(3-(3-Carbamoylpiperidin-1-yl)phenoxy)acetic Acid Derivatives as Novel Small-Molecule Inhibitors of the β-Catenin/B-Cell Lymphoma 9 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2021, 64, 5886-5904.	2.9	12
1460	Changing the History of Prostate Cancer with New Targeted Therapies. Biomedicines, 2021, 9, 392.	1.4	16
1461	Resistance to the Androgen Receptor Centred Therapies: Biology and Management. SN Comprehensive Clinical Medicine, 2021, 3, 1593-1609.	0.3	0
1462	Plasma Cell–Free DNA Profiling of PTEN-PI3K-AKT Pathway Aberrations in Metastatic Castration-Resistant Prostate Cancer. JCO Precision Oncology, 2021, 5, 622-637.	1.5	18
1463	Clinical significance of mutations in DNA repair genes in patients with metastatic prostate cancer. Onkourologiya, 2021, 17, 82-88.	0.1	0
1464	Biopolymer and Biomaterial Conjugated Iron Oxide Nanomaterials as Prostate Cancer Theranostic Agents: A Comprehensive Review. Symmetry, 2021, 13, 974.	1.1	5
1465	AR Splicing Variants and Resistance to AR Targeting Agents. Cancers, 2021, 13, 2563.	1.7	27
1466	Recent Advances in the Treatment of Metastatic Prostate Cancer. Advances in Oncology, 2021, 1, 263-272.	0.1	1
1467	Biomarkers Associating with PARP Inhibitor Benefit in Prostate Cancer in the TOPARP-B Trial. Cancer Discovery, 2021, 11, 2812-2827.	7.7	78
1468	Inflammation-Induced Tumorigenesis and Metastasis. International Journal of Molecular Sciences, 2021, 22, 5421.	1.8	88
1470	Ductal variant prostate carcinoma is associated with a significantly shorter metastasis-free survival. European Journal of Cancer, 2021, 148, 440-450.	1.3	13
1472	Aberrations of DNA repair pathways in prostate cancer: a cornerstone of precision oncology. Expert Opinion on Therapeutic Targets, 2021, 25, 329-333.	1.5	39
1473	Copy number signature analysis tool and its application in prostate cancer reveals distinct mutational processes and clinical outcomes. PLoS Genetics, 2021, 17, e1009557.	1.5	65
1474	Circulating Tumor DNA Testing for Homology Recombination Repair Genes in Prostate Cancer: From the Lab to the Clinic. International Journal of Molecular Sciences, 2021, 22, 5522.	1.8	12
1478	A Case-Based Clinical Approach to the Investigation, Management and Screening of Families with BRCA2 Related Prostate Cancer. The Application of Clinical Genetics, 2021, Volume 14, 255-266.	1.4	0
1480	Radiogenomics in prostate cancer evaluation. Current Opinion in Urology, 2021, 31, 424-429.	0.9	6

#	Article	IF	CITATIONS
1481	A Rare Variant in ERF (rs144812092) Predisposes to Prostate and Bladder Cancers in an Extended Pedigree. Cancers, 2021, 13, 2399.	1.7	4
1482	Discovery of primary prostate cancer biomarkers using cross cancer learning. Scientific Reports, 2021, 11, 10433.	1.6	19
1483	Anaplastic Features in Advanced Prostate Cancer With and Without DNA Damage Repair Mutations. Clinical Genitourinary Cancer, 2021, 19, e352-e359.	0.9	0
1484	More Than Meets the Eye: Scientific Rationale behind Molecular Imaging and Therapeutic Targeting of Prostate-Specific Membrane Antigen (PSMA) in Metastatic Prostate Cancer and Beyond. Cancers, 2021, 13, 2244.	1.7	12
1485	Dissecting the Hormonal Signaling Landscape in Castration-Resistant Prostate Cancer. Cells, 2021, 10, 1133.	1.8	13
1487	The Role of PARP Inhibitors in the Treatment of Prostate Cancer: Recent Advances in Clinical Trials. Biomolecules, 2021, 11, 722.	1.8	9
1488	MicroRNAs as Epigenetic Determinants of Treatment Response and Potential Therapeutic Targets in Prostate Cancer. Cancers, 2021, 13, 2380.	1.7	12
1489	Protein kinase inhibitors for the treatment of prostate cancer. Expert Opinion on Pharmacotherapy, 2021, 22, 1889-1899.	0.9	8
1490	Androgen receptor variant shows heterogeneous expression in prostate cancer according to differentiation stage. Communications Biology, 2021, 4, 785.	2.0	3
1492	Subtype-specific collaborative transcription factor networks are promoted by OCT4 in the progression of prostate cancer. Nature Communications, 2021, 12, 3766.	5.8	20
1493	Evaluation of Darolutamide (ODM201) Efficiency on Androgen Receptor Mutants Reported to Date in Prostate Cancer Patients. Cancers, 2021, 13, 2939.	1.7	12
1494	Nuclear Export Inhibitor KPT-8602 Synergizes with PARP Inhibitors in Escalating Apoptosis in Castration Resistant Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 6676.	1.8	5
1496	Genomic alterations impact cell cycle-related genes during prostate cancer progression. Endocrine-Related Cancer, 2021, 28, L5-L10.	1.6	1
1497	ATR Inhibition Induces CDK1–SPOP Signaling and Enhances Anti–PD-L1 Cytotoxicity in Prostate Cancer. Clinical Cancer Research, 2021, 27, 4898-4909.	3.2	66
1498	CD38 in Advanced Prostate Cancers. European Urology, 2021, 79, 736-746.	0.9	21
1499	An update on our ability to monitor castration-resistant prostate cancer dynamics with cell-free DNA. Expert Review of Molecular Diagnostics, 2021, 21, 631-640.	1.5	4
1500	Blood Biomarker Landscape in Patients with High-risk Nonmetastatic Castration-Resistant Prostate Cancer Treated with Apalutamide and Androgen-Deprivation Therapy as They Progress to Metastatic Disease. Clinical Cancer Research, 2021, 27, 4539-4548.	3.2	6
1502	Novel insights in cell cycle dysregulation during prostate cancer progression. Endocrine-Related Cancer, 2021, 28, R141-R155.	1.6	16

#	Article	IF	CITATIONS
1503	Prevalence and clinical impact of tumor BRCA1 and BRCA2 mutations in patients presenting with localized or metastatic hormone-sensitive prostate cancer. Prostate Cancer and Prostatic Diseases, 2022, 25, 199-207.	2.0	3
1505	Targeting androgen receptor (AR) with antiandrogen Enzalutamide increases prostate cancer cell invasion yet decreases bladder cancer cell invasion via differentially altering the AR/circRNA-ARC1/miR-125b-2-3p or miR-4736/PPARγ/MMP-9 signals. Cell Death and Differentiation, 2021, 28, 2145-2159.	5.0	32
1506	Exploring miRNA Signature and Other Potential Biomarkers for Oligometastatic Prostate Cancer Characterization: The Biological Challenge behind Clinical Practice. A Narrative Review. Cancers, 2021, 13, 3278.	1.7	6
1507	Epigenetic Editing in Prostate Cancer: Challenges and Opportunities. Epigenetics, 2022, 17, 564-588.	1.3	4
1508	Spirocyclic Thiohydantoin Antagonists of F877L and Wild-Type Androgen Receptor for Castration-Resistant Prostate Cancer. ACS Medicinal Chemistry Letters, 2021, 12, 1245-1252.	1.3	3
1509	PARP and CDK4/6 Inhibitor Combination Therapy Induces Apoptosis and Suppresses Neuroendocrine Differentiation in Prostate Cancer. Molecular Cancer Therapeutics, 2021, 20, 1680-1691.	1.9	22
1510	Structural model for formation of packages of clinical and diagnostic tests to organize personalized medical care for patients with malignant tumors of the prostate gland. Rossiiskii Meditsinskii Zhurnal: Organ Ministerstva Zdravookhraneniia RSFSR, 2021, 27, 45-55.	0.1	0
1511	A novel DNA methylation signature is associated with androgen receptor activity and patient prognosis in bone metastatic prostate cancer. Clinical Epigenetics, 2021, 13, 133.	1.8	15
1512	Melatonin inhibits lipid accumulation to repress prostate cancer progression by mediating the epigenetic modification of CES1. Clinical and Translational Medicine, 2021, 11, e449.	1.7	22
1513	Androgen Receptor Signaling in Prostate Cancer Genomic Subtypes. Cancers, 2021, 13, 3272.	1.7	14
1514	TUBB3 is associated with PTEN, neuroendocrine differentiation, and castration resistance in prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2021, 39, 368.e1-368.e9.	0.8	6
1515	Prostate cancer cell heterogeneity and plasticity: Insights from studies of genetically-engineered mouse models. Seminars in Cancer Biology, 2022, 82, 60-67.	4.3	6
1516	A Systematic Review of Prostate Cancer Heterogeneity: Understanding the Clonal Ancestry of Multifocal Disease. European Urology Oncology, 2021, 4, 358-369.	2.6	16
1517	BET Bromodomain Inhibition Blocks an AR-Repressed, E2F1-Activated Treatment-Emergent Neuroendocrine Prostate Cancer Lineage Plasticity Program. Clinical Cancer Research, 2021, 27, 4923-4936.	3.2	33
1518	Untangling the PROfound Trial for Advanced Prostate Cancer: Is There Really a Role for Olaparib?. European Urology, 2021, 79, 710-712.	0.9	9
1519	CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers, 2021, 13, 2872.	1.7	45
1521	177Lu-PSMA-RLT of metastatic castration-resistant prostate cancer: limitations and improvements. Annals of Nuclear Medicine, 2021, 35, 861-870.	1.2	2
1522	Olaparib for the treatment of metastatic prostate cancer. Future Oncology, 2021, 17, 2413-2429.	1.1	2

#	Article	IF	CITATIONS
1523	Recent Advances in Epigenetic Biomarkers and Epigenetic Targeting in Prostate Cancer. European Urology, 2021, 80, 71-81.	0.9	35
1524	Identification of Somatic Gene Signatures in Circulating <scp>Cell-Free DNA</scp> Associated with Disease Progression in Metastatic Prostate Cancer by a Novel Machine Learning Platform. Oncologist, 2021, 26, 751-760.	1.9	9
1525	Analysis of the Prognostic Significance of Circulating Tumor DNA in Metastatic Castrate Resistant Prostate Cancer. Clinical Genitourinary Cancer, 2021, 19, 564.e1-564.e10.	0.9	4
1526	Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nature Reviews Clinical Oncology, 2021, 18, 773-791.	12.5	198
1527	Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential 150): a multicentre, randomised, double-blind, phase 3 trial. Lancet, The, 2021, 398, 131-142.	6.3	167
1528	Mutations in TP53 or DNA damage repair genes define poor prognostic subgroups in primary prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2022, 40, 8.e11-8.e18.	0.8	8
1530	A computational and structural analysis of germline and somatic variants affecting the DDR mechanism, and their impact on human diseases. Scientific Reports, 2021, 11, 14268.	1.6	4
1531	MicroRNA-1205 Regulation of FRYL in Prostate Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 647485.	1.8	6
1532	An integrated functional and clinical genomics approach reveals genes driving aggressive metastatic prostate cancer. Nature Communications, 2021, 12, 4601.	5.8	18
1533	Overview of Olaparib as a treatment option for metastatic castration-resistant prostate cancer. Expert Opinion on Pharmacotherapy, 2021, 22, 1955-1959.	0.9	0
1534	A Narrative Review of Implementing Precision Oncology in Metastatic Castration-Resistant Prostate Cancer in Emerging Countries. Oncology and Therapy, 2021, 9, 311-327.	1.0	1
1535	CRISPR screening identifies CDK12 as a conservative vulnerability of prostate cancer. Cell Death and Disease, 2021, 12, 740.	2.7	19
1536	Chromatin and Epigenetic Dysregulation of Prostate Cancer Development, Progression, and Therapeutic Response. Cancers, 2021, 13, 3325.	1.7	14
1537	Local Therapies in Oligometastatic and Oligoprogressive Prostate Cancer. Seminars in Radiation Oncology, 2021, 31, 242-249.	1.0	7
1538	Impact of DNA damage repair defects on response to PSMA radioligand therapy in metastatic castration-resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2022, 25, 71-78.	2.0	19
1539	Overexpression of claspin promotes docetaxel resistance and is associated with prostateâ€specific antigen recurrence in prostate cancer. Cancer Medicine, 2021, 10, 5574-5588.	1.3	11
1540	HOXB5 Overexpression Is Associated with Neuroendocrine Differentiation and Poor Prognosis in Prostate Cancer. Biomedicines, 2021, 9, 893.	1.4	2
1542	Multi-gene mutation metastatic castrate-resistant prostate cancer. BMJ Case Reports, 2021, 14, e243124.	0.2	1

#	Article	IF	CITATIONS
1543	Independent prognostic impact of plasma NCOA2 alterations in metastatic castrationâ€resistant prostate cancer. Prostate, 2021, 81, 992-1001.	1.2	2
1544	Antibody Therapy Targeting Cancer-Specific Cell Surface Antigen AGR2., 0, , .		0
1545	Prostate Cancer in 2021: Novelties in Prognostic and Therapeutic Biomarker Evaluation. Cancers, 2021, 13, 3471.	1.7	9
1546	Differential impact of tumor suppressor gene (TP53, PTEN, RB1) alterations and treatment outcomes in metastatic, hormone-sensitive prostate cancer. Prostate Cancer and Prostatic Diseases, 2022, 25, 479-483.	2.0	18
1548	Mechanism-Centric Approaches for Biomarker Detection and Precision Therapeutics in Cancer. Frontiers in Genetics, 2021, 12, 687813.	1,1	10
1549	Investigation of Anti-Tumor Effects of an MLK1 Inhibitor in Prostate and Pancreatic Cancers. Biology, 2021, 10, 742.	1.3	4
1550	Genetic Contribution to Metastatic Prostate Cancer. Urologic Clinics of North America, 2021, 48, 349-363.	0.8	0
1551	Contrasting genomic profiles from metastatic sites, primary tumors, and liquid biopsies of advanced prostate cancer. Cancer, 2021, 127, 4557-4564.	2.0	5
1552	Immune-Related Genes Are Prognostic Markers for Prostate Cancer Recurrence. Frontiers in Genetics, 2021, 12, 639642.	1.1	11
1553	Elucidating Prostate Cancer Behaviour During Treatment via Low-pass Whole-genome Sequencing of Circulating Tumour DNA. European Urology, 2021, 80, 243-253.	0.9	28
1554	Phenotypic characterization of two novel cell line models of castrationâ€resistant prostate cancer. Prostate, 2021, 81, 1159-1171.	1.2	9
1555	The tumor microenvironment and immune responses in prostate cancer patients. Endocrine-Related Cancer, 2021, 28, T95-T107.	1.6	36
1556	Radium-223 Treatment of Patients with Metastatic Castration Resistant Prostate Cancer: Biomarkers for Stratification and Response Evaluation. Cancers, 2021, 13, 4346.	1.7	15
1557	SPOP-mediated ubiquitination and degradation of PDK1 suppresses AKT kinase activity and oncogenic functions. Molecular Cancer, 2021, 20, 100.	7.9	36
1558	The MURAL collection of prostate cancer patient-derived xenografts enables discovery through preclinical models of uro-oncology. Nature Communications, 2021, 12, 5049.	5.8	33
1559	Overview of Prostate Cancer Genetic Testing. Urologic Clinics of North America, 2021, 48, 279-282.	0.8	0
1560	Rapid Progression of Metastatic Pancreatic Adenocarcinoma During <scp>Platinum-Based</scp> Therapy in a Patient Harboring a Pathogenic <i>BRCA2</i> 916-918.	1.9	1
1562	A New Old Target: Androgen Receptor Signaling and Advanced Prostate Cancer. Annual Review of Pharmacology and Toxicology, 2022, 62, 131-153.	4.2	55

#	Article	IF	CITATIONS
1563	Defining the therapeutic selective dependencies for distinct subtypes of PI3K pathway-altered prostate cancers. Nature Communications, 2021, 12, 5053.	5.8	14
1564	Autophagy inhibition by targeting PlKfyve potentiates response to immune checkpoint blockade in prostate cancer. Nature Cancer, 2021, 2, 978-993.	5.7	52
1565	MEX3D is an oncogenic driver in prostate cancer. Prostate, 2021, 81, 1202-1213.	1.2	5
1566	Genetic Counseling for Men with Prostate Cancer. Urologic Clinics of North America, 2021, 48, 323-337.	0.8	0
1567	BAZ2Aâ€mediated repression via H3K14acâ€marked enhancers promotes prostate cancer stem cells. EMBO Reports, 2021, 22, e53014.	2.0	19
1568	Somatic Alterations Impact AR Transcriptional Activity and Efficacy of AR-Targeting Therapies in Prostate Cancers, 2021, 13, 3947.	1.7	5
1569	CX-5461 Sensitizes DNA Damage Repair–proficient Castrate-resistant Prostate Cancer to PARP Inhibition. Molecular Cancer Therapeutics, 2021, 20, 2140-2150.	1.9	9
1570	Going beyond Polycomb: EZH2 functions in prostate cancer. Oncogene, 2021, 40, 5788-5798.	2.6	40
1571	Rapid interrogation of cancer cell of origin through CRISPR editing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
1572	Real-world genetic testing patterns in metastatic castration-resistant prostate cancer. Future Oncology, 2021, 17, 2907-2921.	1.1	12
1573	Use of Circulating Tumor DNA for the Clinical Management of Metastatic Castration-Resistant Prostate Cancer: A Multicenter, Real-World Study. Journal of the National Comprehensive Cancer Network: JNCCN, 2021, 19, 905-914.	2.3	21
1574	Circulating tumour DNA reveals genetic traits of patients with intraductal carcinoma of the prostate. BJU International, 2022, 129, 345-355.	1.3	18
1575	Homologous recombination repair gene mutations in Chinese localized and locally advanced prostate cancer patients. Pathology Research and Practice, 2021, 224, 153507.	1.0	5
1576	Real-World Performance of a Comprehensive Genomic Profiling Test Optimized for Small Tumor Samples. JCO Precision Oncology, 2021, 5, 1312-1324.	1.5	15
1577	PROMISE: a real-world clinical-genomic database to address knowledge gaps in prostate cancer. Prostate Cancer and Prostatic Diseases, 2022, 25, 388-396.	2.0	15
1578	Molecular Pathology of Prostate Cancer. Surgical Pathology Clinics, 2021, 14, 387-401.	0.7	9
1579	AR gene rearrangement analysis in liquid biopsies reveals heterogeneity in lethal prostate cancer. Endocrine-Related Cancer, 2021, 28, 645-655.	1.6	5
1580	Long non-coding RNAs correlate with genomic stability in prostate cancer: A clinical outcome and survival analysis. Genomics, 2021, 113, 3141-3151.	1.3	4

#	Article	IF	CITATIONS
1581	Current and Emerging Therapies for Metastatic Castration-Resistant Prostate Cancer (mCRPC). Biomedicines, 2021, 9, 1247.	1.4	22
1582	The Interplay Between Prostate Cancer Genomics, Metabolism, and the Epigenome: Perspectives and Future Prospects. Frontiers in Oncology, 2021, 11, 704353.	1.3	8
1583	Impact of STAT Proteins in Tumor Progress and Therapy Resistance in Advanced and Metastasized Prostate Cancer. Cancers, 2021, 13, 4854.	1.7	12
1584	Chemotherapy in metastatic castration-resistant prostate cancer: Current scenario and future perspectives. Cancer Letters, 2021, 523, 162-169.	3.2	24
1585	Genome-wide crosstalk between steroid receptors in breast and prostate cancers. Endocrine-Related Cancer, 2021, 28, R231-R250.	1.6	14
1586	Clinical Impact of Detecting Low-Frequency Variants in Cell-Free DNA on Treatment of Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2021, 27, 6164-6173.	3.2	10
1587	Molecular Characterization of Prostate Cancers in the Precision Medicine Era. Cancers, 2021, 13, 4771.	1.7	10
1588	Biologically informed deep neural network for prostate cancer discovery. Nature, 2021, 598, 348-352.	13.7	158
1589	Treatment of Metastatic Castration-resistant Prostate Cancer: Are PARP Inhibitors Shifting the Paradigm?. Anticancer Research, 2021, 41, 4687-4695.	0.5	2
1590	The concurrence of DNA methylation and demethylation is associated with transcription regulation. Nature Communications, 2021, 12, 5285.	5.8	29
1591	SPOP and <i>CHD1</i> alterations in prostate cancer: Relationship with PTEN loss, tumor grade, perineural infiltration, and PSA recurrence. Prostate, 2021, 81, 1267-1277.	1.2	7
1592	Molecular Basis of Prostate Cancer and Natural Products as Potential Chemotherapeutic and Chemopreventive Agents. Frontiers in Pharmacology, 2021, 12, 738235.	1.6	13
1593	Concordance of DNA Repair Gene Mutations in Paired Primary Prostate Cancer Samples and Metastatic Tissue or Cell-Free DNA. JAMA Oncology, 2021, 7, 1378.	3.4	40
1594	Patients with Biallelic BRCA1/2 Inactivation Respond to Olaparib Treatment Across Histologic Tumor Types. Clinical Cancer Research, 2021, 27, 6106-6114.	3.2	9
1595	Optimal Sequencing and Predictive Biomarkers in Patients with Advanced Prostate Cancer. Cancers, 2021, 13, 4522.	1.7	22
1596	Prospective Evaluation of Clinical Outcomes Using a Multiplex Liquid Biopsy Targeting Diverse Resistance Mechanisms in Metastatic Prostate Cancer. Journal of Clinical Oncology, 2021, 39, 2926-2937.	0.8	36
1597	Inside prostate cancer news from the 2021 ASCO Genitourinary Cancers Symposium. Expert Review of Anticancer Therapy, 2021, 21, 1-4.	1.1	1
1598	Association between pathogenic germline mutations in BRCA2 and ATM and tumor-infiltrating lymphocytes in primary prostate cancer. Cancer Immunology, Immunotherapy, 2022, 71, 943-951.	2.0	9

#	ARTICLE	IF	CITATIONS
1599	Bipolar Androgen Therapy in the management of prostate cancer. Journal of Education, Health and Sport, 2021, 11, 484-490.	0.0	0
1600	Resveratrol-Based Nanoformulations as an Emerging Therapeutic Strategy for Cancer. Frontiers in Molecular Biosciences, 2021, 8, 649395.	1.6	34
1601	Genetic Aberrations of DNA Repair Pathways in Prostate Cancer: Translation to the Clinic. International Journal of Molecular Sciences, 2021, 22, 9783.	1.8	35
1602	Prognosis Associated With Luminal and Basal Subtypes of Metastatic Prostate Cancer. JAMA Oncology, 2021, 7, 1644.	3.4	21
1603	Transcriptional profiling of primary prostate tumor in metastatic hormone-sensitive prostate cancer and association with clinical outcomes: correlative analysis of the E3805 CHAARTED trial. Annals of Oncology, 2021, 32, 1157-1166.	0.6	43
1604	Integrating molecular profiles into clinical frameworks through the Molecular Oncology Almanac to prospectively guide precision oncology. Nature Cancer, 2021, 2, 1102-1112.	5.7	19
1605	Molecular Subtyping in the Neoadjuvant Setting in Prostate Cancer: Envisioning the Possibilities. European Urology, 2021, 80, 304-305.	0.9	0
1606	Clinicopathological characteristics of androgen receptor splicing variant 7 (AR-V7) expression in patients with castration resistant prostate cancer: A systematic review and metaâ€analysis. Translational Oncology, 2021, 14, 101145.	1.7	8
1607	Prostate cancer. Lancet, The, 2021, 398, 1075-1090.	6.3	240
1608	The Role of Somatic Mutations on the Immune Response of the Tumor Microenvironment in Prostate Cancer. International Journal of Molecular Sciences, 2021, 22, 9550.	1.8	15
1609	Adipocyte-driven unfolded protein response is a shared transcriptomic signature of metastatic prostate carcinoma cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119101.	1.9	3
1610	A protein network map of head and neck cancer reveals PIK3CA mutant drug sensitivity. Science, 2021, 374, eabf2911.	6.0	37
1611	The treatment landscape of metastatic prostate cancer. Cancer Letters, 2021, 519, 20-29.	3.2	50
1612	Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics. , 2021, 228, 107932.		44
1613	Comprehensive analysis of alternative splicing profiling reveals novel events associated with prognosis and the infiltration of immune cells in prostate cancer. Translational Andrology and Urology, 2021, 10, 3056-3068.	0.6	2
1614	A modular master regulator landscape controls cancer transcriptional identity. Cell, 2021, 184, 334-351.e20.	13.5	78
1617	Discovery of JNJ-63576253: A Clinical Stage Androgen Receptor Antagonist for F877L Mutant and Wild-Type Castration-Resistant Prostate Cancer (mCRPC). Journal of Medicinal Chemistry, 2021, 64, 909-924.	2.9	16
1618	The role of chromodomain helicase DNA binding protein 1 (CHD1) in promoting an invasive prostate cancer phenotype. Therapeutic Advances in Urology, 2021, 13, 175628722110224.	0.9	1

#	Article	IF	Citations
1619	Hormonal Therapy for Prostate Cancer. Endocrine Reviews, 2021, 42, 354-373.	8.9	136
1620	Great Strides in Precision Medicine: Personalized Oncology, Immunotherapies, and Molecular Diagnostics., 2021,, 141-417.		0
1621	Case Study: Systematic Detection and Prioritization of Gene Fusions in Cancer by RNA-Seq: A DIY Toolkit. Methods in Molecular Biology, 2020, 2079, 69-79.	0.4	3
1622	Resolution of Cellular Heterogeneity in Human Prostate Cancers: Implications for Diagnosis and Treatment. Advances in Experimental Medicine and Biology, 2019, 1164, 207-224.	0.8	7
1623	Managing Germline Findings from Molecular Testing in Precision Oncology. , 2019, , 111-128.		2
1624	Capturing Tumor Heterogeneity and Clonal Evolution by Circulating Tumor DNA Profiling. Recent Results in Cancer Research, 2020, 215, 213-230.	1.8	15
1626	Canonical and Noncanonical Androgen Metabolism and Activity. Advances in Experimental Medicine and Biology, 2019, 1210, 239-277.	0.8	8
1627	Germline and Somatic Defects in DNA Repair Pathways in Prostate Cancer. Advances in Experimental Medicine and Biology, 2019, 1210, 279-300.	0.8	7
1628	Androgen Receptor Dependence. Advances in Experimental Medicine and Biology, 2019, 1210, 333-350.	0.8	19
1629	Wnt/Beta-Catenin Signaling and Prostate Cancer Therapy Resistance. Advances in Experimental Medicine and Biology, 2019, 1210, 351-378.	0.8	55
1630	Oncogenic ETS Factors in Prostate Cancer. Advances in Experimental Medicine and Biology, 2019, 1210, 409-436.	0.8	34
1631	Neural Transcription Factors in Disease Progression. Advances in Experimental Medicine and Biology, 2019, 1210, 437-462.	0.8	2
1632	Prostate Cancer Genomic Subtypes. Advances in Experimental Medicine and Biology, 2019, 1210, 87-110.	0.8	8
1633	Current Landscape of Immunotherapy in Genitourinary Malignancies. Advances in Experimental Medicine and Biology, 2020, 1244, 107-147.	0.8	3
1634	The Clinical Genomics of Prostate Cancer. , 2017, , 97-110.		2
1635	Gleason 6 Tumors Should Still Be Labeled as Cancer. Current Clinical Urology, 2018, , 41-52.	0.0	1
1636	PI3K/Akt/mTOR/PTEN and ERK/MAPK Pathways. Molecular Pathology Library, 2018, , 367-379.	0.1	2
1637	Oxidative Stress and Castration-Resistant Prostate Cancer. , 2018, , 201-214.		2

#	Article	IF	CITATIONS
1638	Evolving Role of Immunotherapy in Metastatic Castration Refractory Prostate Cancer. Drugs, 2021, 81, 191-206.	4.9	11
1639	Cyclin D-CDK4/6 functions in cancer. Advances in Cancer Research, 2020, 148, 147-169.	1.9	109
1640	Novel Junction-specific and Quantifiable In Situ Detection of AR-V7 and its Clinical Correlates in Metastatic Castration-resistant Prostate Cancer. European Urology, 2018, 73, 727-735.	0.9	55
1641	Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. Nature Communications, 2018, 9, 2419.	5.8	374
1642	Prevalence and clinicopathological/molecular characteristics of mismatch repair protein-deficient tumours among surgically treated patients with prostate cancer in a Japanese hospital-based population. Japanese Journal of Clinical Oncology, 2021, 51, 639-645.	0.6	4
1643	Stereotactic Body Radiotherapy for Oligometastatic Prostate Cancer Recurrence. American Journal of Clinical Oncology: Cancer Clinical Trials, 2020, 43, 73-81.	0.6	17
1659	Disease swamps molecular signatures of geneticâ€environmental associations to abiotic factors in Tasmanian devil (<i>Sarcophilus harrisii</i>) populations. Evolution; International Journal of Organic Evolution, 2020, 74, 1392-1408.	1.1	18
1660	Targeting castration-resistant prostate cancer with androgen receptor antisense oligonucleotide therapy. JCI Insight, 2019, 4, .	2.3	26
1661	Multiparametric liquid biopsy analysis in metastatic prostate cancer. JCI Insight, 2019, 4, .	2.3	45
1662	Molecular determinants of response to high-dose androgen therapy in prostate cancer. JCI Insight, 2019, 4, .	2.3	17
1663	Profound MEK inhibitor response in a cutaneous melanoma harboring a GOLGA4-RAF1 fusion. Journal of Clinical Investigation, 2019, 129, 1940-1945.	3.9	37
1664	Chromatin remodeling ATPase BRG1 and PTEN are synthetic lethal in prostate cancer. Journal of Clinical Investigation, 2019, 129, 759-773.	3.9	56
1665	Supraphysiological androgens suppress prostate cancer growth through androgen receptor–mediated DNA damage. Journal of Clinical Investigation, 2019, 129, 4245-4260.	3.9	67
1666	Circulating tumor DNA profile recognizes transformation to castration-resistant neuroendocrine prostate cancer. Journal of Clinical Investigation, 2020, 130, 1653-1668.	3.9	122
1667	The landscape of RNA polymerase II–associated chromatin interactions in prostate cancer. Journal of Clinical Investigation, 2020, 130, 3987-4005.	3.9	37
1668	SOX9 drives WNT pathway activation in prostate cancer. Journal of Clinical Investigation, 2016, 126, 1745-1758.	3.9	138
1669	Notch promotes tumor metastasis in a prostate-specific Pten-null mouse model. Journal of Clinical Investigation, 2016, 126, 2626-2641.	3.9	60
1670	Androgen receptor antagonism drives cytochrome P450 17A1 inhibitor efficacy in prostate cancer. Journal of Clinical Investigation, 2017, 127, 2326-2338.	3.9	40

#	Article	IF	Citations
1671	Role of steroid receptor and coregulator mutations in hormone-dependent cancers. Journal of Clinical Investigation, 2017, 127, 1126-1135.	3.9	42
1672	AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. Journal of Clinical Investigation, 2017, 127, 1284-1302.	3.9	87
1673	Differential impact of RB status on E2F1 reprogramming in human cancer. Journal of Clinical Investigation, 2017, 128, 341-358.	3.9	83
1674	ATR inhibition controls aggressive prostate tumors deficient in Y-linked histone demethylase KDM5D. Journal of Clinical Investigation, 2018, 128, 2979-2995.	3.9	53
1675	Contribution of Inherited DNA-Repair Gene Mutations to Hormone-Sensitive and Castrate-Resistant Metastatic Prostate Cancer and Implications for Clinical Outcome. JCO Precision Oncology, 2019, 3, 1-12.	1.5	13
1676	Identification of Somatic Mutations in CLCN2 in Aldosterone-Producing Adenomas. Journal of the Endocrine Society, 2020, 4, byaa123.	0.1	27
1677	Recent advances in prostate cancer research: large-scale genomic analyses reveal novel driver mutations and DNA repair defects. F1000Research, 2018, 7, 1173.	0.8	37
1678	Advances in genetics: widening our understanding of prostate cancer. F1000Research, 2016, 5, 1512.	0.8	2
1679	The Promyelocytic Leukemia Zinc Finger Transcription Factor Is Critical for Human Endometrial Stromal Cell Decidualization. PLoS Genetics, 2016, 12, e1005937.	1.5	55
1680	Divergent Androgen Receptor and Beta-Catenin Signaling in Prostate Cancer Cells. PLoS ONE, 2015, 10, e0141589.	1.1	38
1681	Characterization of Heterogeneous Prostate Tumors in Targeted Pten Knockout Mice. PLoS ONE, 2016, 11, e0147500.	1.1	12
1682	Correction of PTEN mutations in glioblastoma cell lines via AAV-mediated gene editing. PLoS ONE, 2017, 12, e0176683.	1.1	14
1683	Personalizing Therapy for Metastatic Prostate Cancer: The Role of Solid and Liquid Tumor Biopsies. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 358-369.	1.8	8
1684	ATM deficiency promotes progression of CRPC by enhancing Warburg effect. Endocrine-Related Cancer, 2019, 26, 59-71.	1.6	19
1685	Interplay between the androgen receptor signaling axis and microRNAs in prostate cancer. Endocrine-Related Cancer, 2019, 26, R237-R257.	1.6	20
1686	Chromatin reprogramming as an adaptation mechanism in advanced prostate cancer. Endocrine-Related Cancer, 2019, 26, R211-R235.	1.6	15
1687	Persistent double strand break accumulation does not precede cell death in an Olaparib-sensitive BRCA-deficient colorectal cancer cell model. Genetics and Molecular Biology, 2020, 43, e20190070.	0.6	6
1688	Impact of germline CHEK2 mutations on biochemical relapse free survival and metastasis free survival after radical treatment for patients with prostate cancer. Onkourologiya, 2019, 14, 53-67.	0.1	5

#	Article	IF	CITATIONS
1689	The PI3K regulatory subunit gene PIK3R1 is under direct control of androgens and repressed in prostate cancer cells. Oncoscience, 2015, 2, 755-764.	0.9	23
1690	Dynein axonemal heavy chain 8 promotes androgen receptor activity and associates with prostate cancer progression. Oncotarget, 2016, 7, 49268-49280.	0.8	19
1691	Phenotypic and genetic heterogeneity of tumor tissue and circulating tumor cells in patients with metastatic castrationresistant prostate cancer: a report from the PETRUS prospective study. Oncotarget, 2016, 7, 55069-55082.	0.8	33
1692	Molecular mechanisms underlying resistance to androgen deprivation therapy in prostate cancer. Oncotarget, 2016, 7, 64447-64470.	0.8	130
1693	Characterizing and targeting <i>PDGFRA</i> alterations in pediatric high-grade glioma. Oncotarget, 2016, 7, 65696-65706.	0.8	55
1694	<i>NKAIN2</i> functions as a novel tumor suppressor in prostate cancer. Oncotarget, 2016, 7, 63793-63803.	0.8	7
1695	Mismatch repair deficiency may be common in ductal adenocarcinoma of the prostate. Oncotarget, 2016, 7, 82504-82510.	0.8	64
1696	Combination effect of therapies targeting the PI3K- and AR-signaling pathways in prostate cancer. Oncotarget, 2016, 7, 76181-76196.	0.8	18
1697	Estrogen related receptor alpha in castration-resistant prostate cancer cells promotes tumor progression in bone. Oncotarget, 2016, 7, 77071-77086.	0.8	29
1698	Amplification of MUC1 in prostate cancer metastasis and CRPC development. Oncotarget, 2016, 7, 83115-83133.	0.8	27
1699	Differential expression of miR-34b and androgen receptor pathway regulate prostate cancer aggressiveness between African-Americans and Caucasians. Oncotarget, 2017, 8, 8356-8368.	0.8	22
1700	A novel nonsense mutation in androgen receptor confers resistance to CYP17 inhibitor treatment in prostate cancer. Oncotarget, 2017, 8, 6796-6808.	0.8	8
1701	Src promotes castration-recurrent prostate cancer through androgen receptor-dependent canonical and non-canonical transcriptional signatures. Oncotarget, 2017, 8, 10324-10347.	0.8	34
1702	A new model of multi-visceral and bone metastatic prostate cancer with perivascular niche targeting by a novel endothelial specific adenoviral vector. Oncotarget, 2017, 8, 12272-12289.	0.8	9
1703	Detection fidelity of AR mutations in plasma derived cell-free DNA. Oncotarget, 2017, 8, 15651-15662.	0.8	20
1704	Upregulation of FAM84B during prostate cancer progression. Oncotarget, 2017, 8, 19218-19235.	0.8	26
1705	The combined effect of USP7 inhibitors and PARP inhibitors in hormone-sensitive and castration-resistant prostate cancer cells. Oncotarget, 2017, 8, 31815-31829.	0.8	51
1706	Lipid catabolism inhibition sensitizes prostate cancer cells to antiandrogen blockade. Oncotarget, 2017, 8, 56051-56065.	0.8	70

#	Article	IF	CITATIONS
1707	Deletion of tumor suppressors adenomatous polyposis coli and Smad4 in murine luminal epithelial cells causes invasive prostate cancer and loss of androgen receptor expression. Oncotarget, 2017, 8, 80265-80277.	0.8	7
1708	Resveratrol enhances polyubiquitination-mediated ARV7 degradation in prostate cancer cells. Oncotarget, 2017, 8, 54683-54693.	0.8	13
1709	miR-30e* is overexpressed in prostate cancer and promotes NF-κB-mediated proliferation and tumor growth. Oncotarget, 2017, 8, 67626-67638.	0.8	8
1710	PTEN loss detection in prostate cancer: comparison of PTEN immunohistochemistry and PTEN FISH in a large retrospective prostatectomy cohort. Oncotarget, 2017, 8, 65566-65576.	0.8	56
1711	Implications of PI3K/AKT inhibition on REST protein stability and neuroendocrine phenotype acquisition in prostate cancer cells. Oncotarget, 2017, 8, 84863-84876.	0.8	34
1712	Establishment of a neuroendocrine prostate cancer model driven by the RNA splicing factor SRRM4. Oncotarget, 2017, 8, 66878-66888.	0.8	21
1713	Concurrent somatic mutations in driver genes were significantly correlated with lymph node metastasis and pathological types in solid tumors. Oncotarget, 2017, 8, 68746-68757.	0.8	6
1714	Beta-catenin represses protein kinase D1 gene expression by non-canonical pathway through MYC/MAX transcription complex in prostate cancer. Oncotarget, 2017, 8, 78811-78824.	0.8	10
1715	Gambogic acid inhibits thioredoxin activity and induces ROS-mediated cell death in castration-resistant prostate cancer. Oncotarget, 2017, 8, 77181-77194.	0.8	25
1716	STAT3 and STAT5A are potential therapeutic targets in castration-resistant prostate cancer. Oncotarget, 2017, 8, 85997-86010.	0.8	32
1717	Transcriptomic features of primary prostate cancer and their prognostic relevance to castration-resistant prostate cancer. Oncotarget, 2017, 8, 114845-114855.	0.8	16
1718	Integrative molecular network analysis identifies emergent enzalutamide resistance mechanisms in prostate cancer. Oncotarget, 2017, 8, 111084-111095.	0.8	11
1719	Differential regulation of the androgen receptor by protein phosphatase regulatory subunits. Oncotarget, 2018, 9, 3922-3935.	0.8	11
1720	<i>SOX9</i> is a driver of aggressive prostate cancer by promoting invasion, cell fate and cytoskeleton alterations and epithelial to mesenchymal transition. Oncotarget, 2018, 9, 7604-7615.	0.8	29
1721	Increased HSF1 expression predicts shorter disease-specific survival of prostate cancer patients following radical prostatectomy. Oncotarget, 2018, 9, 31200-31213.	0.8	19
1722	V-ATPase-associated prorenin receptor is upregulated in prostate cancer after PTEN loss. Oncotarget, 2019, 10, 4923-4936.	0.8	12
1723	Evaluation of the genomic alterations in the androgen receptor gene during treatment with high-dose testosterone for metastatic castrate-resistant prostate cancer. Oncotarget, 2020, 11, 15-21.	0.8	9
1724	Systematic evaluation of underlying defects in DNA repair as an approach to case-only assessment of familial prostate cancer. Oncotarget, 2015, 6, 39614-39633.	0.8	13

#	Article	IF	CITATIONS
1725	MiR137is an androgen regulated repressor of an extended network of transcriptional coregulators. Oncotarget, 2015, 6, 35710-35725.	0.8	45
1726	Protein phosphatase 1 suppresses androgen receptor ubiquitylation and degradation. Oncotarget, 2016, 7, 1754-1764.	0.8	20
1727	Transcriptomic profiling of urine extracellular vesicles reveals alterations of CDH3 in prostate cancer. Oncotarget, 2016, 7, 6835-6846.	0.8	55
1728	Retrospective study testing next generation sequencing of selected cancer-associated genes in resected prostate cancer. Oncotarget, 2016, 7, 14394-14404.	0.8	23
1729	Efficacy of targeted AKT inhibition in genetically engineered mouse models of <i>PTEN</i> deficient prostate cancer. Oncotarget, 2016, 7, 15959-15976.	0.8	20
1730	The epigenetic modifier CHD5 functions as a novel tumor suppressor for renal cell carcinoma and is predominantly inactivated by promoter CpG methylation. Oncotarget, 2016, 7, 21618-21630.	0.8	26
1731	Primary versus castration-resistant prostate cancer: modeling through novel murine prostate cancer cell lines. Oncotarget, 2016, 7, 28961-28975.	0.8	40
1732	Copy number variations in urine cell free DNA as biomarkers in advanced prostate cancer. Oncotarget, 2016, 7, 35818-35831.	0.8	55
1733	A comparative assessment of clinical whole exome and transcriptome profiling across sequencing centers: implications for precision cancer medicine. Oncotarget, 2016, 7, 52888-52899.	0.8	18
1734	BET bromodomain-mediated interaction between ERG and BRD4 promotes prostate cancer cell invasion. Oncotarget, 2016, 7, 38319-38332.	0.8	43
1735	Targeting ACLY sensitizes castration-resistant prostate cancer cells to AR antagonism by impinging on an ACLY-AMPK-AR feedback mechanism. Oncotarget, 2016, 7, 43713-43730.	0.8	62
1736	Prostate cancer and the unfolded protein response. Oncotarget, 2016, 7, 54051-54066.	0.8	55
1737	Overcoming the mechanisms of primary and acquired resistance to new generation hormonal therapies in advanced prostate cancer: focus on androgen receptor independent pathways., 2020, 3, 726-741.		6
1738	Resistance to second generation antiandrogens in prostate cancer: pathways and mechanisms. , 2020, 3, 742-761.		13
1739	Restoration of FKBP51 protein promotes the progression of castration resistant prostate cancer. Annals of Translational Medicine, 2019, 7, 729-729.	0.7	13
1740	Current status of circulating tumor cell androgen receptor splice variant-7 in metastatic castration-resistant prostate cancer. Annals of Translational Medicine, 2019, 7, S375-S375.	0.7	2
1741	The potential role of curcumin in prostate cancer: the importance of optimizing pharmacokinetics in clinical studies. Translational Cancer Research, 2016, 5, S1107-S1110.	0.4	16
1742	Molecular heterogeneity of localized prostate cancer: more different than alike. Translational Cancer Research, 2017, 6, S47-S50.	0.4	19

#	Article	IF	Citations
1743	Role of artificial intelligence in integrated analysis of multi-omics and imaging data in cancer research. Translational Cancer Research, 2019, 8, E7-E10.	0.4	3
1744	Regulation of Androgen Receptor Activity by Transient Interactions of Its Transactivation Domain with General Transcription Regulators. SSRN Electronic Journal, 0, , .	0.4	1
1745	ONECUT2 Is a Targetable Master Regulator of Lethal Prostate Cancer That Suppresses the Androgen Axis. SSRN Electronic Journal, 0, , .	0.4	1
1746	Somatic Mutations and Risk-Variants Converge on Cis-Regulatory Elements to Reveal the Cancer Driver Transcription Regulators in Primary Prostate Tumors. SSRN Electronic Journal, 0, , .	0.4	2
1747	Precision Medicine Approach in Prostate Cancer. Current Pharmaceutical Design, 2020, 26, 3783-3798.	0.9	9
1748	Integrative Exome Sequencing Analysis in Castration-Resistant Prostate Cancer in Chinese Population. Current Pharmaceutical Biotechnology, 2020, 21, 140-148.	0.9	2
1749	Somatic Mutation Analyses in Studies of the Clonal Evolution and Diagnostic Targets of Prostate Cancer. Current Genomics, 2017, 18, 236-243.	0.7	5
1750	Combination Therapies Using Metformin and/or Valproic Acid in Prostate Cancer: Possible Mechanistic Interactions. Current Cancer Drug Targets, 2019, 19, 368-381.	0.8	9
1751	PARP Inhibitors as Therapeutics: Beyond Modulation of PARylation. Cancers, 2020, 12, 394.	1.7	91
1752	The Impact of Whole Genome Data on Therapeutic Decision-Making in Metastatic Prostate Cancer: A Retrospective Analysis. Cancers, 2020, 12, 1178.	1.7	10
1753	Prostate Cancer Stem-like Cells Contribute to the Development of Castration-Resistant Prostate Cancer. Cancers, 2015, 7, 2290-2308.	1.7	51
1754	SRSF6 regulates alternative splicing of genes involved in DNA damage response and DNA repair in HeLa cells. Oncology Reports, 2020, 44, 1851-1862.	1.2	13
1755	Androgen receptor and prostate cancer. AIMS Molecular Science, 2016, 3, 280-299.	0.3	22
1756	Targeted next-generation sequencing for locally advanced prostate cancer in the Korean population. Investigative and Clinical Urology, 2020, 61, 127.	1.0	8
1757	Resistance to Novel Antiandrogen Therapies in Metastatic Castration-Resistant Prostate Cancer. Clinical Medicine Insights: Oncology, 2016, 10, 1.	0.6	68
1758	Darwinian Selection in Prostate Cancer and Medical Treatment. International Journal of Clinical Medicine, 2017, 08, 353-367.	0.1	2
1759	Prostate Cancer, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network: JNCCN, 2019, 17, 479-505.	2.3	943
1760	A comprehensive analysis of coregulator recruitment, androgen receptor function and gene expression in prostate cancer. ELife, 2017, 6, .	2.8	49

#	Article	IF	CITATIONS
1761	GREB1 amplifies androgen receptor output in human prostate cancer and contributes to antiandrogen resistance. ELife, $2019, 8, .$	2.8	19
1762	MEIS-mediated suppression of human prostate cancer growth and metastasis through HOXB13-dependent regulation of proteoglycans. ELife, 2020, 9, .	2.8	33
1763	Identification of gene-phenotype connectivity associated with flavanone naringenin by functional network analysis. PeerJ, 2019, 7, e6611.	0.9	7
1764	Emergence of polyclonal BRCA2 reversions following PARP inhibitor treatment: An illustrative case report. Cancer Treatment and Research Communications, 2021, 29, 100480.	0.7	1
1765	How I faced my prostate cancer: a molecular biologist's perspective. Npj Precision Oncology, 2021, 5, 88.	2.3	1
1766	First successful case of platinumâ€based chemotherapy for neuroendocrine prostate cancer with <i>BRCA2</i> and <i>PTEN</i> alterations. IJU Case Reports, 2022, 5, 41-44.	0.1	3
1767	Combining liquid biopsy and functional imaging analysis in metastatic castrationâ€resistant prostate cancer helps predict treatment outcome. Molecular Oncology, 2022, 16, 538-548.	2.1	4
1768	The role of R-spondin proteins in cancer biology. Oncogene, 2021, 40, 6469-6478.	2.6	37
1769	Role of PI3K-AKT-mTOR Pathway as a Pro-Survival Signaling and Resistance-Mediating Mechanism to Therapy of Prostate Cancer. International Journal of Molecular Sciences, 2021, 22, 11088.	1.8	65
1770	Updates in Prostate Cancer Research and Screening in Men at Genetically Higher Risk. Current Genetic Medicine Reports, 2021, 9, 47-58.	1.9	5
1771	Androgen receptor negatively regulates mitotic checkpoint signaling to induce docetaxel resistance in castrationâ€resistant prostate cancer. Prostate, 2021, 82, 182.	1.2	4
1772	<scp>P2X4</scp> purinergic receptors offer a therapeutic target for aggressive prostate cancer. Journal of Pathology, 2022, 256, 149-163.	2.1	16
1773	Network-Based Analysis to Identify Drivers of Metastatic Prostate Cancer Using GoNetic. Cancers, 2021, 13, 5291.	1.7	2
1774	Prostate zones and cancer: lost in transition?. Nature Reviews Urology, 2022, 19, 101-115.	1.9	25
1775	Single-cell analysis reveals androgen receptor regulates the ER-to-Golgi trafficking pathway with CREB3L2 to drive prostate cancer progression. Oncogene, 2021, 40, 6479-6493.	2.6	10
1776	PIM1 phosphorylation of the androgen receptor and 14-3-3 \hat{I}_{q} regulates gene transcription in prostate cancer. Communications Biology, 2021, 4, 1221.	2.0	7
1779	Macroscopic Extramedullary Hematopoiesis Resembling Hepatic Metastases in Prostate Cancer. Journal of Cytology & Histology, 2015, 06, .	0.1	0
1782	Neuroendocrine and Small Cell Carcinomas of the Prostate: Sentinels of Lethal Evolution. , 2016, , 191-204.		0

#	Article	IF	CITATIONS
1783	Cabazitaxel for the Treatment of Prostate Cancer. , 2016, , 187-214.		0
1784	Mucinous, Signet Ring, Ductal, and Sarcomatoid Variants of Prostate Cancer., 2016,, 205-218.		0
1785	Sequencing Therapies in Metastatic Castrationâ€"Resistant Prostate Cancer. , 2016, , 215-230.		0
1786	The Emerging Role of PARP Inhibitors in the Treatment of Prostate Cancer. , 0, , .		O
1789	The Role of Androgen Receptor in Prostate Cancer. Molecular Pathology Library, 2018, , 345-365.	0.1	1
1790	Gene Fusions. Molecular Pathology Library, 2018, , 137-151.	0.1	0
1791	DNA Damage Repair. Molecular Pathology Library, 2018, , 405-417.	0.1	0
1792	Overview of Prostate Cancer Molecular Classification. Molecular Pathology Library, 2018, , 547-556.	0.1	0
1793	Applying precision medicine approach to metastatic castration-resistant prostate cancer: urgent education need on genomic oncology. , 2018, 02, .		0
1794	De moleculaire biologie van urologische tumoren. , 2018, , 197-208.		0
1795	Evaluation and Treatment for High-Risk Prostate Cancer. , 2018, , 135-156.		0
1796	Systemic Treatment of Castration-Resistant Metastatic Prostate Cancer., 2018,, 1-14.		0
1797	APOBEC Mutagenesis and Copy Number Alterations are Drivers of Proteogenomic Tumor Evolution and Heterogeneity in Metastatic Thoracic Tumors. SSRN Electronic Journal, 0, , .	0.4	1
1798	New Targeted Approach to CRPC. , 2018, , 375-385.		0
1799	Prognostic and predictive biomarkers of prostate cancer. Onkourologiya, 2018, 13, 111-121.	0.1	3
1801	Survival analysis of recurrent events on prostate cancer: facts from cancer genome., 2018, 51, 145-164.		1
1807	Risk-adapted approach to prostate cancer screening. Onkourologiya, 2018, 14, 109-121.	0.1	3
1808	Generation of Whole-Genome Sequencing Data for Comparing Primary and Castration-Resistant Prostate Cancer. Genomics and Informatics, 2018, 16, 71-74.	0.4	1

#	Article	IF	CITATIONS
1811	Molecular Pathology of Genitourinary Cancers: Translating the Cancer Genome to the \hat{A} Clinic., 2019, , 419-443.		O
1814	Unifying Next-Generation Biomarkers and Nanodiagnostic Platforms for Precision Prostate Cancer Management. Springer Theses, 2019, , 1-29.	0.0	O
1815	Genomic analysis of Korean patients with advanced prostate cancer by use of a comprehensive next-generation sequencing panel and low-coverage, whole-genome sequencing. Investigative and Clinical Urology, 2019, 60, 227.	1.0	4
1816	Current and Future Aspects of Smart Nanotheranostic Agents in Cancer Therapeutics. , 2019, , 213-227.		0
1817	Molecular mechanisms of enzalutamide resistance in prostate cancer., 2019, 2, 189-197.		2
1818	Systemic Treatment of Castration-Resistant Metastatic Prostate Cancer. , 2019, , 241-253.		0
1819	Genetic, Environmental, and Nuclear Factors Governing Genomic Rearrangements. Advances in Experimental Medicine and Biology, 2019, 1210, 57-66.	0.8	3
1822	Evolving Role of Genomics in Genitourinary Neoplasms. Acta Medica Academica, 2019, 48, 68.	0.3	2
1823	Better screened than sorry!â€"an informed panel of inherited DNA repair gene variants for prostate cancer screening and prognostication. Annals of Translational Medicine, 2019, 7, S158-S158.	0.7	0
1824	Multi-omics analysis reveals the BRCA1 mutation and mismatch repair gene signatures associated with survival, protein expression, and copy number alterations in prostate cancer. Translational Cancer Research, 2019, 8, 1279-1288.	0.4	1
1828	Expression differences between proteins responsible for DNA damage repair according to the Gleason grade as a new heterogeneity marker in prostate cancer. Archives of Medical Science, 2023, 19, 499-506.	0.4	1
1831	Comprehensive Molecular Characterization of Urological Malignancies: Literature Review of Landmark Studies. The Korean Journal of Urological Oncology, 2019, 17, 125-135.	0.1	1
1832	Genomic Testing for Advanced Prostate Cancer: Ready for Prime Time. Healthbook TIMES Oncology Hematology, 2019, , 10-17.	0.1	1
1833	Recent Advances in DNA Repair Pathway and Its Application in Personalized Care of Metastatic Castration-Resistant Prostate Cancer (mCRPC). Methods in Molecular Biology, 2020, 2204, 75-89.	0.4	2
1834	Liquid Biopsies in a Veteran Patient Population With Advanced Prostate and Lung Non-Small Cell Carcinomas: A New Paradigm and Unique Challenge in Personalized Medicine., 2020, 38, 8-14.		0
1838	Efficacy of abiraterone combined with flutamide on prostate cancer patients and its effect on serum miR-493-5p and miR-195-5p. Oncology Letters, 2020, 20, 1922-1930.	0.8	4
1840	Leveraging Veterans Health Administration Clinical and Research Resources to Accelerate Discovery and Testing in Precision Oncology., 2020, 37, S62-S67.		0
1841	The Precision Oncology Program for Cancer of the Prostate (POPCaP) Network: A Veterans Affairs/Prostate Cancer Foundation Collaboration. , 2020, 37, S48-S53.		0

#	ARTICLE	IF	Citations
1842	Immune Checkpoint Inhibitors for Genitourinary Cancers: Treatment Indications, Investigational Approaches and Biomarkers. Cancers, 2021, 13, 5415.	1.7	13
1843	Somatic driver mutation prevalence in 1844 prostate cancers identifies ZNRF3 loss as a predictor of metastatic relapse. Nature Communications, 2021, 12, 6248.	5.8	15
1844	Enhancing $\langle \sup 223 \langle \sup \rangle$ Ra Treatment Efficacy by Anti- $\langle b \rangle \hat{l}^2 \langle b \rangle 1$ Integrin Targeting. Journal of Nuclear Medicine, 2022, 63, 1039-1045.	2.8	6
1845	Identification of DNA Damage Repair-Associated Prognostic Biomarkers for Prostate Cancer Using Transcriptomic Data Analysis. International Journal of Molecular Sciences, 2021, 22, 11771.	1.8	6
1846	Deciphering Evolutionary Dynamics and Lineage Plasticity in Aggressive Prostate Cancer. International Journal of Molecular Sciences, 2021, 22, 11645.	1.8	0
1847	Direct interaction of βâ€catenin with nuclear ESM1 supports stemness of metastatic prostate cancer. EMBO Journal, 2021, 40, e105450.	3.5	16
1848	KRAS, BRAF, PIK3CA mutation frequency of radical prostatectomy samples and review of the literature. Aging Male, 2020, 23, 1627-1641.	0.9	4
1849	Big Data to Knowledge: Application of Machine Learning to Predictive Modeling of Therapeutic Response in Cancer. Current Genomics, 2021, 22, 244-266.	0.7	6
1850	Attenuation of SRC Kinase Activity Augments PARP Inhibitor–mediated Synthetic Lethality in <i>BRCA2</i> -altered Prostate Tumors. Clinical Cancer Research, 2021, 27, 1792-1806.	3.2	13
1851	Experimental challenges to modeling prostate cancer heterogeneity. Cancer Letters, 2022, 524, 194-205.	3.2	11
1852	Hidden clues in prostate cancer – Lessons learned from clinical and pre-clinical approaches on diagnosis and risk stratification. Cancer Letters, 2022, 524, 182-192.	3.2	3
1853	Molekularpathologie und Biomarker. , 2020, , 173-183.		0
1854	Chemotherapeutic Agents for Urologic Oncology: Basic Principles. , 2020, , 611-637.		0
1855	Next-Generation Sequencing in Prostate Cancer. The Korean Journal of Urological Oncology, 2020, 18, 18-23.	0.1	0
1856	PARP Inhibition in Prostate Cancer With Homologous Recombination Repair Alterations. JCO Precision Oncology, 2021, 5, 1639-1649.	1.5	7
1857	Prostate cancer research in the 21st century; report from the 2021 Coffeyâ€Holden prostate cancer academy meeting. Prostate, 2021, , .	1.2	2
1858	Poly(ADP-ribose) polymerase inhibitors in prostate cancer: a cornerstone in precision oncology. Pharmacogenomics, 2021, 22, 1237-1250.	0.6	1
1860	Opposing transcriptional programs of KLF5 and AR emerge during therapy for advanced prostate cancer. Nature Communications, 2021, 12, 6377.	5.8	16

#	Article	IF	CITATIONS
1866	Cáncer de próstata, nuevas opciones de tratamiento: inmunoterapia. Actas Urológicas Españolas, 2020, 44, 458-468.	0.3	2
1867	Using Omics to better understand steroid biosynthesis, metabolism, and functions. Journal of Steroid Biochemistry and Molecular Biology, 2020, 202, 105686.	1.2	0
1868	Distinct Genomic Alterations in Prostate Tumors Derived from African American Men. Molecular Cancer Research, 2020, 18, 1815-1824.	1.5	14
1869	Responsiveness to Immune Checkpoint Inhibitors Is Associated With a Peripheral Blood T-Cell Signature in Metastatic Castration-Resistant Prostate Cancer. JCO Precision Oncology, 2020, 4, 1374-1385.	1.5	6
1870	Double-Negative Prostate Cancer Masquerading as a Squamous Cancer of Unknown Primary: A Clinicopathologic and Genomic Sequencing-Based Case Study. JCO Precision Oncology, 2020, 4, 1386-1392.	1.5	4
1873	Inherited Predisposition to Prostate Cancer: From Gene Discovery to Clinical Impact. Transactions of the American Clinical and Climatological Association, 2017, 128, 14-23.	0.9	11
1874	CRISPR-Induced TMPRSS2-ERG Gene Fusions in Mouse Prostate Organoids. JSM Biotechnology & Biomedical Engineering, 2017, 4, .	0.0	4
1875	Triple Aberrant Prostate Cancer (TAPC) - Aggregate role of aberrations in , and on ETS gene fusions and prognosis in metastatic castrate resistant prostate cancer. American Journal of Clinical and Experimental Urology, 2020, 8, 106-115.	0.4	2
1876	Niclosamide exerts anticancer effects through inhibition of the FOXM1-mediated DNA damage response in prostate cancer. American Journal of Cancer Research, 2021, 11, 2944-2959.	1.4	1
1877	Development of PARP inhibitor combinations for castration resistant prostate cancer unselected for homologous recombination repair mutations. American Journal of Translational Research (discontinued), 2021, 13, 7427-7439.	0.0	1
1878	The Hippo pathway: an emerging role in urologic cancers. American Journal of Clinical and Experimental Urology, 2021, 9, 301-317.	0.4	1
1879	Scaffold attachment factor B1 regulates androgen degradation pathways in prostate cancer. American Journal of Clinical and Experimental Urology, 2021, 9, 337-349.	0.4	0
1880	Genetics of prostate cancer and its utility in treatment and screening. Advances in Genetics, 2021, 108, 147-199.	0.8	3
1881	Epigenetics and precision medicine in prostate cancer. , 2022, , 69-108.		0
1882	PARP inhibitors and metastatic castration-resistant prostate cancer: uture directions and pitfalls. Translational Oncology, 2022, 15, 101263.	1.7	2
1883	Molecular dynamics simulations reveal the plausible agonism/antagonism mechanism by steroids on androgen receptor mutations. Journal of Molecular Graphics and Modelling, 2022, 111, 108081.	1.3	6
1884	Biomimetic Small-Molecule Self-Assembly of PI3K inhibitor integrated with immunomodulator to amplify anticancer efficacy. Chemical Engineering Journal, 2022, 433, 133747.	6.6	11
1885	The telomere length landscape of prostate cancer. Nature Communications, 2021, 12, 6893.	5.8	7

#	Article	IF	CITATIONS
1886	Overall and progressionâ€free survival of Afroâ€Caribbean men with metastatic castrationâ€resistant prostate cancer (mCRPC). Prostate, 2022, 82, 269-275.	1.2	3
1887	Identifying prognostic signatures in the microenvironment of prostate cancer. Translational Andrology and Urology, 2021, 10, 4206-4218.	0.6	3
1888	BRCA Mutations in Prostate Cancer: Assessment, Implications and Treatment Considerations. International Journal of Molecular Sciences, 2021, 22, 12628.	1.8	44
1890	G3BP1 inhibits Cul3SPOP to amplify AR signaling and promote prostate cancer. Nature Communications, 2021, 12, 6662.	5.8	17
1891	Biomarkers for Treatment Response in Advanced Prostate Cancer. Cancers, 2021, 13, 5723.	1.7	14
1892	Exploration of Redox-Related Molecular Patterns and the Redox Score for Prostate Cancer. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-28.	1.9	6
1893	Pathogenic BRCA Variants as Biomarkers for Risk in Prostate Cancer. Cancers, 2021, 13, 5697.	1.7	10
1894	Clinical and genomic features of <i>SPOP</i> emutant prostate cancer. Prostate, 2022, 82, 260-268.	1.2	20
1895	Cell-Free DNA Variant Sequencing Using Plasma and AR-V7 Testing of Circulating Tumor Cells in Prostate Cancer Patients. Cells, 2021, 10, 3223.	1.8	4
1896	Epithelial–Mesenchymal Transition Signaling and Prostate Cancer Stem Cells: Emerging Biomarkers and Opportunities for Precision Therapeutics. Genes, 2021, 12, 1900.	1.0	22
1897	Proteomic Analysis Identifies NDUFS1 and ATP5O as Novel Markers for Survival Outcome in Prostate Cancer. Cancers, 2021, 13, 6036.	1.7	7
1898	Large Multicohort Study Reveals a Prostate Cancer Susceptibility Allele at 5p15 Regulating TERT via Androgen Signaling-Orchestrated Chromatin Binding of E2F1 and MYC. Frontiers in Oncology, 2021, 11, 754206.	1.3	2
1899	Exploring the Value of BRD9 as a Biomarker, Therapeutic Target and Co-Target in Prostate Cancer. Biomolecules, 2021, 11, 1794.	1.8	4
1900	HER3 Is an Actionable Target in Advanced Prostate Cancer. Cancer Research, 2021, 81, 6207-6218.	0.4	25
1901	Combining ReACp53 with Carboplatin to Target High-Grade Serous Ovarian Cancers. Cancers, 2021, 13, 5908.	1.7	11
1902	Dynamic expression of SNAI2 in prostate cancer predicts tumor progression and drug sensitivity. Molecular Oncology, 2022, 16, 2451-2469.	2.1	8
1903	Navigating Multi-Scale Cancer Systems Biology Towards Model-Driven Clinical Oncology and Its Applications in Personalized Therapeutics. Frontiers in Oncology, 2021, 11, 712505.	1.3	3
1904	Considerations on the identification and management of metastatic prostate cancer patients with DNA repair gene alterations in the Canadian context. Canadian Urological Association Journal, 2021, 16, .	0.3	2

#	Article	IF	CITATIONS
1905	Mutant p53 elicits context-dependent pro-tumorigenic phenotypes. Oncogene, 2022, 41, 444-458.	2.6	13
1906	CRISPR Screen Contributes to Novel Target Discovery in Prostate Cancer. International Journal of Molecular Sciences, 2021, 22, 12777.	1.8	16
1907	Randomized Phase 2 Trial of Abiraterone Acetate Plus Prednisone, Degarelix, or the Combination in Men with Biochemically Recurrent Prostate Cancer After Radical Prostatectomy. European Urology Open Science, 2021, 34, 70-78.	0.2	3
1908	H3K27ac HiChlP in prostate cell lines identifies risk genes for prostate cancer susceptibility. American Journal of Human Genetics, 2021, 108, 2284-2300.	2.6	31
1909	Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression. Nature Communications, 2021, 12, 7033.	5.8	27
1910	Liquid biopsy in prostate cancer: current status and future challenges of clinical application. Aging Male, 2021, 24, 58-71.	0.9	11
1911	Landscape of Immunotherapy in Genitourinary Malignancies. Advances in Experimental Medicine and Biology, 2021, 1342, 143-192.	0.8	2
1912	Progress in Clinical Application of Abiraterone in the Treatment of mCRPC. Advances in Clinical Medicine, 2021, 11, 5507-5513.	0.0	0
1913	Mutational landscape of paired primary and synchronous metastatic lymph node in chemotherapy naive gallbladder cancer. Molecular Biology Reports, 2022, 49, 1295-1301.	1.0	0
1914	Clinical Reliability of Genomic Data Obtained from Spinal Metastatic Tumor Samples. Neuro-Oncology, 2022, , .	0.6	0
1915	Genetic Analysis Reveals the Prognostic Significance of the DNA Mismatch Repair Gene MSH2 in Advanced Prostate Cancers, 2022, 14, 223.	1.7	5
1916	Multi-institutional Analysis of the Clinical and Genomic Characteristics of Black Patients with Metastatic Hormone-Sensitive Prostate Cancer. Oncologist, 2022, 27, 220-227.	1.9	5
1917	The prostate cancer landscape in Europe: Current challenges, future opportunities. Cancer Letters, 2022, 526, 304-310.	3.2	16
1918	Epigenetics in prostate cancer: clinical implications. Translational Andrology and Urology, 2021, 10, 3104-3116.	0.6	28
1919	An Insight on Novel Molecular Pathways in Metastatic Prostate Cancer: A Focus on DDR, MSI and AKT. International Journal of Molecular Sciences, 2021, 22, 13519.	1.8	13
1920	What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review (Part 6): Correlation of PD-L1 Expression with the Status of Mismatch Repair System, BRCA, PTEN, and Other Genes. Biomedicines, 2022, 10, 236.	1.4	13
1921	MALAT1 Fusions and Basal Cells Contribute to Primary Resistance against Androgen Receptor Inhibition in TRAMP Mice. Cancers, 2022, 14, 749.	1.7	1
1922	Endoplasmic reticulum stress inhibits AR expression via the PERK/eIF2α/ATF4 pathway in luminal androgen receptor triple-negative breast cancer and prostate cancer. Npj Breast Cancer, 2022, 8, 2.	2.3	11

#	Article	IF	CITATIONS
1924	RB1 loss in castration-resistant prostate cancer confers vulnerability to LSD1 inhibition. Oncogene, 2022, 41, 852-864.	2.6	18
1925	Transcriptome subtyping of metastatic Castration Resistance Prostate Cancer (mCRPC) for the precision therapeutics: an in silico analysis. Prostate Cancer and Prostatic Diseases, 2022, 25, 327-335.	2.0	5
1926	ATM: Functions of ATM Kinase and Its Relevance to Hereditary Tumors. International Journal of Molecular Sciences, 2022, 23, 523.	1.8	18
1928	Differential Kinase Activity Across Prostate Tumor Compartments Defines Sensitivity to Target Inhibition. Cancer Research, 2022, 82, 1084-1097.	0.4	2
1929	Paracrine Wnt signaling is necessary for prostate epithelial proliferation. Prostate, 2022, 82, 517-530.	1.2	8
1930	Complexity against current cancer research: Are we on the wrong track?. International Journal of Cancer, 2022, 150, 1569-1578.	2.3	7
1931	<i>RB1</i> , Cancer Lineage Plasticity, and Therapeutic Resistance. Annual Review of Cancer Biology, 2022, 6, 201-221.	2.3	5
1932	Clinical values of expression signature of circCDR1AS and circHIAT1 in prostate cancer: Two circRNAs with regulatory function in androgen receptor (AR) and PI3K/AKT signaling pathways. Journal of Clinical Laboratory Analysis, 2022, 36, e24220.	0.9	1
1933	DNA damage response inhibitor and anti-PD-L1 therapy for prostate cancer: Development of predictive biomarkers. Engineering, 2022, , .	3.2	0
1934	SOX2 mediates metabolic reprogramming of prostate cancer cells. Oncogene, 2022, 41, 1190-1202.	2.6	22
1935	DNAâ€repair status should be assessed in treatmentâ€emergent neuroendocrine prostate cancer before platinumâ€based therapy. Prostate, 2022, 82, 464-474.	1.2	2
1936	HER2 Mediates PSMA/mGluR1-Driven Resistance to the DS-7423 Dual Pl3K/mTOR Inhibitor in PTEN Wild-type Prostate Cancer Models. Molecular Cancer Therapeutics, 2022, 21, 667-676.	1.9	5
1937	Use of RNA-Seq and a Transgenic Mouse Model to Identify Genes Which May Contribute to Mutant p53-Driven Prostate Cancer Initiation. Biology, 2022, 11, 218.	1.3	1
1938	Differential Gene Expression Profiles between N-Terminal Domain and Ligand-Binding Domain Inhibitors of Androgen Receptor Reveal Ralaniten Induction of Metallothionein by a Mechanism Dependent on MTF1. Cancers, 2022, 14, 386.	1.7	4
1939	Ethnic Pharmacogenomic Differences in the Management of Asian Patients with Metastatic Prostate Cancers, 2022, 14, 407.	1.7	5
1940	Implementation of a prostate cancerâ€specific targeted sequencing panel for credentialing of patientâ€derived cell lines and genomic characterization of patient samples. Prostate, 2022, , .	1.2	1
1941	Real-world homologous recombination repair mutation testing in metastatic castration-resistant prostate cancer in the USA, Europe and Japan. Future Oncology, 2022, 18, 937-951.	1.1	11
1942	Blocking PI3K p $110\hat{l}^2$ Attenuates Development of PTEN-Deficient Castration-Resistant Prostate Cancer. Molecular Cancer Research, 2022, 20, 673-685.	1.5	6

#	Article	IF	CITATIONS
1943	Advances with androgen deprivation therapy for prostate cancer. Expert Opinion on Pharmacotherapy, 2022, 23, 1015-1033.	0.9	10
1944	Re: A Prospective Prostate Cancer Screening Programme for Men with Pathogenic Variants in Mismatch Repair Genes (IMPACT): Initial Results from an International Prospective Study. European Urology, 2022, 81, 216-218.	0.9	5
1945	Deletion of Wild-type p53 Facilitates Bone Metastatic Function by Blocking the AIP4 Mediated Ligand-Induced Degradation of CXCR4. Frontiers in Pharmacology, 2021, 12, 792293.	1.6	2
1946	Health inequity drives disease biology to create disparities in prostate cancer outcomes. Journal of Clinical Investigation, 2022, 132, .	3.9	17
1947	Talazoparib plus enzalutamide in metastatic castration-resistant prostate cancer: TALAPRO-2 phase III study design. Future Oncology, 2022, 18, 425-436.	1.1	28
1948	Exploiting the tumor-suppressive activity of the androgen receptor by CDK4/6 inhibition in castration-resistant prostate cancer. Molecular Therapy, 2022, 30, 1628-1644.	3.7	10
1949	Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer. Cancer Letters, 2022, 530, 156-169.	3.2	49
1950	Co-Inhibition of Androgen Receptor and PARP as a Novel Treatment Paradigm in Prostate Cancer—Where Are We Now?. Cancers, 2022, 14, 801.	1.7	23
1951	Anti-CCR4 treatment depletes regulatory T cells and leads to clinical activity in a canine model of advanced prostate cancer., 2022, 10, e003731.		18
1952	GM-CSF elicits antibodies to tumor-associated proteins when used as a prostate cancer vaccine adjuvant. Cancer Immunology, Immunotherapy, 2022, 71, 2267-2275.	2.0	4
1954	Î-Tocotrienol is the Most Potent Vitamin E Form in Inhibiting Prostate Cancer Cell Growth and Inhibits Prostate Carcinogenesis in Ptenpâ-'/â-' Mice. Cancer Prevention Research, 2022, 15, 233-245.	0.7	3
1955	Autocrine Canonical Wnt Signaling Primes Noncanonical Signaling through ROR1 in Metastatic Castration-Resistant Prostate Cancer. Cancer Research, 2022, 82, 1518-1533.	0.4	15
1956	Circular RNAs and Drug Resistance in Genitourinary Cancers: A Literature Review. Cancers, 2022, 14, 866.	1.7	5
1957	Niraparib in patients with metastatic castration-resistant prostate cancer and DNA repair gene defects (GALAHAD): a multicentre, open-label, phase 2 trial. Lancet Oncology, The, 2022, 23, 362-373.	5.1	97
1958	Pain and health-related quality of life with olaparib versus physician's choice of next-generation hormonal drug in patients with metastatic castration-resistant prostate cancer with homologous recombination repair gene alterations (PROfound): an open-label, randomised, phase 3 trial. Lancet Oncology, The, 2022, 23, 393-405.	5.1	16
1959	Prognostic significance of <i>PTEN</i> , <i>RB1</i> and <i>BRCA2</i> gene loss in patients with localized and locally advanced prostate cancer. Onkourologiya, 2022, 17, 76-84.	0.1	0
1960	Receptor-interacting protein kinase 2 (RIPK2) stabilizes c-Myc and is a therapeutic target in prostate cancer metastasis. Nature Communications, 2022, 13, 669.	5.8	19
1961	Therapeutic potential of p53 reactivation in prostate cancer: Strategies and opportunities. European Journal of Pharmacology, 2022, 919, 174807.	1.7	17

#	Article	IF	CITATIONS
1962	Patient-matched analysis identifies deregulated networks in prostate cancer to guide personalized therapeutic intervention. American Journal of Cancer Research, 2021, 11, 5299-5318.	1.4	0
1963	AÂm6Avalue predictive of prostate cancer stemness, tumor immune landscape and immunotherapy response. NAR Cancer, 2022, 4, zcac010.	1.6	7
1965	Deciphering the Increased Prevalence of TP53 Mutations in Metastatic Prostate Cancer. Cancer Informatics, 2022, 21, 117693512210870.	0.9	3
1966	Evolution of Artificial Intelligence-Powered Technologies in Biomedical Research and Healthcare. Advances in Biochemical Engineering/Biotechnology, 2022, , 23-60.	0.6	9
1967	Analysis of BRCA Germline Mutations in Chinese Prostate Cancer Patients. Frontiers in Oncology, 2022, 12, 746102.	1.3	4
1968	Skene's Gland Malignancy: A Case Report and Systematic Review. Urology, 2022, 165, 36-43.	0.5	10
1969	Past, Current, and Future Strategies to Target ERG Fusion-Positive Prostate Cancer. Cancers, 2022, 14, 1118.	1.7	10
1970	Precision Targets for Intercepting the Lethal Progression of Prostate Cancer: Potential Avenues for Personalized Therapy. Cancers, 2022, 14, 892.	1.7	7
1971	PARP Inhibitors and Radiometabolic Approaches in Metastatic Castration-Resistant Prostate Cancer: What's Now, What's New, and What's Coming?. Cancers, 2022, 14, 907.	1.7	8
1972	Targeting Protein Kinases and Epigenetic Control as Combinatorial Therapy Options for Advanced Prostate Cancer Treatment. Pharmaceutics, 2022, 14, 515.	2.0	10
1973	Immune Checkpoint Inhibitors in Advanced Prostate Cancer: Current Data and Future Perspectives. Cancers, 2022, 14, 1245.	1.7	19
1974	Immunotherapy in Advanced Prostate Cancer: Current Knowledge and Future Directions. Biomedicines, 2022, 10, 537.	1.4	9
1975	A genome-scale CRISPR screen reveals PRMT1 as a critical regulator of androgen receptor signaling in prostate cancer. Cell Reports, 2022, 38, 110417.	2.9	17
1976	Patient-specific Boolean models of signalling networks guide personalised treatments. ELife, 2022, 11, .	2.8	38
1977	Immunotherapy in Advanced Prostate Cancerâ€"Light at the End of the Tunnel?. International Journal of Molecular Sciences, 2022, 23, 2569.	1.8	11
1978	Non-Invasive Profiling of Advanced Prostate Cancer via Multi-Parametric Liquid Biopsy and Radiomic Analysis. International Journal of Molecular Sciences, 2022, 23, 2571.	1.8	8
1979	Comprehensive genomic profiling of treatment resistant metastatic castrate sensitive prostate cancer reveals high frequency of potential therapeutic targets. Clinical Genitourinary Cancer, 2022, , .	0.9	1
1981	Exploring the Wnt Pathway as a Therapeutic Target for Prostate Cancer. Biomolecules, 2022, 12, 309.	1.8	14

#	Article	IF	CITATIONS
1982	Leukemia inhibitory factor receptor homodimerization mediated by acetylation of extracellular lysine promotes prostate cancer progression through the PDPK1/AKT/GCN5 axis. Clinical and Translational Medicine, 2022, 12, e676.	1.7	10
1983	Implications of DNA damage repair alterations for the management of prostate cancer. Current Opinion in Urology, 2022, 32, 302-310.	0.9	1
1984	Nanomaterial-Based Immunocapture Platforms for the Recognition, Isolation, and Detection of Circulating Tumor Cells. Frontiers in Bioengineering and Biotechnology, 2022, 10, 850241.	2.0	12
1985	Clinical Applications of Liquid Biopsy in Prostate Cancer: From Screening to Predictive Biomarker. Cancers, 2022, 14, 1728.	1.7	9
1986	Apalutamide, Darolutamide and Enzalutamide for Nonmetastatic Castration-Resistant Prostate Cancer (nmCRPC): A Critical Review. Cancers, 2022, 14, 1792.	1.7	15
1987	Harnessing the Heterogeneity of Prostate Cancer for Target Discovery Using Patient-Derived Explants. Cancers, 2022, 14, 1708.	1.7	6
1988	Focal p53 protein expression and lymphovascular invasion in primary prostate tumors predict metastatic progression. Scientific Reports, 2022, 12, 5404.	1.6	10
1990	A non-coding RNA balancing act: miR-346-induced DNA damage is limited by the long non-coding RNA NORAD in prostate cancer. Molecular Cancer, 2022, 21, 82.	7.9	6
1991	Pre-activation of autophagy impacts response to olaparib in prostate cancer cells. Communications Biology, 2022, 5, 251.	2.0	6
1992	Combined impact of lipidomic and genetic aberrations on clinical outcomes in metastatic castration-resistant prostate cancer. BMC Medicine, 2022, 20, 112.	2.3	6
1993	Androgen Receptor-Mediated Transcription in Prostate Cancer. Cells, 2022, 11, 898.	1.8	14
1994	Targeting radioresistance and replication fork stability in prostate cancer. JCI Insight, 2022, 7, .	2.3	4
1995	Identification of a Steroid Hormone-Associated Gene Signature Predicting the Prognosis of Prostate Cancer through an Integrative Bioinformatics Analysis. Cancers, 2022, 14, 1565.	1.7	4
1996	The role of genetic testing in prostate cancer screening, diagnosis, and treatment. Current Opinion in Oncology, 2022, Publish Ahead of Print, .	1.1	0
1997	PARP Inhibitors as Monotherapy in Daily Practice for Advanced Prostate Cancers. Journal of Clinical Medicine, 2022, 11, 1734.	1.0	5
1999	Comparative genomics of primary prostate cancer and paired metastases: insights from 12 molecular case studies. Journal of Pathology, 2022, 257, 274-284.	2.1	13
2000	Urine- and Blood-Based Molecular Profiling of Human Prostate Cancer. Frontiers in Oncology, 2022, 12, 759791.	1.3	4
2001	Peroxisome Proliferator-activated Receptor Gamma Coactivator-1 Alpha: A Double-edged Sword in Prostate Cancer. Current Cancer Drug Targets, 2022, 22, 541-559.	0.8	7

#	ARTICLE	IF	Citations
2002	Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. Journal of Experimental and Clinical Cancer Research, 2022, 41, 105.	3.5	67
2003	Looking for a Simplified Diagnostic Model to Identify Potentially Lethal Cases of Prostate Cancer at Initial Diagnosis: An ImGO Pilot Study. Cancers, 2022, 14, 1542.	1.7	4
2004	Comprehensive genomics in androgen receptor-dependent castration-resistant prostate cancer identifies an adaptation pathway mediated by opioid receptor kappa 1. Communications Biology, 2022, 5, 299.	2.0	3
2005	Detection of diseaseâ€causing mutations in prostate cancer by NGS sequencing. Cell Biology International, 2022, 46, 1047-1061.	1.4	10
2006	Association of Family History of Cancer with Clinical and Pathological Outcomes for Prostate Cancer Patients on Active Surveillance. Journal of Urology, 2022, , 101097JU0000000000000668.	0.2	1
2007	Mesenchymal and stem-like prostate cancer linked to therapy-induced lineage plasticity and metastasis. Cell Reports, 2022, 39, 110595.	2.9	25
2008	Circulating tumor DNA genomic profiling reveals the complicated olaparib-resistance mechanism in prostate cancer salvage therapy: A case report. World Journal of Clinical Cases, 2022, 10, 3461-3471.	0.3	2
2009	Extreme Responses to a Combination of DNA-Damaging Therapy and Immunotherapy in CDK12-Altered Metastatic Castration-Resistant Prostate Cancer: A Potential Therapeutic Vulnerability. Clinical Genitourinary Cancer, 2022, 20, 183-188.	0.9	3
2010	Cáncer de próstata de inicio temprano. ¿Una nueva entidad?. Revista Mexicana De Urologia, 2021, 81, 1-13.	0.0	0
2011	With Our Powers Combined. Cancer Journal (Sudbury, Mass), 2021, 27, 511-520.	1.0	1
2012	PARP Inhibition in Advanced Prostate Cancer. Cancer Journal (Sudbury, Mass), 2021, 27, 457-464.	1.0	3
2013	Overview of the Development and Use of Akt Inhibitors in Prostate Cancer. Journal of Clinical Medicine, 2022, 11, 160.	1.0	14
2014	Genomic attributes of homology-directed DNA repair deficiency in metastatic prostate cancer. JCI Insight, 2021, 6, .	2.3	15
2016	Clinical and biological relevance of the transcriptomicâ€based prostate cancer metastasis subtypes MetA . Molecular Oncology, 2022, 16, 846-859.	2.1	8
2017	Targeting the Intrinsic Apoptosis Pathway: A Window of Opportunity for Prostate Cancer. Cancers, 2022, 14, 51.	1.7	12
2018	BoxCar and shotgun proteomic analyses reveal molecular networks regulated by UBR5 in prostate cancer. Proteomics, 2022, 22, e2100172.	1.3	2
2019	Regulation of AR mRNA translation in response to acute AR pathway inhibition. Nucleic Acids Research, 2022, 50, 1069-1091.	6.5	18
2020	Targeting DNA repair pathway in cancer: Mechanisms and clinical application. MedComm, 2021, 2, 654-691.	3.1	34

#	Article	IF	CITATIONS
2021	hsa_circ_0001275 Is One of a Number of circRNAs Dysregulated in Enzalutamide Resistant Prostate Cancer and Confers Enzalutamide Resistance In Vitro. Cancers, 2021, 13, 6383.	1.7	3
2022	Prognostic values of the core components of the mammalian circadian clock in prostate cancer. PeerJ, 2021, 9, e12539.	0.9	3
2023	Tumors Are Evolutionary Island-Like Ecosystems. Genome Biology and Evolution, 2021, 13, .	1.1	2
2024	Regulation of Neuroendocrine-like Differentiation in Prostate Cancer by Non-Coding RNAs. Non-coding RNA, 2021, 7, 75.	1.3	2
2025	Impact of molecular tumour board discussion on targeted therapy allocation in advanced prostate cancer. British Journal of Cancer, 2022, 126, 907-916.	2.9	5
2026	Multigene Profiling of Circulating Tumor Cells (CTCs) for Prognostic Assessment in Treatment-Na \tilde{A} -ve Metastatic Hormone-Sensitive Prostate Cancer (mHSPC). International Journal of Molecular Sciences, 2022, 23, 4.	1.8	6
2027	Glycosylation Changes in Prostate Cancer Progression. Frontiers in Oncology, 2021, 11, 809170.	1.3	18
2028	BRCA1 and Metastasis: Outcome of Defective DNA Repair. Cancers, 2022, 14, 108.	1.7	12
2029	Reduced NCOR2 expression accelerates androgen deprivation therapy failure in prostate cancer. Cell Reports, 2021, 37, 110109.	2.9	19
2030	Novel lipid mediators contributing to androgen receptor therapy resistance in prostate cancer. EBioMedicine, 2021, 74, 103696.	2.7	0
2031	Understanding Drug Sensitivity and Tackling Resistance in Cancer. Cancer Research, 2022, 82, 1448-1460.	0.4	24
2032	Distinct resistance mechanisms arise to allosteric vs. ATP-competitive AKT inhibitors. Nature Communications, 2022, 13, 2057.	5.8	12
2033	Outcomes of Patients with Metastatic Castration-Resistant Prostate Cancer According to Somatic Damage DNA Repair Gene Alterations. Current Oncology, 2022, 29, 2776-2791.	0.9	3
2034	Allosteric interactions prime androgen receptor dimerization and activation. Molecular Cell, 2022, 82, 2021-2031.e5.	4.5	21
2035	Molecular classification of hormoneâ€sensitive and castrationâ€resistant prostate cancer, using nonnegative matrix factorization molecular subtyping of primary and metastatic specimens. Prostate, 2022, 82, 993-1002.	1.2	2
2036	Where Do We Stand in the Management of Oligometastatic Prostate Cancer? A Comprehensive Review. Cancers, 2022, 14, 2017.	1.7	6
2037	The promising role of new molecular biomarkers in prostate cancer: from coding and non-coding genes to artificial intelligence approaches. Prostate Cancer and Prostatic Diseases, 2022, 25, 431-443.	2.0	44
2039	Interrogating the Cancer Genome to Deliver More Precise Cancer Care. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 36, e577-e583.	1.8	0

#	Article	IF	CITATIONS
2046	Characterization of a castrate-resistant prostate cancer xenograft derived from a patient of West African ancestry. Prostate Cancer and Prostatic Diseases, 2022, 25, 513-523.	2.0	2
2047	Impact of <scp>DNA</scp> damage response defects in cancer cells on response to immunotherapy and radiotherapy. Journal of Medical Imaging and Radiation Oncology, 2022, 66, 546-559.	0.9	5
2048	<i>RB1</i> loss overrides PARP inhibitor sensitivity driven by <i>RNASEH2B</i> loss in prostate cancer. Science Advances, 2022, 8, eabl9794.	4.7	14
2049	Identifying Phased Mutations and Complex Rearrangements in Human Prostate Cancer Cell Lines through Linked-Read Whole-Genome Sequencing. Molecular Cancer Research, 2022, 20, 1013-1020.	1.5	3
2050	The Functional Implication of ATF6 \hat{l}_{\pm} in Castration-Resistant Prostate Cancer Cells. SSRN Electronic Journal, 0, , .	0.4	0
2051	Germline pathogenic variants in unselected Korean men with prostate cancer. Investigative and Clinical Urology, 2022, 63, 294.	1.0	3
2052	Beyond BRCA: The Emerging Significance of DNA Damage Response and Personalized Treatment in Pancreatic and Prostate Cancer Patients. International Journal of Molecular Sciences, 2022, 23, 4709.	1.8	13
2053	Regulation and role of CAMKK2 in prostate cancer. Nature Reviews Urology, 2022, 19, 367-380.	1.9	17
2054	Homologous Recombination Repair Gene Variants and Outcomes Among Patients With Prostate Cancer Treated With Poly (ADP-ribose) Polymerase Inhibitors. JCO Precision Oncology, 2022, 6, e2100461.	1.5	2
2055	Overcoming Immune Resistance With Radiation Therapy in Prostate Cancer. Frontiers in Immunology, 2022, 13, .	2.2	5
2056	Baseline Plasma Tumor DNA (ctDNA) Correlates with PSA Kinetics in Metastatic Castration-Resistant Prostate Cancer (mCRPC) Treated with Abiraterone or Enzalutamide. Cancers, 2022, 14, 2219.	1.7	5
2057	PARP Inhibition, a New Therapeutic Avenue in Patients with Prostate Cancer. Drugs, 2022, 82, 719-733.	4.9	10
2058	Molecular Profiles of Advanced Urological Cancers in the PERMED-01 Precision Medicine Clinical Trial. Cancers, 2022, 14, 2275.	1.7	0
2059	Androgen receptor reprogramming demarcates prognostic, context-dependent gene sets in primary and metastatic prostate cancer. Clinical Epigenetics, 2022, 14, 60.	1.8	8
2060	Alterations in homologous recombination repair genes in prostate cancer brain metastases. Nature Communications, 2022, 13, 2400.	5.8	13
2061	Nuclear Receptor Coregulators in Hormone-Dependent Cancers. Cancers, 2022, 14, 2402.	1.7	4
2062	CREB5 reprograms FOXA1 nuclear interactions to promote resistance to androgen receptor-targeting therapies. ELife, 2022, 11, .	2.8	10
2063	A novel inhibitor of ARfl and ARv7 induces protein degradation to overcome enzalutamide resistance in advanced prostate cancer. Acta Pharmaceutica Sinica B, 2022, , .	5.7	1

#	Article	IF	CITATIONS
2064	ETS transcription factor ELF3 (ESEâ€1) is a cell cycle regulator in benign and malignant prostate. FEBS Open Bio, 2022, 12, 1365-1387.	1.0	0
2065	Olaparib outcomes in metastatic castration-resistant prostate cancer: First real-world experience in safety and efficacy from the Chinese mainland. Prostate International, 2022, 10, 142-147.	1.2	4
2067	Targeting cyclin-dependent kinase 7â€"association between CDK7 and pMED1 expression in prostate cancer tissue. Carcinogenesis, 2022, 43, 779-786.	1.3	4
2068	RUVBL1 promotes enzalutamide resistance of prostate tumors through the PLXNA1-CRAF-MAPK pathway. Oncogene, 2022, 41, 3239-3250.	2.6	9
2069	Tumor microenvironment heterogeneity an important mediator of prostate cancer progression and therapeutic resistance. Npj Precision Oncology, 2022, 6, 31.	2.3	37
2070	Therapeutic Implications for Intrinsic Phenotype Classification of Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2022, 28, 3127-3140.	3.2	11
2071	A multidisciplinary approach to optimize primary prostate cancer biobanking. Urologic Oncology: Seminars and Original Investigations, 2022, 40, 271.e1-271.e7.	0.8	2
2072	Integration of Liquid Biopsies in Clinical Management of Metastatic Prostate Cancer. Current Oncology Reports, 2022, 24, 1287-1298.	1.8	4
2075	Diagnosis and treatment of metastatic prostate cancer. , 2022, , 23-47.		0
2076	Enrichment of "Cribriform―morphologies (intraductal and cribriform adenocarcinoma) and genomic alterations in radiorecurrent prostate cancer. Modern Pathology, 0, , .	2.9	3
2078	The growing role of rucaparib in contemporary treatment of metastatic prostate cancer: a review of efficacy and guidance for side effect management. Expert Review of Anticancer Therapy, 0, , 1-9.	1.1	1
2079	Ataxia-telangiectasia mutated and ataxia telangiectasia and Rad3-related kinases as therapeutic targets and stratification indicators for prostate cancer. International Journal of Biochemistry and Cell Biology, 2022, 147, 106230.	1.2	2
2080	Allele-informed copy number evaluation of plasma DNA samples from metastatic prostate cancer patients: the PCF_SELECT consortium assay. NAR Cancer, 2022, 4, .	1.6	4
2081	Magmas Inhibition in Prostate Cancer: A Novel Target for Treatment-Resistant Disease. Cancers, 2022, 14, 2732.	1.7	4
2082	Olaparib for Chinese metastatic castration-resistant prostate cancer: A real-world study of efficacy and gene predictive analysis. Medical Oncology, 2022, 39, .	1.2	4
2083	Based on network pharmacology and molecular docking to predict the mechanism of Huangqi in the treatment of castration-resistant prostate cancer. PLoS ONE, 2022, 17, e0263291.	1.1	4
2084	Comparative Pathobiology of Canine and Human Prostate Cancer: State of the Art and Future Directions. Cancers, 2022, 14, 2727.	1.7	1
2085	Chromatin profiles classify castration-resistant prostate cancers suggesting therapeutic targets. Science, 2022, 376, .	6.0	75

#	Article	IF	CITATIONS
2086	Molecular mechanisms underlying the development of neuroendocrine prostate cancer. Seminars in Cancer Biology, 2022, 86, 57-68.	4.3	17
2087	Clinical implications of homologous recombination repair mutations in prostate cancer. Prostate, 2022, 82, .	1.2	4
2088	Stratification of Oligometastatic Prostate Cancer Patients by Liquid Biopsy: Clinical Insights from a Pilot Study. Biomedicines, 2022, 10, 1321.	1.4	5
2089	PTENâ€PI3K pathway alterations in advanced prostate cancer and clinical implications. Prostate, 2022, 82,	1.2	20
2090	Germline genetics of prostate cancer. Prostate, 2022, 82, .	1.2	8
2091	From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer. International Journal of Molecular Sciences, 2022, 23, 6281.	1.8	15
2092	Androgen receptor genomic alterations and treatment resistance in metastatic prostate cancer. Prostate, 2022, 82, .	1.2	6
2093	Abiraterone and Olaparib for Metastatic Castration-Resistant Prostate Cancer., 2022, 1, .		124
2094	Genomic biomarkers to guide precision radiotherapy in prostate cancer. Prostate, 2022, 82, .	1.2	3
2095	Future directions for precision oncology in prostate cancer. Prostate, 2022, 82, .	1.2	2
2096	The evolving landscape of prostate cancer somatic mutations. Prostate, 2022, 82, .	1.2	8
2097	Drug resistance in metastatic castration-resistant prostate cancer: an update on the status quo. Cancer Drug Resistance (Alhambra, Calif), 2022, 5, 667-90.	0.9	8
2098	Recommendations for the implementation of genetic testing for metastatic prostate cancer patients in Canada. Canadian Urological Association Journal, 2022, 16, .	0.3	3
2099	Real-world experience managing unresectable or metastatic small cell carcinoma of the prostate. Canadian Urological Association Journal, 2022, 16, .	0.3	1
2100	Peroxiredoxin IV plays a critical role in cancer cell growth and radioresistance through the activation of the Akt/GSK3 signaling pathways. Journal of Biological Chemistry, 2022, 298, 102123.	1.6	8
2101	The tumor mutational landscape of BRCA2-deficient primary and metastatic prostate cancer. Npj Precision Oncology, 2022, 6, .	2.3	4
2102	Reduced DNA Repair Capacity in Prostate Cancer Patients: A Phenotypic Approach Using the CometChip. Cancers, 2022, 14, 3117.	1.7	2
2103	A transcriptomic signature for prostate cancer relapse prediction identified from the differentially expressed genes between TP53 mutant and wild-type tumors. Scientific Reports, 2022, 12, .	1.6	4

#	Article	IF	CITATIONS
2104	PARP Inhibitors: A New Horizon for Patients with Prostate Cancer. Biomedicines, 2022, 10, 1416.	1.4	20
2105	Poly (ADP-ribose) polymerase inhibitors (PARPi) for advanced malignancies with multiple DNA-repair genetic aberrations. Expert Review of Anticancer Therapy, 2022, 22, 717-723.	1.1	1
2107	Pilot Study: PARP1 Imaging in Advanced Prostate Cancer. Molecular Imaging and Biology, 2022, 24, 853-861.	1.3	3
2108	Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	40
2109	Modeling prostate cancer: What does it take to build an ideal tumor model?. Cancer Letters, 2022, 543, 215794.	3.2	9
2110	Statins and prostate cancer—hype or hope? The biological perspective. Prostate Cancer and Prostatic Diseases, 2022, 25, 650-656.	2.0	7
2112	Drug-Induced Epigenomic Plasticity Reprograms Circadian Rhythm Regulation to Drive Prostate Cancer toward Androgen Independence. Cancer Discovery, 2022, 12, 2074-2097.	7.7	22
2113	The Extracellular Matrix Stiffening: A Trigger of Prostate Cancer Progression and Castration Resistance?. Cancers, 2022, 14, 2887.	1.7	13
2114	Squalene Epoxidase Metabolic Dependency Is a Targetable Vulnerability in Castration-Resistant Prostate Cancer. Cancer Research, 2022, 82, 3032-3044.	0.4	10
2115	PALB2 or BARD1 loss confers homologous recombination deficiency and PARP inhibitor sensitivity in prostate cancer. Npj Precision Oncology, 2022, 6, .	2.3	9
2116	Therapeutic targets and signaling pathways of active components of QiLing decoction against castration-resistant prostate cancer based on network pharmacology. PeerJ, 0, 10, e13481.	0.9	0
2117	Influence of response to prior docetaxel on sensitivity to cabazitaxel in prostate cancer patients with <scp>PTEN</scp> alterations. Cancer Science, 0, , .	1.7	1
2118	Current progress and novel strategies that target CDK12 for drug discovery. European Journal of Medicinal Chemistry, 2022, 240, 114603.	2.6	8
2119	<i>BRCA2</i> Alterations in Neuroendocrine/Small-Cell Carcinoma Prostate Cancer: A Case Series. JCO Precision Oncology, 2022, , .	1.5	6
2120	Mutator-Derived IncRNA Landscape: A Novel Insight Into the Genomic Instability of Prostate Cancer. Frontiers in Oncology, 0, 12, .	1.3	0
2121	ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: a report from the ESMO Precision Medicine Working Group. Annals of Oncology, 2022, 33, 750-768.	0.6	204
2122	Liquid Biopsy in Prostate Cancer Managementâ€"Current Challenges and Future Perspectives. Cancers, 2022, 14, 3272.	1.7	44
2123	Potent Stimulation of the Androgen Receptor Instigates a Viral Mimicry Response in Prostate Cancer. Cancer Research Communications, 2022, 2, 706-724.	0.7	3

#	Article	IF	CITATIONS
2125	Stable CDK12 Knock-Out Ovarian Cancer Cells Do Not Show Increased Sensitivity to Cisplatin and PARP Inhibitor Treatment. Frontiers in Oncology, 0, 12, .	1.3	2
2126	Assessment of Androgen Receptor Splice Variant-7 as a Biomarker of Clinical Response in Castration-Sensitive Prostate Cancer. Clinical Cancer Research, 2022, 28, 3509-3525.	3.2	11
2127	Genomic Biomarkers and Genome-Wide Loss-of-Heterozygosity Scores in Metastatic Prostate Cancer Following Progression on Androgen-Targeting Therapies. JCO Precision Oncology, 2022, , .	1.5	10
2128	Current status and future perspective on the management of metastatic castration-sensitive prostate cancer. Cancer Treatment and Research Communications, 2022, 32, 100606.	0.7	4
2129	The Role of Epigenetic Change in Therapy-Induced Neuroendocrine Prostate Cancer Lineage Plasticity. Frontiers in Endocrinology, 0, 13, .	1.5	9
2130	Genetic Testing and Its Clinical Application in Prostate Cancer Management: Consensus Statements from the Hong Kong Urological Association and Hong Kong Society of Uro-Oncology. Frontiers in Oncology, 0, 12, .	1.3	2
2131	AR-V7 exhibits non-canonical mechanisms of nuclear import and chromatin engagement in castrate-resistant prostate cancer. ELife, 0, 11 , .	2.8	10
2132	Emerging Biomarker-Guided Therapies in Prostate Cancer. Current Oncology, 2022, 29, 5054-5076.	0.9	10
2133	Pan-Asian adapted ESMO Clinical Practice Guidelines for the diagnosis, treatment and follow-up of patients with prostate cancer. ESMO Open, 2022, 7, 100518.	2.0	10
2134	Lipid nanoparticles to silence androgen receptor variants for prostate cancer therapy. Journal of Controlled Release, 2022, 349, 174-183.	4.8	10
2135	Expression of MUS81 Mediates the Sensitivity of Castration-Resistant Prostate Cancer to Olaparib. Journal of Immunology Research, 2022, 2022, 1-11.	0.9	1
2136	Acetylated HOXB13 Regulated Super Enhancer Genes Define Therapeutic Vulnerabilities of Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2022, 28, 4131-4145.	3.2	9
2137	Structural and molecular insights into the mechanism of resistance to enzalutamide by the clinical mutants in androgen receptor (AR) in castration-resistant prostate cancer (CRPC) patients. International Journal of Biological Macromolecules, 2022, 218, 856-865.	3.6	5
2138	Ordering and Interpreting Precision Oncology Studies for Adults With Advanced Solid Tumors: A Primer. , 2022, , .		0
2139	Molecular uropathology and cancer genetics for the urologist: key findings for classification and diagnosis. Current Opinion in Urology, 2022, 32, 451-455.	0.9	2
2140	Androgen receptor signaling and spatial chromatin organization in castration-resistant prostate cancer. Frontiers in Medicine, 0, 9, .	1.2	4
2141	IKKε Inhibitor Amlexanox Promotes Olaparib Sensitivity through the C/EBP-β-Mediated Transcription of Rad51 in Castrate-Resistant Prostate Cancer. Cancers, 2022, 14, 3684.	1.7	1
2144	Homologous recombination deficiency (HRD) score in aggressive prostatic adenocarcinoma with or without intraductal carcinoma of the prostate (IDC-P). BMC Medicine, 2022, 20, .	2.3	16

#	Article	IF	CITATIONS
2145	Second generation androgen receptor antagonists and challenges in prostate cancer treatment. Cell Death and Disease, 2022, 13 , .	2.7	32
2146	Case Report: $18F\text{-PSMA PET/CT}$ Scan in Castration Resistant Prostate Cancer With Aggressive Neuroendocrine Differentiation. Frontiers in Oncology, 0, 12, .	1.3	2
2147	Aberrant androgen action in prostatic progenitor cells induces oncogenesis and tumor development through IGF1 and Wnt axes. Nature Communications, 2022, 13 , .	5.8	5
2148	Advances in the Current Understanding of the Mechanisms Governing the Acquisition of Castration-Resistant Prostate Cancer. Cancers, 2022, 14, 3744.	1.7	10
2149	Development of Olaparib-Resistance Prostate Cancer Cell Lines to Identify Mechanisms Associated with Acquired Resistance. Cancers, 2022, 14, 3877.	1.7	3
2150	<i>TP53</i> lossâ€ofâ€function causes vulnerability to autophagy inhibition in aggressive prostate cancer. International Journal of Urology, 2022, 29, 1085-1094.	0.5	4
2151	The Role of Histology-Agnostic Drugs in the Treatment of Metastatic Castration-Resistant Prostate Cancer. International Journal of Molecular Sciences, 2022, 23, 8535.	1.8	9
2152	Adaptation to Hypoxia May Promote Therapeutic Resistance to Androgen Receptor Inhibition in Triple-Negative Breast Cancer. International Journal of Molecular Sciences, 2022, 23, 8844.	1.8	4
2153	Race and prostate cancer: genomic landscape. Nature Reviews Urology, 2022, 19, 547-561.	1.9	12
2155	Emerging Role of PARP Inhibitors in Metastatic Prostate Cancer. Current Oncology Reports, 0, , .	1.8	4
2157	Moving Precision Oncology for Advanced Prostate Cancer from Theory to Practice. European Urology Focus, 2023, 9, 110-113.	1.6	1
2158	What Plasma Can Tell Us When Tissue Cannot: A Case Report of Genomic Testing in mCRPC and Clinical Response to Treatment With the PARP Inhibitor Rucaparib. Frontiers in Oncology, 0, 12, .	1.3	2
2160	Developing New Treatment Options for Castration-Resistant Prostate Cancer and Recurrent Disease. Biomedicines, 2022, 10, 1872.	1.4	6
2161	Dramatic response to pembrolizumab after pseudoprogression in a patient with advanced metastatic castrationâ€resistant prostate cancer. IJU Case Reports, 0, , .	0.1	0
2162	Interplay of Developmental Hippo–Notch Signaling Pathways with the DNA Damage Response in Prostate Cancer. Cells, 2022, 11, 2449.	1.8	9
2163	A genome-wide CRISPR-Cas9 knockout screen identifies novel PARP inhibitor resistance genes in prostate cancer. Oncogene, 2022, 41, 4271-4281.	2.6	9
2164	Tissue immunostaining of candidate prognostic proteins in metastatic and non-metastatic prostate cancer. Journal of Cancer Research and Clinical Oncology, 0, , .	1.2	3
2165	Patterns of structural variation define prostate cancer across disease states. JCI Insight, 2022, 7, .	2.3	3

#	Article	IF	CITATIONS
2166	Prognostic significance of pathogenic variants in BRCA1, BRCA2, ATM and PALB2 genes in men undergoing hormonal therapy for advanced prostate cancer. British Journal of Cancer, 2022, 127, 1680-1690.	2.9	13
2167	Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling. Science, 2022, 377, 1180-1191.	6.0	92
2168	Androgen receptor splicing variant 7 (<scp>ARv7</scp>) promotes <scp>DNA</scp> damage response in prostate cancer cells. FASEB Journal, 2022, 36, .	0.2	5
2169	BRCA Mutations in Ovarian and Prostate Cancer: Bench to Bedside. Cancers, 2022, 14, 3888.	1.7	56
2170	Role of Olaparib in the Management of Metastatic Castration-Resistant Prostate Cancer: A Japanese Clinician's Perspective. Cancer Management and Research, 0, Volume 14, 2389-2397.	0.9	0
2171	Comprehensive analysis of androgen receptor status in prostate cancer with neuroendocrine differentiation. Frontiers in Oncology, 0, 12 , .	1.3	5
2172	Verification of cell cycle-associated cyclin-dependent kinases facilitated prostate cancer progression by integrated bioinformatic analysis and experimental validation. Heliyon, 2022, 8, e10081.	1.4	1
2173	Upâ€regulation of secretory leukocyte protease inhibitor in human samples might have a potential role of predicting prostate cancer recurrence and progression after surgery and hormonal therapy. Cancer Medicine, 0, , .	1.3	1
2174	Localization of macrophage subtypes and neutrophils in the prostate tumor microenvironment and their association with prostate cancer racial disparities. Prostate, 2022, 82, 1505-1519.	1.2	4
2175	Resistance to prostate cancer treatments. IUBMB Life, 2023, 75, 390-410.	1.5	4
2176	Targeting MDM4 as a Novel Therapeutic Approach in Prostate Cancer Independent of p53 Status. Cancers, 2022, 14, 3947.	1.7	6
2177	The efficacy and safety of immune checkpoint inhibitors in metastatic castration-resistant prostate cancer: A systematic review and meta-analysis. Medicine (United States), 2022, 101, e29715.	0.4	2
2178	How splicing confers treatment resistance in prostate cancer. ELife, 0, 11, .	2.8	4
2179	Androgen receptor mutations for precision medicine in prostate cancer. Endocrine-Related Cancer, 2022, 29, R143-R155.	1.6	17
2180	Simulating androgen receptor selection in designer yeast. Synthetic and Systems Biotechnology, 2022, 7, 1108-1116.	1.8	2
2181	Combinatorial approaches of nanotherapeutics for inflammatory pathway targeted therapy of prostate cancer. Drug Resistance Updates, 2022, 64, 100865.	6.5	4
2182	AR Structural Variants and Prostate Cancer. Advances in Experimental Medicine and Biology, 2022, , 195-211.	0.8	2
2183	Prostate Cancer Epigenetic Plasticity and Enhancer Heterogeneity: Molecular Causes, Consequences and Clinical Implications. Advances in Experimental Medicine and Biology, 2022, , 255-275.	0.8	1

#	Article	IF	CITATIONS
2184	A comprehensive view of the prostate cancer metastasis and role of androgen receptor splice variants., 2022, , 149-165.		0
2185	Comprehensive analysis of TP53 and SPOP mutations and their impact on survival in metastatic prostate cancer. Frontiers in Oncology, 0, 12 , .	1.3	2
2186	Addition of Germline Testing to Tumor-Only Sequencing Improves Detection of Pathogenic Germline Variants in Men With Advanced Prostate Cancer. JCO Precision Oncology, 2022, , .	1.5	2
2187	Detection of <i>BRCA1</i> , <i>BRCA2</i> , and <i>ATM</i> Alterations in Matched Tumor Tissue and Circulating Tumor DNA in Patients with Prostate Cancer Screened in PROfound. Clinical Cancer Research, 2023, 29, 81-91.	3.2	19
2188	Precision Medicine for Prostate Cancer Based on Genetic Mutation. Journal of the Nihon University Medical Association, 2022, 81, 187-192.	0.0	0
2189	Targeted Approaches in Metastatic Castration-Resistant Prostate Cancer: Which Data?. Cancers, 2022, 14, 4189.	1.7	4
2190	African-specific molecular taxonomy of prostate cancer. Nature, 2022, 609, 552-559.	13.7	26
2191	Modelling aggressive prostate cancers of young men in immune-competent mice, driven by isogenic Trp53 alterations and Pten loss. Cell Death and Disease, 2022, 13, .	2.7	1
2193	PARP Inhibitors in Advanced Prostate Cancer in Tumors with DNA Damage Signatures. Cancers, 2022, 14, 4751.	1.7	4
2194	Discovery of Highly Potent Daphnane Diterpenoids Uncovers Importin- \hat{l}^21 as a Druggable Vulnerability in Castration-Resistant Prostate Cancer. Journal of the American Chemical Society, 2022, 144, 17522-17532.	6.6	16
2195	Transcriptional Profile Associated with Clinical Outcomes in Metastatic Hormone-Sensitive Prostate Cancer Treated with Androgen Deprivation and Docetaxel. Cancers, 2022, 14, 4757.	1.7	2
2196	FOXA1 regulates alternative splicing in prostate cancer. Cell Reports, 2022, 40, 111404.	2.9	8
2197	Whole-exome sequencing reveals a comprehensive germline mutation landscape and identifies twelve novel predisposition genes in Chinese prostate cancer patients. PLoS Genetics, 2022, 18, e1010373.	1.5	4
2198	Accumulation of copy number alterations and clinical progression across advanced prostate cancer. Genome Medicine, 2022, 14, .	3.6	9
2199	Plasma Copy Number Alteration-Based Prognostic and Predictive Multi-Gene Risk Score in Metastatic Castration-Resistant Prostate Cancers, 2022, 14, 4714.	1.7	0
2200	Bone Health Management in the Continuum of Prostate Cancer Disease. Cancers, 2022, 14, 4305.	1.7	5
2201	Activation of neural lineage networks and ARHGEF2 in enzalutamide-resistant and neuroendocrine prostate cancer and association with patient outcomes. Communications Medicine, 2022, 2, .	1.9	2
2202	Glucocorticoid receptor and androgen receptor-targeting therapy in patients with castration-resistant prostate cancer. Frontiers in Oncology, 0, 12, .	1.3	4

#	ARTICLE	IF	Citations
2203	Lin28 Regulates Cancer Cell Stemness for Tumour Progression. Cancers, 2022, 14, 4640.	1.7	6
2204	Metformin regulates multiple signaling pathways within castration-resistant human prostate cancer cells. BMC Cancer, 2022, 22, .	1.1	5
2205	Subtype and Site Specific–Induced Metabolic Vulnerabilities in Prostate Cancer. Molecular Cancer Research, 2023, 21, 51-61.	1.5	5
2206	PARP inhibitors in metastatic prostate cancer: When, who, and how?. International Journal of Molecular and Immuno Oncology, 0, 7, 82-97.	0.0	0
2207	Positive epigenetic regulation loop between AR and NSUN2 promotes prostate cancer progression. Clinical and Translational Medicine, 2022, 12, .	1.7	11
2208	Prostate cancer in omics era. Cancer Cell International, 2022, 22, .	1.8	1
2210	Androgen receptor activity in prostate cancer dictates efficacy of bipolar androgen therapy through MYC. Journal of Clinical Investigation, 2022, 132 , .	3.9	17
2211	RSPO2 promotes progression of ovarian cancer through dual receptor-mediated FAK/Src signaling activation. IScience, 2022, 25, 105184.	1.9	2
2212	Mitigating Ipatasertib Induced Glucose Increase through Dose and Meal Timing Modifications. Clinical and Translational Science, 0, , .	1.5	4
2213	Clinical actionability and utilization of next-generation sequencing for prostate cancer in a changing treatment landscape. Frontiers in Urology, 0, 2, .	0.2	1
2214	The Value of Phenotypic Precision Medicine in Prostate Cancer. Oncologist, 2023, 28, 93-104.	1.9	5
2215	Increased <scp><i>MYBL2</i></scp> expression in aggressive hormoneâ€sensitive prostate cancer. Molecular Oncology, 2022, 16, 3994-4010.	2.1	4
2216	Progression of prostate cancer reprograms MYC-mediated lipid metabolism via lysine methyltransferase 2A. Discover Oncology, 2022, 13, .	0.8	2
2217	Molecular Mechanisms of Castrate-Resistant Prostate Cancer. Urologic Clinics of North America, 2022, 49, 615-626.	0.8	1
2218	Identification of LAT/ZAP70 characterized immune subtypes of prostate cancer. World Journal of Urology, 2022, 40, 2817-2824.	1.2	1
2219	Prostate cancer treatment – China's perspective. Cancer Letters, 2022, 550, 215927.	3.2	24
2220	CRISPR/Cas9: A revolutionary genome editing tool for human cancers treatment. Technology in Cancer Research and Treatment, 2022, 21, 153303382211320.	0.8	9
2221	Prognostic Role of DNA Damage Response Genes Mutations and their Association With the Sensitivity of Olaparib in Prostate Cancer Patients. Cancer Control, 2022, 29, 107327482211294.	0.7	28

#	Article	IF	CITATIONS
2222	Reprogramming landscape highlighted by dynamic transcriptomes in therapy-induced neuroendocrine differentiation. Computational and Structural Biotechnology Journal, 2022, 20, 5873-5885.	1.9	1
2223	Investigation of androgen receptor-dependent alternative splicing has identified a unique subtype of lethal prostate cancer. Asian Journal of Andrology, 2022, .	0.8	1
2224	Genomic Characterization of Prostatic Basal Cell Carcinoma. American Journal of Pathology, 2023, 193, 4-10.	1.9	2
2225	Drug–Drug Interaction Study to Evaluate the Pharmacokinetics, Safety, and Tolerability of Ipatasertib in Combination with Darolutamide in Patients with Advanced Prostate Cancer. Pharmaceutics, 2022, 14, 2101.	2.0	4
2226	The evolution and polymorphism of mono-amino acid repeats in androgen receptor and their regulatory role in health and disease. Frontiers in Medicine, 0, 9, .	1.2	2
2227	In Vivo Models for Prostate Cancer Research. Cancers, 2022, 14, 5321.	1.7	4
2228	Small molecules targeting the disordered transactivation domain of the androgen receptor induce the formation of collapsed helical states. Nature Communications, 2022, 13, .	5.8	21
2229	Putting Precision Medicine in Prostate Cancer into Practice: Are We There Yet?. European Urology, 2022, , .	0.9	0
2230	Randomized Trial of Olaparib With or Without Cediranib for Metastatic Castration-Resistant Prostate Cancer: The Results From National Cancer Institute 9984. Journal of Clinical Oncology, 2023, 41, 871-880.	0.8	15
2231	Intrinsic Molecular Subtypes of Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 0, , .	3.2	4
2232	A phase II study of talazoparib monotherapy in patients with wild-type BRCA1 and BRCA2 with a mutation in other homologous recombination genes. Nature Cancer, 2022, 3, 1181-1191.	5.7	42
2234	Exploring prostate cancer in the post-genomic era. Cancer Letters, 2022, , 215992.	3.2	0
2235	Spatial Profiling of the Prostate Cancer Tumor Microenvironment Reveals Multiple Differences in Gene Expression and Correlation with Recurrence Risk. Cancers, 2022, 14, 4923.	1.7	3
2236	Characterization of exposure–response relationships of ipatasertib in patients with metastatic castration-resistant prostate cancer in the IPATential150 study. Cancer Chemotherapy and Pharmacology, 2022, 90, 511-521.	1.1	2
2237	A COP1-GATA2 axis suppresses AR signaling and prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
2238	Retinoblastoma protein as an intrinsic BRD4 inhibitor modulates small molecule BET inhibitor sensitivity in cancer. Nature Communications, 2022, 13, .	5.8	5
2239	Molecular Genetics of Prostate Cancer and Role of Genomic Testing. Surgical Pathology Clinics, 2022, 15, 617-628.	0.7	5
2240	Global research trends on precision oncology: A systematic review, bibliometrics, and visualized study. Medicine (United States), 2022, 101, e31380.	0.4	6

#	Article	IF	CITATIONS
2241	Stromal androgen signaling acts as tumor niches to drive prostatic basal epithelial progenitor-initiated oncogenesis. Nature Communications, 2022, 13, .	5.8	5
2242	Accidentals of the DNA Symphony. Cancer Research, 2022, 82, 3880-3881.	0.4	0
2243	Increased AR expression in castration-resistant prostate cancer rapidly induces AR signaling reprogramming with the collaboration of EZH2. Frontiers in Oncology, 0, 12, .	1.3	5
2244	Olaparib Efficacy in Patients with Metastatic Castration-resistant Prostate Cancer and <i>BRCA1, BRCA2</i> , or <i>ATM</i> Alterations Identified by Testing Circulating Tumor DNA. Clinical Cancer Research, 2023, 29, 92-99.	3.2	9
2245	Does brachytherapy boost improve survival outcomes in Gleason Grade Group 5 patients treated with external beam radiotherapy and androgen deprivation therapy? A systematic review and meta-analysis. Clinical and Translational Radiation Oncology, 2023, 38, 21-27.	0.9	0
2246	Cancer-cell-intrinsic mechanisms shaping the immunosuppressive landscape of prostate cancer. Asian Journal of Andrology, 2023, 25, 171.	0.8	3
2247	Towards clinical implementation of circulating tumor DNA in metastatic prostate cancer: Opportunities for integration and pitfalls to interpretation. Frontiers in Oncology, $0,12,.$	1.3	6
2248	Inhibiting ACK1-mediated phosphorylation of C-terminal Src kinase counteracts prostate cancer immune checkpoint blockade resistance. Nature Communications, 2022, 13, .	5.8	16
2249	Cell-Free DNA Sequencing Reveals Gene Variants in DNA Damage Repair Genes Associated with Prognosis of Prostate Cancer Patients. Cells, 2022, 11, 3618.	1.8	1
2251	The prevalence of gene mutations in homologous recombination repair pathways in Japanese patients with metastatic castrationâ€resistant prostate cancer in realâ€world clinical practice: The multiâ€institutional observational <scp>ZENSHIN</scp> study. Cancer Medicine, 2023, 12, 5265-5274.	1.3	10
2252	Role of Rucaparib in the Treatment of Prostate Cancer: Clinical Perspectives and Considerations. Cancer Management and Research, 0, Volume 14, 3159-3174.	0.9	0
2254	Chromosome 8q arm overexpression is associated with worse prostate cancer prognosis. Urologic Oncology: Seminars and Original Investigations, 2022, , .	0.8	0
2255	The CIC-ERF co-deletion underlies fusion-independent activation of ETS family member, ETV1, to drive prostate cancer progression. ELife, 0, 11 , .	2.8	3
2256	Complexities of Prostate Cancer. International Journal of Molecular Sciences, 2022, 23, 14257.	1.8	20
2257	Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers, 2022, 14, 5633.	1.7	6
2258	Patient-Derived Xenografts and Organoids Recapitulate Castration-Resistant Prostate Cancer with Sustained Androgen Receptor Signaling. Cells, 2022, 11, 3632.	1.8	7
2259	Recent advances in tumor biomarker detection by lanthanide upconversion nanoparticles. Journal of Materials Chemistry B, 2023, 11 , 755-771.	2.9	2
2260	Germline Variants in DNA Damage Repair Genes and $\mbox{\sc i} > \mbox{HOXB13} < \mbox{\sc i} > Among Black Patients With Early-Onset Prostate Cancer. JCO Precision Oncology, 2022, , .$	1.5	1

#	Article	IF	CITATIONS
2261	Plk1 Inhibitors and Abiraterone Synergistically Disrupt Mitosis and Kill Cancer Cells of Disparate Origin Independently of Androgen Receptor Signaling. Cancer Research, 2023, 83, 219-238.	0.4	4
2262	Experimental in vitro, exÂvivo and in vivo models in prostate cancer research. Nature Reviews Urology, 2023, 20, 158-178.	1.9	11
2263	DNA Damage Response in Cancer Therapy and Resistance: Challenges and Opportunities. International Journal of Molecular Sciences, 2022, 23, 14672.	1.8	26
2264	Knockdown of NCOR2 Inhibits Cell Proliferation via BDNF/TrkB/ERK in NF1-Derived MPNSTs. Cancers, 2022, 14, 5798.	1.7	3
2265	Collateral deletion of the mitochondrial AAA+ ATPase ATAD1 sensitizes cancer cells to proteasome dysfunction. ELife, $0,11,1$	2.8	5
2266	ARID1A loss induces polymorphonuclear myeloid-derived suppressor cell chemotaxis and promotes prostate cancer progression. Nature Communications, 2022, 13, .	5.8	20
2267	CHD6 promotes broad nucleosome eviction for transcriptional activation in prostate cancer cells. Nucleic Acids Research, 2022, 50, 12186-12201.	6.5	4
2268	Clinical Application of Poly(ADP-ribose) Polymerase (PARP) Inhibitors in Prostate Cancer. Cancers, 2022, 14, 5922.	1.7	2
2269	The Neuropilin-1/PKC axis promotes neuroendocrine differentiation and drug resistance of prostate cancer. British Journal of Cancer, 2023, 128, 918-927.	2.9	4
2270	Androgen Receptor Signaling Inhibition in Advanced Castration Resistance Prostate Cancer: What Is Expected for the Near Future?. Cancers, 2022, 14, 6071.	1.7	7
2271	Prevalence of mismatch repair genes mutations and clinical activity of PD-1 therapy in Chinese prostate cancer patients. Cancer Immunology, Immunotherapy, 2023, 72, 1541-1551.	2.0	4
2272	ncRNA-mediated overexpression of ubiquitin-specific proteinase 13 contributes to the progression of prostate cancer via modulating AR signaling, DNA damage repair and immune infiltration. BMC Cancer, 2022, 22, .	1.1	1
2273	A correlative biomarker study and integrative prognostic model in chemotherapyâ€naÃ⁻ve metastatic castrationâ€resistant prostate cancer treated with enzalutamide. Prostate, 2023, 83, 376-384.	1.2	3
2274	Yeast-based evolutionary modeling of androgen receptor mutations and natural selection. PLoS Genetics, 2022, 18, e1010518.	1.5	1
2275	Biomarkers for the Detection and Risk Stratification of Aggressive Prostate Cancer. Cancers, 2022, 14, 6094.	1.7	4
2276	Idarubicin combats abiraterone and enzalutamide resistance in prostate cells via targeting XPA protein. Cell Death and Disease, 2022, 13 , .	2.7	O
2277	Therapeutic Targeting of DNA Damage Repair in the Era of Precision Oncology and Immune Checkpoint Inhibitors. Journal of Immunotherapy and Precision Oncology, 2023, 6, 31-49.	0.6	1
2278	Emerging role of transforming growth factor- \hat{l}^2 -regulated long non-coding RNAs in prostate cancer pathogenesis., 2023, 1, 195-204.		3

#	Article	IF	CITATIONS
2279	Deregulation of SPOP in Cancer. Cancer Research, 2023, 83, 489-499.	0.4	10
2280	Regulation of Kinase Signaling Pathways by $\hat{l}\pm6\hat{l}^2$ 4-Integrins and Plectin in Prostate Cancer. Cancers, 2023, 15, 149.	1.7	3
2281	Novel inhibition of AKR1C3 and androgen receptor axis by PTUPB synergizes enzalutamide treatment in advanced prostate cancer. Oncogene, 2023, 42, 693-707.	2.6	4
2282	Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	25
2283	The functional implication of <scp>ATF6α</scp> in castrationâ€resistant prostate cancer cells. FASEB Journal, 2023, 37, .	0.2	3
2285	<scp>YAP</scp> antagonizes <scp>TEAD</scp> â€mediated <scp>AR</scp> signaling and prostate cancer growth. EMBO Journal, 2023, 42, .	3.5	5
2286	Safety Profile of Ipatasertib Plus Abiraterone vs Placebo Plus Abiraterone in Metastatic Castration-resistant Prostate Cancer. Clinical Genitourinary Cancer, 2023, 21, 230-237.e1.	0.9	0
2287	The role and application of transcriptional repressors in cancer treatment. Archives of Pharmacal Research, 2023, 46, 1-17.	2.7	2
2288	The Somatic Mutational Landscape of Mismatch Repair Deficient Prostate Cancer. Journal of Clinical Medicine, 2023, 12, 623.	1.0	0
2289	CRISPR screens reveal genetic determinants of PARP inhibitor sensitivity and resistance in prostate cancer. Nature Communications, 2023, 14, .	5.8	24
2290	Intersection of immune and oncometabolic pathways drives cancer hyperprogression during immunotherapy. Cancer Cell, 2023, 41, 304-322.e7.	7.7	34
2291	Estimating copy number to determine $\langle i \rangle$ BRCA2 $\langle i \rangle$ deletion status and to expect prognosis in localized prostate cancer. Cancer Medicine, 0, , .	1.3	2
2292	Genomic Characteristics and the Potential Clinical Implications in Oligometastatic Non–Small Cell Lung Cancer. Cancer Research and Treatment, 2023, 55, 814-831.	1.3	0
2293	The future of patient-derived xenografts in prostate cancer research. Nature Reviews Urology, 2023, 20, 371-384.	1.9	2
2294	WNT5a Signaling through ROR2 Activates the Hippo Pathway to Suppress YAP1 Activity and Tumor Growth. Cancer Research, 2023, 83, 1016-1030.	0.4	7
2295	Multi-substrate Metabolic Tracing Reveals Marked Heterogeneity and Dependency on Fatty Acid Metabolism in Human Prostate Cancer. Molecular Cancer Research, 2023, 21, 359-373.	1.5	2
2296	Should one use the combination of abiraterone and poly(ADP-ribose) polymerase inhibitors as first-line therapy for all patients with metastatic castration-resistant prostate cancer?. Future Oncology, 0, , .	1.1	0
2297	Interstitial pneumonia after regression by olaparib for neuroendocrine prostate cancer with BRCA1 mutation: a case report. International Cancer Conference Journal, 2023, 12, 131-136.	0.2	4

#	ARTICLE	IF	CITATIONS
2298	Genomic alterations in neuroendocrine prostate cancer: A systematic review and metaâ€analysis. BJUI Compass, 2023, 4, 256-265.	0.7	4
2299	Androgen-Independent Prostate Cancer Is Sensitive to CDC42-PAK7 Kinase Inhibition. Biomedicines, 2023, 11, 101.	1.4	2
2300	Assessment of real-world application of advanced prostate cancer management in Japan. Translational Andrology and Urology, 2022, 11, 1614-1617.	0.6	0
2301	Combination with vorinostat enhances the antitumor activity of cisplatin in castrationâ€resistant prostate cancer by inhibiting DNA damage repair pathway and detoxification of GSH. Prostate, 2023, 83, 470-486.	1.2	6
2302	Testosterone Therapy in Advanced Prostate Cancer. Androgens: Clinical Research and Therapeutics, 2022, 3, 180-186.	0.2	0
2303	Genomic analysis of aggressive ductal adenocarcinoma of the prostate. Cancer Medicine, 2023, 12, 8445-8451.	1.3	2
2304	Mainstream germline genetic testing in men with metastatic prostate cancer: design and protocol for a multicenter observational study. BMC Cancer, 2022, 22, .	1,1	4
2305	Tumor immunology. , 2023, , 245-452.		0
2306	Recent advances in prostate cancer: WNT signaling, chromatin regulation, and transcriptional coregulators. Asian Journal of Andrology, 2023, .	0.8	1
2307	Addressing the Reciprocal Crosstalk between the AR and the PI3K/AKT/mTOR Signaling Pathways for Prostate Cancer Treatment. International Journal of Molecular Sciences, 2023, 24, 2289.	1.8	8
2308	The Application of Al in Precision Oncology: Tailoring Diagnosis, Treatment, and the Monitoring of Disease Progression to the Patient., 2023, , 1-25.		0
2309	HDAC inhibition in cancer. , 2023, , 63-97.		0
2310	CHD1, a multifaceted epigenetic remodeler in prostate cancer. Frontiers in Oncology, 0, 13, .	1.3	1
2312	Preclinical patientâ€derived modeling of castrationâ€resistant prostate cancer facilitates individualized assessment of homologous recombination repair deficient disease. Molecular Oncology, 2023, 17, 1129-1147.	2.1	1
2313	Selective androgen receptor degrader (SARD) to overcome antiandrogen resistance in castration-resistant prostate cancer. ELife, 0, 12, .	2.8	6
2314	DNA repair deficiency as circulating biomarker in prostate cancer. Frontiers in Oncology, 0, 13, .	1.3	8
2315	WNT Pathway Mutations in Metachronous Oligometastatic Castration-Sensitive Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2023, 115, 1095-1101.	0.4	4
2316	Systemic Therapies for Metastatic Castration-Resistant Prostate Cancer: An Updated Review. World Journal of Men?s Health, 2023, 41, 769.	1.7	10

#	Article	IF	CITATIONS
2317	Integrative analysis of ferroptosis regulators for clinical prognosis based on deep learning and potential chemotherapy sensitivity of prostate cancer. Precision Clinical Medicine, 2023, 6, .	1.3	1
2318	Niraparib and Abiraterone Acetate for Metastatic Castration-Resistant Prostate Cancer. Journal of Clinical Oncology, 2023, 41, 3339-3351.	0.8	60
2319	Co-expression and clinical utility of AR-FL and AR splice variants AR-V3, AR-V7 and AR-V9 in prostate cancer. Biomarker Research, 2023, 11 , .	2.8	0
2320	ETV4 mediates dosage-dependent prostate tumor initiation and cooperates with p53 loss to generate prostate cancer. Science Advances, 2023, 9, .	4.7	2
2321	Chromosome-specific segment size alterations are determinants of prognosis in prostate cancer. Saudi Journal of Biological Sciences, 2023, 30, 103629.	1.8	0
2322	Impact of concurrent tumour events on the prostate cancer outcomes of germline BRCA2 mutation carriers. European Journal of Cancer, 2023, 185, 105-118.	1.3	3
2323	Current therapy and drug resistance in metastatic castration-resistant prostate cancer. Drug Resistance Updates, 2023, 68, 100962.	6.5	30
2324	An updated review on cell signaling pathways regulated by candidate miRNAs in coronary artery disease. Non-coding RNA Research, 2023, 8, 326-334.	2.4	2
2325	Dissecting the effects of androgen deprivation therapy on cadherin switching in advanced prostate cancer: A molecular perspective. Oncology Research, 2022, 30, 137-155.	0.6	5
2326	Transcription networks rewire gene repertoire to coordinate cellular reprograming in prostate cancer. Seminars in Cancer Biology, 2023, 89, 76-91.	4.3	5
2327	Genetic Aspects and Molecular Testing in Prostate Cancer: A Report from a Dutch Multidisciplinary Consensus Meeting. European Urology Open Science, 2023, 49, 23-31.	0.2	2
2328	Current status and clinical application of patient-derived tumor organoid model in kidney and prostate cancers. BMB Reports, 2023, 56, 24-31.	1.1	2
2329	Immune-Activated B Cells Are Dominant in Prostate Cancer. Cancers, 2023, 15, 920.	1.7	3
2330	PI5P4 \hat{Kl} ± supports prostate cancer metabolism and exposes a survival vulnerability during androgen receptor inhibition. Science Advances, 2023, 9, .	4.7	9
2331	Epigenetic mechanisms underlying subtype heterogeneity and tumor recurrence in prostate cancer. Nature Communications, 2023, 14, .	5.8	8
2332	Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. Journal of Advanced Research, 2023, 54, 147-179.	4.4	3
2333	SMAD3 promotes expression and activity of the androgen receptor in prostate cancer. Nucleic Acids Research, 2023, 51, 2655-2670.	6.5	7
2334	Modulating structural dynamics of dual drugs for CDK4 complex addressing prostate cancer. Journal of Molecular Liquids, 2023, 376, 121454.	2.3	1

#	Article	IF	Citations
2335	Protein degraders enter the clinic $\hat{a}\in$ " a new approach to cancer therapy. Nature Reviews Clinical Oncology, 2023, 20, 265-278.	12.5	100
2336	Harnessing transcriptionally driven chromosomal instability adaptation to target therapy-refractory lethal prostate cancer. Cell Reports Medicine, 2023, 4, 100937.	3.3	11
2337	Preclinical models of prostate cancer â€" modelling androgen dependency and castration resistance in vitro, ex vivo and in vivo. Nature Reviews Urology, 2023, 20, 480-493.	1.9	5
2338	Cheminformatic Analysis and Machine Learning Modeling to Investigate Androgen Receptor Antagonists to Combat Prostate Cancer. ACS Omega, 2023, 8, 6729-6742.	1.6	3
2339	Nurturing the marriages of urinary liquid biopsies and nanoâ€diagnostics for precision urinalysis of prostate cancer. , 2023, 2, .		8
2340	Our Current Understanding of the Heterogeneity in Prostate Cancer and Renal Cell Carcinoma. Journal of Clinical Medicine, 2023, 12, 1526.	1.0	2
2341	Plexin-B1 Mutation Drives Metastasis in Prostate Cancer Mouse Models. Cancer Research Communications, 2023, 3, 444-458.	0.7	4
2342	Prognostic value of genomic mutations in metastatic prostate cancer. Heliyon, 2023, 9, e13827.	1.4	3
2343	Adaptive and non-adaptive gene expression responses in prostate cancer during androgen deprivation. PLoS ONE, 2023, 18, e0281645.	1.1	0
2345	Rewiring of the N-Glycome with prostate cancer progression and therapy resistance. Npj Precision Oncology, 2023, 7, .	2.3	3
2346	Applications of mass spectroscopy in understanding cancer proteomics., 2023, , 179-204.		0
2348	A compendium of Androgen Receptor Variant 7 target genes and their role in Castration Resistant Prostate Cancer. Frontiers in Oncology, 0, 13 , .	1.3	3
2349	Reversal of Lactate and PD-1–mediated Macrophage Immunosuppression Controls Growth of PTEN/p53-deficient Prostate Cancer. Clinical Cancer Research, 2023, 29, 1952-1968.	3.2	17
2350	Molecular predictors of metastasis in patients with prostate cancer. Expert Review of Molecular Diagnostics, 2023, 23, 199-215.	1.5	2
2351	First-line pembrolizumab plus androgen deprivation therapy for locally advanced microsatellite instability-high prostate cancer in a patient with Muir-Torre syndrome: A case report. Frontiers in Oncology, 0, 13, .	1.3	0
2352	IncRNA MAGI2-AS3 suppresses castration-resistant prostate cancer proliferation and migration via the miR-106a-5p/RAB31 axis. Genomics, 2023, 115, 110599.	1.3	1
2353	Targeting androgen receptor and the variants by an orally bioavailable Proteolysis Targeting Chimeras compound in castration resistant prostate cancer. EBioMedicine, 2023, 90, 104500.	2.7	7
2355	Small-Molecule Inhibition of Androgen Receptor Dimerization as a Strategy against Prostate Cancer. ACS Central Science, 2023, 9, 675-684.	5.3	3

#	Article	IF	CITATIONS
2356	The Role of ERÎ \pm and ERÎ 2 in Castration-Resistant Prostate Cancer and Current Therapeutic Approaches. Biomedicines, 2023, 11, 826.	1.4	2
2357	A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes. Npj Precision Oncology, 2023, 7, .	2.3	3
2358	Matching BRCA and prostate cancer in a public health system: Report of the Italian Society for Uro-Oncology (SIUrO) consensus project. Critical Reviews in Oncology/Hematology, 2023, 184, 103959.	2.0	0
2359	Bone marrow adipocytes induce cancerâ€essociated fibroblasts and immune evasion, enhancing invasion and drug resistance. Cancer Science, 2023, 114, 2674-2688.	1.7	7
2360	A Five Glutamine-Associated Signature Predicts Prognosis of Prostate Cancer and Links Glutamine Metabolism with Tumor Microenvironment. Journal of Clinical Medicine, 2023, 12, 2243.	1.0	2
2361	A hotspot for posttranslational modifications on the androgen receptor dimer interface drives pathology and anti-androgen resistance. Science Advances, 2023, 9, .	4.7	3
2362	Tumor testing and treatment patterns in veterans with metastatic castration-resistant prostate cancer. Seminars in Oncology, 2023, 50, 11-24.	0.8	0
2363	RB1-deficient prostate tumor growth and metastasis are vulnerable to ferroptosis induction via the E2F/ACSL4 axis. Journal of Clinical Investigation, 2023, 133 , .	3.9	15
2364	Development and validation of a tumor immune cell infiltration-related gene signature for recurrence prediction by weighted gene co-expression network analysis in prostate cancer. Frontiers in Genetics, $0,14,\ldots$	1.1	1
2365	Expression and Therapeutic Targeting of TROP-2 in Treatment-Resistant Prostate Cancer. Clinical Cancer Research, 2023, 29, 2324-2335.	3.2	7
2366	Advances in PARP Inhibitors for Prostate Cancer. Cancers, 2023, 15, 1849.	1.7	10
2367	Genomics of Prostate Cancer: Clinical Utility and Challenges. Acta Clinica Croatica, 2022, , .	0.1	0
2369	Circular RNAs Could Encode Unique Proteins and Affect Cancer Pathways. Biology, 2023, 12, 493.	1.3	1
2370	The Role of WNT Pathway Mutations in Cancer Development and an Overview of Therapeutic Options. Cells, 2023, 12, 990.	1.8	6
2372	Molecular testing of DNA damage response pathways in prostate cancer patients. Current Opinion in Oncology, 2023, 35, 224-230.	1.1	0
2373	HOXB3 drives WNT-activation associated progression in castration-resistant prostate cancer. Cell Death and Disease, 2023, 14, .	2.7	0
2374	Case Report: Identification of a rare nonsense mutation in the POC1A gene by NGS in a diabetes mellitus patient. Frontiers in Genetics, 0, 14, .	1.1	1
2375	Somatic and germline aberrations in homologous recombination repair genes in Chinese prostate cancer patients. Frontiers in Oncology, $0,13,.$	1.3	O

#	Article	IF	CITATIONS
2376	An approach to genetic testing in patients with metastatic castration-resistant prostate cancer in Singapore. Annals of the Academy of Medicine, Singapore, 2023, 52, 135-148.	0.2	1
2377	Senescent Tumor Cells Are Frequently Present at the Invasion Front: Implications for Improving Disease Control in Patients with Locally Advanced Prostate Cancer. Pathobiology, 2023, 90, 312-321.	1.9	2
2379	Comparative oncology: overcoming human cancer through companion animal studies. Experimental and Molecular Medicine, 2023, 55, 725-734.	3.2	5
2380	Personalised Management of Prostate Cancer. European Medical Journal Urology, 0, , 67-73.	0.0	0
2381	BET Inhibition Sensitizes Immunologically Cold Rb-Deficient Prostate Cancer to Immune Checkpoint Blockade. Molecular Cancer Therapeutics, 2023, 22, 751-764.	1.9	0
2382	Long noncoding RNA GHET1 promotes cell proliferation through oxidative stress in prostate cancer. Journal of Biochemical and Molecular Toxicology, 2023, 37, .	1.4	0
2383	Leukocytic Infiltration of Intraductal Carcinoma of the Prostate: An Exploratory Study. Cancers, 2023, 15, 2217.	1.7	1
2384	Transcriptome Analysis Identifies Tumor Immune Microenvironment Signaling Networks Supporting Metastatic Castration-Resistant Prostate Cancer. Onco, 2023, 3, 81-95.	0.2	0
2385	DNA Methylation Landscapes of Prostate Cancer Brain Metastasis Are Shaped by Early Driver Genetic Alterations. Cancer Research, 2023, 83, 1203-1213.	0.4	3
2386	ALAN is a computational approach that interprets genomic findings in the context of tumor ecosystems. Communications Biology, 2023, 6, .	2.0	2
2387	Autocrine activation of MAPK signaling mediates intrinsic tolerance to androgen deprivation in LY6D prostate cancer cells. Cell Reports, 2023, 42, 112377.	2.9	2
2388	Computational drug discovery for castration-resistant prostate cancers through in vitro drug response modeling. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	3
2389	Radiotheranostics in advanced prostate cancer: Current and future directions. Prostate Cancer and Prostatic Diseases, 2024, 27, 11-21.	2.0	1
2390	The functional roles of m6A modification in prostate cancer. Proteomics - Clinical Applications, 2023, 17, .	0.8	1
2391	The CDK7 inhibitor CT7001 (Samuraciclib) targets proliferation pathways to inhibit advanced prostate cancer. British Journal of Cancer, 2023, 128, 2326-2337.	2.9	2
2417	Cancers hormono-dépendants : sein et prostate. , 2023, , 183-192.		0
2465	Long-range gene regulation in hormone-dependent cancer. Nature Reviews Cancer, 2023, 23, 657-672.	12.8	2
2511	Androgen Receptor Signaling: A Central and Evolving Theme in Prostate Cancer Treatment., 2023,, 1-29.		0

#	Article	IF	CITATIONS
2518	SIUrO best practice recommendations to optimize BRCA $1/2$ gene testing from DNA extracted from bone biopsy in mCRPC patients (BRCA Optimal Bone Biopsy Procedure: BOP). Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, $0, .$	1.4	1
2528	Epidemiologie des metastasierten Prostatakarzinoms. , 2023, , 1-6.		0
2537	Platinum-based chemotherapy in metastatic prostate cancer: what possibilities? Cancer Chemotherapy and Pharmacology, $0, \dots$	1.1	0
2541	Overcoming resistance in prostate cancer with targeted and small molecule-based therapies. , 2024, , 255-287.		0
2542	Androgen receptor-dependent mechanisms mediating therapy resistance in prostate cancer. , 2024, , 57-84.		0
2545	The urothelial gene regulatory network: understanding biology to improve bladder cancer management. Oncogene, 2024, 43, 1-21.	2.6	0
2552	Epigenetic changes driving therapy resistance in prostate cancer. , 2024, , 85-106.		0
2563	Development of PARP Inhibitors in Targeting Castration-Resistant Prostate Cancer. Cancer Treatment and Research, 2023, , 103-124.	0.2	0
2574	ROS, Redox Regulation, and Anticancer Therapy. , 2023, , 311-409.		0
2578	From molecular mechanisms of prostate cancer to translational applications: based on multi-omics fusion analysis and intelligent medicine. Health Information Science and Systems, 2024, 12, .	3.4	0
2580	Epigenetic (De)regulation in Prostate Cancer. Cancer Treatment and Research, 2023, , 321-360.	0.2	0
2603	Molecular biomarkers in prostate cancer. , 2024, , 305-312.		0
2604	Homologous repair deficiency and PARP inhibitors in cancer management., 2024,, 257-274.		0
2605	The role of stromal cells in epithelial–mesenchymal plasticity and its therapeutic potential. Discover Oncology, 2024, 15, .	0.8	0
2606	"Multiomics in precision medicine― , 2024, , 195-207.		0
2618	The yin and yang of chromosomal instability in prostate cancer. Nature Reviews Urology, 0, , .	1.9	0
2637	Prostatakrebs., 2024,, 473-498.		0
2648	Pharmacogenomics and Precision Therapy in Prostate Cancer: Challenges and Perspectives. , 2024, , 335-377.		0

#	Article	IF	CITATIONS
2658	Biological Markers of Therapeutic Response in Prostate Cancer. , 2024, , 221-241.		0
2659	Genetic Susceptibility to Prostate Cancer. , 2024, , 21-42.		O
2660	Tumor Markers in Early Detection and Monitoring of Prostate Cancer: Recent Advances. , 2024, , 207-219.		0