A comparative study of multi-trailer articulated heavy-

Enginedings of the Institution of Mechanical Engineers, Part D 229, 1200-1228 DOI: 10.1177/0954407014557053

Citation Report

#	Article	IF	CITATIONS
1	A study on single lane-change manoeuvres for determining rearward amplification of multi-trailer articulated heavy vehicles with active trailer steering systems. Vehicle System Dynamics, 2016, 54, 102-123.	2.2	28
2	A design synthesis framework for directional performance optimization of multi-trailer articulated heavy vehicles with trailer lateral dynamic control systems. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017, 231, 1096-1125.	1.1	16
3	Effect of articulated frame steering on the transient yaw responses of the vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2018, 232, 384-399.	1.1	12
4	Robust tracking controller design for active dolly steering. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2018, 232, 695-706.	1.1	3
5	Parameter Identification of Tractor-Semitrailer Model under Steering and Braking. Mathematical Problems in Engineering, 2019, 2019, 1-14.	0.6	2
6	Performance and robustness assessment of Hâ^ž active anti-roll bar control system by using a software environment. IFAC-PapersOnLine, 2019, 52, 255-260.	0.5	3
7	On robust controllers for active steering systems of articulated heavy vehicles. International Journal of Heavy Vehicle Systems, 2019, 26, 1.	0.1	8
8	Development of the active disturbance rejection control method for increasing the stability of the long articulated vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233, 3554-3576.	1.1	8
9	Assessing the influence of the road-tire friction coefficient on the yaw and roll stability of articulated vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233, 2987-2999.	1.1	10
10	Effectiveness of a raised road: rail crossing for the safety of road vehicle occupants. Engineering Failure Analysis, 2019, 97, 258-273.	1.8	7
11	How well a single-track linear model captures the lateral dynamics of long combination vehicles. Vehicle System Dynamics, 2019, 57, 1874-1896.	2.2	4
12	Developing a cost-effective test system for evaluating dynamic performance of articulated heavy vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233, 2863-2878.	1.1	0
13	Damaged-aircraft trailer dynamics simulation and vibration optimization. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234, 110-121.	1.1	0
14	Gain-scheduled Hâ^ž controller synthesis for actively steered longer and heavier commercial vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234, 2045-2065.	1.1	5
15	Modeling and performance evaluation of a heavy-duty vehicle based on the hydraulic power steering system. Simulation, 2020, 96, 297-311.	1.1	4
16	A Unified Lateral Preview Driver Model for Road Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 4858-4868.	4.7	9
17	Quantifying drivers' driving skills using closed-loop dynamic simulations of articulated heavy vehicles. Simulation Modelling Practice and Theory, 2020, 99, 102014.	2.2	13
18	Computationally Efficient Nonlinear One- and Two-Track Models for Multitrailer Road Vehicles. IEEE Access, 2020, 8, 203854-203875.	2.6	6

#	Article	IF	CITATIONS
19	Influence of braking on dynamic stability of car-trailer combinations. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235, 455-464.	1.1	2
20	A Review on Vehicle-Trailer State and Parameter Estimation. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 5993-6010.	4.7	12
21	Modelling and Stability Analysis of Articulated Vehicles. Applied Sciences (Switzerland), 2021, 11, 3663.	1.3	18
22	A study on body sway of car-trailer combinations considering dry friction in steering subsystem. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 0, , 095440702110520.	1.1	1
23	On dynamic stability evaluation methods for long combination vehicles. Vehicle System Dynamics, 2022, 60, 3999-4034.	2.2	6
24	Yaw Stability Analysis of Articulated Vehicles Using Phase Trajectory Method. Lecture Notes in Mechanical Engineering, 2019, , 445-457.	0.3	0
25	Pickup Truck and Trailer Gross Vehicle Weight Study. , 0, , .		1
26	Optimization-based motion planning for multi-steered articulated vehicles. IFAC-PapersOnLine, 2020, 53, 15580-15587.	0.5	3
27	A predictive path-following controller for multi-steered articulated vehicles. IFAC-PapersOnLine, 2020, 53, 15725-15732.	0.5	3
28	Layered disturbance rejection path-following control with geometry-based feedforward for unmanned rollers. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 0, , 095440702210870.	1.1	0
29	Application of Electrohydraulic Proportional Valve for Steering Improvement of an Autonomous Tractor. Journal of Biosystems Engineering, 0, , .	1.2	1
30	An Autonomous Driving Control Strategy for Multi-trailer Articulated Heavy Vehicles with Enhanced Active Trailer Safety. Lecture Notes in Mechanical Engineering, 2022, , 769-782.	0.3	4
31	Trajectory-following and off-tracking minimisation of long combination vehicles: a comparison between nonlinear and linear model predictive control. Vehicle System Dynamics, 2024, 62, 277-310.	2.2	2

CITATION REPORT