Nanocomplexation between Curcumin and Soy Protein Stability/Bioaccessibility and in Vitro Protein Digestibil

Journal of Agricultural and Food Chemistry 63, 3559-3569 DOI: 10.1021/acs.jafc.5b00448

Citation Report

#	Article	IF	CITATIONS
1	Nanocomplexation of soy protein isolate with curcumin: Influence of ultrasonic treatment. Food Research International, 2015, 75, 157-165.	2.9	118
2	Regulatory perspectives on nanotechnology in nutraceuticals. , 2016, , 183-230.		1
3	Glycation of bovine serum albumin with monosaccharides inhibits heat-induced protein aggregation. RSC Advances, 2016, 6, 115183-115188.	1.7	21
4	Fabrication and delivery properties of soy Kunitz trypsin inhibitor nanoparticles. RSC Advances, 2016, 6, 85621-85633.	1.7	14
5	Spray-drying microencapsulation of CoQ 10 in olive oil for enhanced water dispersion, stability and bioaccessibility: Influence of type of emulsifiers and/or wall materials. Food Hydrocolloids, 2016, 61, 20-30.	5.6	44
6	Food proteins as vehicles for enhanced water dispersibility, stability and bioaccessibility of coenzyme Q10. LWT - Food Science and Technology, 2016, 72, 125-133.	2.5	23
7	Influence of nanocomplexation with curcumin on emulsifying properties and emulsion oxidative stability of soy protein isolate at pH 3.0 and 7.0. Food Hydrocolloids, 2016, 61, 102-112.	5.6	87
8	Structural and Functional Properties of Soy Protein Isolates Modified by Soy Soluble Polysaccharides. Journal of Agricultural and Food Chemistry, 2016, 64, 7275-7284.	2.4	68
9	Food protein-based phytosterol nanoparticles: fabrication and characterization. Food and Function, 2016, 7, 3973-3980.	2.1	39
10	The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends in Food Science and Technology, 2016, 56, 21-38.	7.8	505
11	Natural biopolymers as nanocarriers for bioactive ingredients used in food industries. , 2016, , 793-829.		12
12	Comparison of the colloidal stability, bioaccessibility and antioxidant activity of corn protein hydrolysate and sodium caseinate stabilized curcumin nanoparticles. Journal of Food Science and Technology, 2016, 53, 2923-2932.	1.4	17
13	Complexation of curcumin with 2-aminoethyl diphenyl borate and implications for spatiotemporal fluorescence monitoring. International Journal of Pharmaceutics, 2016, 515, 669-676.	2.6	17
14	The physicochemical properties, in vitro binding capacities and in vivo hypocholesterolemic activity of soluble dietary fiber extracted from soy hulls. Food and Function, 2016, 7, 4830-4840.	2.1	37
15	Corn protein hydrolysate as a novel nano-vehicle: Enhanced physicochemical stability and inÂvitro bioaccessibility of vitamin D3. LWT - Food Science and Technology, 2016, 72, 510-517.	2.5	45
16	Core–Shell Soy Protein–Soy Polysaccharide Complex (Nano)particles as Carriers for Improved Stability and Sustained Release of Curcumin. Journal of Agricultural and Food Chemistry, 2016, 64, 5053-5059.	2.4	140
17	Glycosylated α-lactalbumin-based nanocomplex for curcumin: Physicochemical stability and DPPH-scavenging activity. Food Hydrocolloids, 2016, 61, 369-377.	5.6	93
18	Quercetagetin loaded in soy protein isolate–îº-carrageenan complex: Fabrication mechanism and protective effect. Food Research International, 2016, 83, 31-40.	2.9	58

#	Article	IF	CITATIONS
19	Food Matrix Effects on Nutraceutical Bioavailability: Impact of Protein on Curcumin Bioaccessibility and Transformation in Nanoemulsion Delivery Systems and Excipient Nanoemulsions. Food Biophysics, 2016, 11, 142-153.	1.4	35
20	Optimization of Microencapsulation of \hat{I}^2 -Lactoglobulin-Vitamin A Using Response Surface Methodology. Journal of Food Processing and Preservation, 2017, 41, e12747.	0.9	2
21	Soy Soluble Polysaccharide as a Nanocarrier for Curcumin. Journal of Agricultural and Food Chemistry, 2017, 65, 1707-1714.	2.4	50
22	Freeze-thaw stability of pickering emulsions stabilized by soy and whey protein particles. Food Hydrocolloids, 2017, 69, 173-184.	5.6	121
23	Fabrication of a Soybean Bowman–Birk Inhibitor (BBI) Nanodelivery Carrier To Improve Bioavailability of Curcumin. Journal of Agricultural and Food Chemistry, 2017, 65, 2426-2434.	2.4	30
24	Characterisation and food application of curcumin bound to sodium caseinate–polysaccharide electrostatic complexes. International Journal of Food Science and Technology, 2017, 52, 1770-1776.	1.3	9
25	Effects of colloidal complexes formation between resveratrol and deamidated gliadin on the bioaccessibility and lipid oxidative stability. Food Hydrocolloids, 2017, 69, 466-472.	5.6	41
26	Ca 2+ -induced soy protein nanoparticles as pickering stabilizers: Fabrication and characterization. Food Hydrocolloids, 2017, 65, 175-186.	5.6	72
27	Cancer therapeutics with epigallocatechin-3-gallate encapsulated in biopolymeric nanoparticles. International Journal of Pharmaceutics, 2017, 518, 220-227.	2.6	46
28	Binding behaviors and structural characteristics of ternary complexes of β-lactoglobulin, curcumin, and fatty acids. RSC Advances, 2017, 7, 45960-45967.	1.7	41
29	A New Water-Soluble Nanomicelle Formed through Self-Assembly of Pectin–Curcumin Conjugates: Preparation, Characterization, and Anticancer Activity Evaluation. Journal of Agricultural and Food Chemistry, 2017, 65, 6840-6847.	2.4	60
30	Food: more than the sum of its parts. Current Opinion in Food Science, 2017, 16, 120-124.	4.1	13
31	The influence of ionic strength on the characteristics of heat-induced soy protein aggregate nanoparticles and the freeze–thaw stability of the resultant Pickering emulsions. Food and Function, 2017, 8, 2974-2981.	2.1	41
32	New nanomicelle curcumin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment. Drug Development and Industrial Pharmacy, 2017, 43, 1846-1857.	0.9	69
33	Enhanced colloidal stability, solubility and rapid dissolution of resveratrol by nanocomplexation with soy protein isolate. Journal of Colloid and Interface Science, 2017, 488, 303-308.	5.0	132
34	Soy protein isolate as a nanocarrier for enhanced water dispersibility, stability and bioaccessibility of <i>l²</i> â€carotene. Journal of the Science of Food and Agriculture, 2017, 97, 2230-2237.	1.7	46
35	Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Advances in Colloid and Interface Science, 2018, 253, 1-22.	7.0	287
36	Development of a Sono-Assembled, Bifunctional Soy Peptide Nanoparticle for Cellular Delivery of Hydrophobic Active Cargoes. Journal of Agricultural and Food Chemistry, 2018, 66, 4208-4218.	2.4	46

#	Article	IF	CITATIONS
37	Elaboration of curcumin-loaded rice bran albumin nanoparticles formulation with increased inÂvitro bioavailability. Food Hydrocolloids, 2018, 77, 834-842.	5.6	66
38	Nanoparticles prepared by proso millet protein as novel curcumin delivery system. Food Chemistry, 2018, 240, 1039-1046.	4.2	65
39	Solubilization and protection of curcumin based on lysozyme/albumin nano-complex. AIP Advances, 2018, 8, .	0.6	13
40	Ovalbumin as a carrier to significantly enhance the aqueous solubility and photostability of curcumin: Interaction and binding mechanism study. International Journal of Biological Macromolecules, 2018, 116, 893-900.	3.6	93
41	Modification of soy protein isolate by glutaminase for nanocomplexation with curcumin. Food Chemistry, 2018, 268, 504-512.	4.2	92
42	Effects of thermal sterilization on soy protein isolate/polyphenol complexes: Aspects of structure, in vitro digestibility and antioxidant activity. Food Research International, 2018, 112, 284-290.	2.9	110
43	Interaction of Î ² -conglycinin with catechin-impact on physical and oxidative stability of safflower oil-in-water emulsion. Food Chemistry, 2018, 268, 315-323.	4.2	22
44	Cold gelation of curcumin loaded whey protein aggregates mixed with k-carrageenan: Impact of gel microstructure on the gastrointestinal fate of curcumin. Food Hydrocolloids, 2018, 85, 267-280.	5.6	124
45	In vitro digestion of lactoferrin-glycomacropeptide nanohydrogels incorporating bioactive compounds: Effect of a chitosan coating. Food Hydrocolloids, 2018, 84, 267-275.	5.6	22
46	Improving freeze-thaw stability of soy nanoparticle-stabilized emulsions through increasing particle size and surface hydrophobicity. Food Hydrocolloids, 2019, 87, 404-412.	5.6	50
47	Application of different nanocarriers for encapsulation of curcumin. Critical Reviews in Food Science and Nutrition, 2019, 59, 3468-3497.	5.4	161
48	Oral Curcumin via Hydrophobic Porous Silicon Carrier: Preparation, Characterization, and Toxicological Evaluation In Vivo. ACS Applied Materials & Interfaces, 2019, 11, 31661-31670.	4.0	14
49	Soy protein isolate-carboxymethyl cellulose conjugates with pH sensitivity for sustained avermectin release. Royal Society Open Science, 2019, 6, 190685.	1.1	14
50	Effect of high intensity ultrasound on the structure and physicochemical properties of soy protein isolates produced by different denaturation methods. Food Hydrocolloids, 2019, 97, 105216.	5.6	78
51	Formation and Stability of Pea Proteins Nanoparticles Using Ethanol-Induced Desolvation. Nanomaterials, 2019, 9, 949.	1.9	37
52	Discussion on the application principle of tuina manipulations for lumbar intervertebral disc herniation in Chinese literatures in recent 30 years. Journal of Acupuncture and Tuina Science, 2019, 17, 270-277.	0.1	1
53	Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. Journal of Controlled Release, 2019, 316, 359-380.	4.8	206
54	Influence of transglutaminaseâ€assisted ultrasound treatment on the structure and functional properties of soy protein isolate. Journal of Food Processing and Preservation, 2019, 43, e14203.	0.9	23

#	Article	IF	CITATIONS
55	Complexation of curcumin with whey protein isolate for enhancing its aqueous solubility through a solventâ€free pHâ€driven approach. Journal of Food Processing and Preservation, 2019, 43, e14227.	0.9	27
56	Enhanced Chemical Stability, Intestinal Absorption, and Intracellular Antioxidant Activity of Cyanidin-3- <i>O</i> -glucoside by Composite Nanogel Encapsulation. Journal of Agricultural and Food Chemistry, 2019, 67, 10432-10447.	2.4	63
57	Enhanced Curcumin Bioavailability through Nonionic Surfactant/Caseinate Mixed Nanoemulsions. Journal of Food Science, 2019, 84, 2584-2591.	1.5	25
58	Foaming properties and air–water interfacial behavior of corn protein hydrolyzate–tannic acid complexes. Journal of Food Science and Technology, 2019, 56, 905-913.	1.4	14
59	Porous Silicon Carrier Delivery System for Curcumin: Preparation, Characterization, and Cytotoxicity in Vitro. ACS Applied Bio Materials, 2019, 2, 1041-1049.	2.3	11
60	Nanostructures of soy proteins for encapsulation of food bioactive ingredients. , 2019, , 247-285.		0
61	Oleic acid as a protein ligand improving intestinal absorption and ocular benefit of fucoxanthin in water through protein-based encapsulation. Food and Function, 2019, 10, 4381-4395.	2.1	29
62	Complexation of curcumin with Lepidium sativum protein hydrolysate as a novel curcumin delivery system. Food Chemistry, 2019, 298, 125091.	4.2	32
63	The characterization and stability of the soy protein isolate/1-Octacosanol nanocomplex. Food Chemistry, 2019, 297, 124766.	4.2	26
64	Novel Soy β-Conglycinin Core–Shell Nanoparticles As Outstanding Ecofriendly Nanocarriers for Curcumin. Journal of Agricultural and Food Chemistry, 2019, 67, 6292-6301.	2.4	54
65	Curcumin–sunflower protein nanoparticles—A potential antiinflammatory agent. Journal of Food Biochemistry, 2019, 43, e12909.	1.2	31
66	Pickering emulsion stabilized by protein nanogel particles for delivery of curcumin: Effects of pH and ionic strength on curcumin retention. Food Structure, 2019, 21, 100113.	2.3	58
67	Simulated gastrointestinal digestion of inclusion complexes based on ovalbumin nanoparticles and conjugated linoleic acid. Food and Function, 2019, 10, 2630-2641.	2.1	14
68	Potato protein- based carriers for enhancing bioavailability of astaxanthin. Food Hydrocolloids, 2019, 96, 72-80.	5.6	65
69	Preparation and characterization of general-purpose gelatin-based co-loading flavonoids nano-core structure. Scientific Reports, 2019, 9, 6365.	1.6	18
70	Generation of engineered core–shell antibiotic nanoparticles. RSC Advances, 2019, 9, 8326-8332.	1.7	28
71	Insights into interaction of chlorophylls with sodium caseinate in aqueous nanometre-scale dispersion: color stability, spectroscopic, electrostatic, and morphological properties. RSC Advances, 2019, 9, 4530-4538.	1.7	12
72	A Study of Structural Change during In Vitro Digestion of Heated Soy Protein Isolates. Foods, 2019, 8, 594.	1.9	19

#	Article	IF	CITATIONS
73	Myofibrillar protein–curcumin nanocomplexes prepared at different ionic strengths to improve oxidative stability of marinated chicken meat products. LWT - Food Science and Technology, 2019, 99, 69-76.	2.5	29
74	Thermally-induced whey protein isolate-daidzein co-assemblies: Protein-based nanocomplexes as an inhibitor of precipitation/crystallization for hydrophobic drug. Food Chemistry, 2019, 275, 273-281.	4.2	16
75	Development of Nanocomplexes for Curcumin Vehiculization Using Ovalbumin and Sodium Alginate as Building Blocks: Improved Stability, Bioaccessibility, and Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2019, 67, 379-390.	2.4	53
76	In vitro gastrointestinal digest of catechin-modified β-conglycinin oxidized by lipoxygenase-catalyzed linoleic acid peroxidation. Food Chemistry, 2019, 280, 154-163.	4.2	20
77	Alginate-shelled SPI nanoparticle for encapsulation of resveratrol with enhanced colloidal and chemical stability. Food Hydrocolloids, 2019, 90, 313-320.	5.6	64
78	Hydrophobicâ€assembled curcumin–porcine plasma protein complex affected by pH. International Journal of Food Science and Technology, 2019, 54, 891-897.	1.3	5
79	Protein matrices ensure safe and functional delivery of rosmarinic acid from marjoram (<i>Origanum) Tj ETQq0 0</i>	0 [gBT /O\	verlock 10 T
80	Novel soy β-conglycinin nanoparticles by ethanol-assisted disassembly and reassembly: Outstanding nanocarriers for hydrophobic nutraceuticals. Food Hydrocolloids, 2019, 91, 246-255.	5.6	52
81	Nanostructured soy proteins: Fabrication and applications as delivery systems for bioactives (a) Tj ETQq0 0 0 rgB1	[Oyerloch	2 10 Tf 50 4
82	Nano-micelles based on hydroxyethyl starch-curcumin conjugates for improved stability, antioxidant and anticancer activity of curcumin. Carbohydrate Polymers, 2020, 228, 115398.	5.1	86
83	Improving the Solubility of Myofibrillar Proteins (MPs) by Mixing with Sodium Alginate: Effects of pH, Mixing Ratios and Preheating of MPs. Food Biophysics, 2020, 15, 113-121.	1.4	15
84	Molecular dynamics simulation exploration of the interaction between curcumin and myosin combined with the results of spectroscopy techniques. Food Hydrocolloids, 2020, 101, 105455.	5.6	103
85	High internal phase emulsions stabilized solely by a globular protein glycated to form soft particles. Food Hydrocolloids, 2020, 98, 105254.	5.6	94
86	β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies. Food Research International, 2020, 131, 108979.	2.9	30
87	Fabrication of curcumin-loaded pea protein-pectin ternary complex for the stabilization and delivery of βâ€ʿcarotene emulsions. Food Chemistry, 2020, 313, 126118.	4.2	67
88	Globular protein stabilized nanoparticles for delivery of disulfiram: fabrication, characterization, <i>in vitro</i> toxicity, and cellular uptake. RSC Advances, 2020, 10, 133-144.	1.7	15
89	Antibacterial and anticancer activities of asymmetric lollipop-like mesoporous silica nanoparticles loaded with curcumin and gentamicin sulfate. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110744.	2.5	31
90	Antibiotic copper oxide-curcumin nanomaterials for antibacterial applications. Journal of Molecular Liquids, 2020, 300, 112353.	2.3	53

#	Article	IF	CITATIONS
91	Effect of non-covalent and covalent complexation of (â^)-epigallocatechin gallate with soybean protein isolate on protein structure and in vitro digestion characteristics. Food Chemistry, 2020, 309, 125718.	4.2	138
92	Forming nanoconjugates or inducing macroaggregates, curcumin dose effect on myosin assembling revealed by molecular dynamics simulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125415.	2.3	16
93	The Role of Imidazolium-Based Surface-Active Ionic Liquid to Restrain the Excited-State Intramolecular H-Atom Transfer Dynamics of Medicinal Pigment Curcumin: A Theoretical and Experimental Approach. ACS Omega, 2020, 5, 25582-25592.	1.6	17
94	Preparation, characterization, antioxidant evaluation of new curcumin derivatives and effects of forming HSA-bound nanoparticles on the stability and activity. European Journal of Medicinal Chemistry, 2020, 207, 112798.	2.6	5
95	The roles of soy soluble polysaccharide on the emulsion stability against stimulated gastric conditions and food complexes - a review. Cogent Food and Agriculture, 2020, 6, 1800238.	0.6	1
96	Fabrication of soy protein isolate/cellulose nanocrystal composite nanoparticles for curcumin delivery. International Journal of Biological Macromolecules, 2020, 165, 1468-1474.	3.6	77
97	Design of biopolymer carriers enriched with natural emulsifiers for improved controlled release of thyme essential oil. Journal of Food Science, 2020, 85, 3833-3842.	1.5	4
98	pH-shifting encapsulation of curcumin in egg white protein isolate for improved dispersity, antioxidant capacity and thermal stability. Food Research International, 2020, 137, 109366.	2.9	53
99	Utilization of undesirable heat-induced precipitates/sediments in soy sauce production to fabricate nanoparticles for curcumin delivery. LWT - Food Science and Technology, 2020, 130, 109551.	2.5	5
100	Calcium phosphate coated core-shell protein nanocarriers: Robust stability, controlled release and enhanced anticancer activity for curcumin delivery. Materials Science and Engineering C, 2020, 115, 111094.	3.8	11
101	Dig & Delve into Protein Based Nanoformulations. Drug Research, 2020, 70, 183-187.	0.7	1
102	Nanocomplexation of proteins with curcumin: From interaction to nanoencapsulation (A review). Food Hydrocolloids, 2020, 109, 106106.	5.6	54
103	Recent Advances in Encapsulation, Protection, and Oral Delivery of Bioactive Proteins and Peptides using Colloidal Systems. Molecules, 2020, 25, 1161.	1.7	79
104	Spray-drying microencapsulation of curcumin nanocomplexes with soy protein isolate: Encapsulation, water dispersion, bioaccessibility and bioactivities of curcumin. Food Hydrocolloids, 2020, 105, 105821.	5.6	65
105	Outstanding antioxidant pickering high internal phase emulsions by co-assembled polyphenol-soy β-conglycinin nanoparticles. Food Research International, 2020, 136, 109509.	2.9	60
106	Production and characterization of pea protein isolate-pectin complexes for delivery of curcumin: Effect of esterified degree of pectin. Food Hydrocolloids, 2020, 105, 105777.	5.6	73
107	Denatured food protein-coated nanosuspension: A promising approach for anticancer delivery of hydrophobic drug. Journal of Molecular Liquids, 2020, 303, 112690.	2.3	21
108	Whey protein and phenolic compound complexation: Effects on antioxidant capacity before and after in vitro digestion. Food Research International, 2020, 133, 109104.	2.9	56

#	Article	IF	CITATIONS
109	Whey protein aggregates formed by non-toxic chemical cross-linking as novel carriers for curcumin delivery: Fabrication and characterization. Journal of Drug Delivery Science and Technology, 2020, 56, 101531.	1.4	20
110	Complexation with whey protein fibrils and chitosan: A potential vehicle for curcumin with improved aqueous dispersion stability and enhanced antioxidant activity. Food Hydrocolloids, 2020, 104, 105729.	5.6	70
111	The soy protein isolate-Octacosanol-polysaccharides nanocomplex for enhanced physical stability in neutral conditions: Fabrication, characterization, thermal stability. Food Chemistry, 2020, 322, 126638.	4.2	40
112	Elaboration and characterization of curcumin-loaded soy soluble polysaccharide (SSPS)-based nanocarriers mediated by antimicrobial peptide nisin. Food Chemistry, 2021, 336, 127669.	4.2	34
113	Complexation of curcumin using proteins to enhance aqueous solubility and bioaccessibility: Pea protein vis-Ã-vis whey protein. Journal of Food Engineering, 2021, 292, 110258.	2.7	28
114	Nanocomplexation between thymol and soy protein isolate and its improvements on stability and antibacterial properties of thymol. Food Chemistry, 2021, 334, 127594.	4.2	41
115	Sodium caseinate and soluble soybean polysaccharide complex as nano-carriers of curcumin. Journal of Food Measurement and Characterization, 2021, 15, 478-483.	1.6	2
116	Fabrication of pea protein-curcumin nanocomplexes via microfluidization for improved solubility, nano-dispersibility and heat stability of curcumin: Insight on interaction mechanisms. International Journal of Biological Macromolecules, 2021, 168, 686-694.	3.6	15
117	Hydrophobic interaction driving the binding of soybean protein isolate and chlorophyll: Improvements to the thermal stability of chlorophyll. Food Hydrocolloids, 2021, 113, 106465.	5.6	36
118	Soy Protein: Molecular Structure Revisited and Recent Advances in Processing Technologies. Annual Review of Food Science and Technology, 2021, 12, 119-147.	5.1	107
119	Cel properties of transglutaminaseâ€induced soy protein isolate–polyphenol complex: influence of epigallocatechinâ€3â€gallate. Journal of the Science of Food and Agriculture, 2021, 101, 3870-3879.	1.7	14
120	Strategies to utilize naturally occurring protein architectures as nanovehicles for hydrophobic nutraceuticals. Food Hydrocolloids, 2021, 112, 106344.	5.6	37
121	Nanostructured proteins. , 2021, , 181-200.		0
122	Legume proteins are smart carriers to encapsulate hydrophilic and hydrophobic bioactive compounds and probiotic bacteria: A review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1250-1279.	5.9	49
123	Proteins from leguminous plants: from structure, property to the function in encapsulation/binding and delivery of bioactive compounds. Critical Reviews in Food Science and Nutrition, 2022, 62, 5203-5223.	5.4	8
124	Interaction between curcumin and a peptide and their protective effects against hepatic steatosis in mice. Food Bioscience, 2021, 39, 100817.	2.0	3
125	Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: Present status and future perspectives. Critical Reviews in Food Science and Nutrition, 2022, 62, 6390-6420.	5.4	53
126	A Cost-Effective Nano-Sized Curcumin Delivery System with High Drug Loading Capacity Prepared via Flash Nanoprecipitation. Nanomaterials, 2021, 11, 734.	1.9	7

	Сітат	ION REPORT	
# 127	ARTICLE Interaction of Soy Protein Isolate Hydrolysates with Cyanidin-3-O-Glucoside and Its Effect on the In Vitro Antioxidant Capacity of the Complexes under Neutral Condition. Molecules, 2021, 26, 1721.	IF 1.7	CITATIONS
128	Interaction between pH-shifted Î ² -conglycinin and flavonoids hesperetin/hesperidin: Characterization of nanocomplexes and binding mechanism. LWT - Food Science and Technology, 2021, 140, 110698.	2.5	28
129	pH – Responsive colloidal carriers assembled from β-lactoglobulin and Epsilon poly-L-lysine for oral drug delivery. Journal of Colloid and Interface Science, 2021, 589, 45-55.	5.0	31
130	Nano-architectural assembly of soy proteins: A promising strategy to fabricate nutraceutical nanovehicles. Advances in Colloid and Interface Science, 2021, 291, 102402.	7.0	30
131	Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. Plants, 2021, 10, 1238.	1.6	30
132	Designing biocompatible protein nanoparticles for improving the cellular uptake and antioxidation activity of tetrahydrocurcumin. Journal of Drug Delivery Science and Technology, 2021, 63, 102404.	1.4	4
133	Fabrication, characterization and controlled release properties of yak casein cold-set gels. LWT - Food Science and Technology, 2021, 147, 111635.	2.5	1
134	Eggshell Membrane Based Turmeric Extract Loaded Orally Disintegrating Films. Current Drug Delivery, 2022, 19, 547-559.	0.8	17
135	Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability. Journal of the Science of Food and Agriculture, 2021, 101, 5747-5762.	1.7	139
136	Interaction of lentil protein and onion skin phenolics: Effects on functional properties of proteins and in vitro gastrointestinal digestibility. Food Chemistry, 2022, 372, 130892.	4.2	27
137	Interaction between Curcumin and β-Casein: Multi-Spectroscopic and Molecular Dynamics Simulation Methods. Molecules, 2021, 26, 5092.	1.7	10
138	pH-Driven formation of soy peptide nanoparticles from insoluble peptide aggregates and their application for hydrophobic active cargo delivery. Food Chemistry, 2021, 355, 129509.	4.2	32
139	A comprehensive research on Lactone Sophorolipid (LSL) and Soy Protein Isolate (SPI) interacting mixture. Journal of Molecular Liquids, 2021, 339, 117239.	2.3	8
140	Self-assembled soy protein nanoparticles by partial enzymatic hydrolysis for pH-Driven Encapsulation and Delivery of Hydrophobic Cargo Curcumin. Food Hydrocolloids, 2021, 120, 106759.	5.6	64
141	Anthocyanins-loaded nanocomplexes comprising casein and carboxymethyl cellulose: stability, antioxidant capacity, and bioaccessibility. Food Hydrocolloids, 2022, 122, 107073.	5.6	36
142	Foxtail millet prolamin as an effective encapsulant deliver curcumin by fabricating caseinate stabilized composite nanoparticles. Food Chemistry, 2022, 367, 130764.	4.2	29
143	Entrapment of curcumin in soy protein isolate using the pH-driven method: Nanoencapsulation and formation mechanism. LWT - Food Science and Technology, 2022, 153, 112480.	2.5	41
144	A biorefinery approach for the conversion of Cynara cardunculus biomass to active films. Food Hydrocolloids, 2022, 122, 107099.	5.6	16

#	Article	IF	CITATIONS
145	Fabrication and investigation of physicochemical, food simulant release, and antioxidant properties of whey protein isolate-based films activated by loading with curcumin through the pH-driven method. Food Hydrocolloids, 2020, 108, 106026.	5.6	56
146	Preparation, characterisation and antioxidant activities of rutin-loaded zein-sodium caseinate nanoparticles. PLoS ONE, 2018, 13, e0194951.	1.1	43
147	Synthesis and characterization of lotus seed proteinâ€based curcumin microcapsules with enhanced solubility, stability, and sustained release. Journal of the Science of Food and Agriculture, 2022, 102, 2220-2231.	1.7	13
148	Effect of a novel shell material—Starch-protein-fatty acid ternary nanoparticles on loading levels and in vitro release of curcumin. International Journal of Biological Macromolecules, 2021, 192, 471-478.	3.6	6
149	Roles of Medicinal Plants and Constituents in Gynecological Cancer Therapy: Current Literature and Future Directions. Current Topics in Medicinal Chemistry, 2020, 20, 1772-1790.	1.0	12
150	Mild preheating improves cholesterol-lowering benefits of soy protein via enhancing hydrophobicity of its gastrointestinal digests: An in vitro study. Food Hydrocolloids, 2022, 124, 107282.	5.6	8
151	Structural interplay between curcumin and soy protein to improve the water-solubility and stability of curcumin. International Journal of Biological Macromolecules, 2021, 193, 1471-1480.	3.6	40
152	Elucidation of interaction mechanisms between myofibrillar proteins and ethyl octanoate by SPME-GC-MS, molecular docking and dynamics simulation. LWT - Food Science and Technology, 2022, 154, 112787.	2.5	28
153	pH-shifting formation of goat milk casein nanoparticles from insoluble peptide aggregates and encapsulation of curcumin for enhanced dispersibility and bioactivity. LWT - Food Science and Technology, 2022, 154, 112753.	2.5	20
154	Self-nanoemulsifying composition containing curcumin, quercetin, Ganoderma lucidum extract powder and probiotics for effective treatment of type 2 diabetes mellitus in streptozotocin induced rats. International Journal of Pharmaceutics, 2022, 612, 121306.	2.6	20
155	Binding affinity of curcumin to bovine serum albumin enhanced by pulsed electric field pretreatment. Food Chemistry, 2022, 377, 131945.	4.2	29
156	Sodium Dodecyl Sulfate-Dependent Disassembly and Reassembly of Soybean Lipophilic Protein Nanoparticles: An Environmentally Friendly Nanocarrier for Resveratrol. Journal of Agricultural and Food Chemistry, 2022, 70, 1640-1651.	2.4	6
157	Effect of high hydrostatic pressure on chlorophyll/soybean protein isolate interaction and the mixtures properties. Food Hydrocolloids, 2022, 128, 107555.	5.6	7
158	Fabrication of heat-treated soybean protein isolate-EGCC complex nanoparticle as a functional carrier for curcumin. LWT - Food Science and Technology, 2022, 159, 113059.	2.5	22
159	Effects of M/G Ratios of Sodium Alginate on Physicochemical Stability and Calcium Release Behavior of Pickering Emulsion Stabilized by Calcium Carbonate. Frontiers in Nutrition, 2021, 8, 818290.	1.6	8
160	Interaction of mulberry anthocyanins with soybean protein isolate: effect on the stability of anthocyanins and protein <i>inÂvitro</i> digestion characteristics. International Journal of Food Science and Technology, 2022, 57, 2267-2276.	1.3	10
161	Sequential changes in antioxidant activity and structure of curcumin-myofibrillar protein nanocomplex during in vitro digestion. Food Chemistry, 2022, 382, 132331.	4.2	9
162	Synthesis and characterization of nanoparticles based on chitosan-biopolymers systems as nanocarrier agents for curcumin: study on pharmaceutical and environmental applications. Polymer Bulletin, 2023, 80, 1495-1517.	1.7	8

#	Article	IF	CITATIONS
163	Effect of Fractionation and Processing Conditions on the Digestibility of Plant Proteins as Food Ingredients. Foods, 2022, 11, 870.	1.9	10
164	Fabrication of soy protein isolate-succinic anhydride-dextran nanogels: Properties, performance, and controlled release of curcumin. LWT - Food Science and Technology, 2022, 160, 113259.	2.5	19
165	Low-oil-phase emulsion gel with antioxidant properties prepared by soybean protein isolate and curcumin composite nanoparticles. LWT - Food Science and Technology, 2022, 161, 113346.	2.5	16
166	N-trimethyl chitosan coated targeting nanoparticles improve the oral bioavailability and antioxidant activity of vitexin. Carbohydrate Polymers, 2022, 286, 119273.	5.1	22
167	Octacosanol and health benefits: Biological functions and mechanisms of action. Food Bioscience, 2022, 47, 101632.	2.0	13
168	Delivery of hyperoside by using a soybean protein isolated-soy soluble polysaccharide nanocomplex: Fabrication, characterization, and in vitro release properties. Food Chemistry, 2022, 386, 132837.	4.2	40
169	Phytochemicals Mediate Autophagy Against Osteoarthritis by Maintaining Cartilage Homeostasis. Frontiers in Pharmacology, 2021, 12, 795058.	1.6	15
170	Influence of Proteins on the Absorption of Lipophilic Vitamins, Carotenoids and Curcumin – A Review. Molecular Nutrition and Food Research, 2022, 66, e2200076.	1.5	9
171	Protein Z-based promising carriers for enhancing solubility and bioaccessibility of Xanthohumol. Food Hydrocolloids, 2022, 131, 107771.	5.6	6
172	The stability and bioavailability of curcumin loaded α-lactalbumin nanocarriers formulated in functional dairy drink. Food Hydrocolloids, 2022, 131, 107807.	5.6	18
173	The Effect of Glycosylated Soy Protein Isolate on the Stability of Lutein and Their Interaction Characteristics. Frontiers in Nutrition, 2022, 9, .	1.6	0
174	New Perspective on Natural Plant Protein-Based Nanocarriers for Bioactive Ingredients Delivery. Foods, 2022, 11, 1701.	1.9	10
175	Fabrication and Characterization of Tunable High Internal Phase Emulsion Gels (HIPE-Gels) Formed by Natural Triterpenoid Saponin and Plant Soy Protein. ACS Food Science & Technology, 2022, 2, 1103-1113.	1.3	14
176	pH shifting treatment of ultrasonically extracted soybean meal protein isolate: Effect on functional, structural, morphological and thermal properties. Process Biochemistry, 2022, 120, 227-238.	1.8	7
177	Soy lipophilic protein self-assembled by pH-shift combined with heat treatment: Structure, hydrophobic resveratrol encapsulation, emulsification, and digestion. Food Chemistry, 2022, 394, 133514.	4.2	19
178	Fabrication and characterization of soy β-conglycinin-dextran-polyphenol nanocomplexes: Improvement on the antioxidant activity and sustained-release property of curcumin. Food Chemistry, 2022, 395, 133562.	4.2	13
179	Efficient encapsulation of curcumin into spent brewer's yeast using a pH-driven method. Food Chemistry, 2022, 394, 133537.	4.2	12
180	Astaxanthin-Loaded Nanoparticles Enhance its Cell Uptake, Antioxidant and Hypolipidemic Activities in Multiple Cell Lines. SSRN Electronic Journal, 0, , .	0.4	Ο

#	Article	IF	CITATIONS
181	Preparation, structure and stability of protein-pterostilbene nanocomplexes coated by soybean polysaccharide and maltodextrin. Food Bioscience, 2022, 49, 101899.	2.0	4
182	Interactional, functional, and biological properties of lactone sophorolipid (LSL) and collagen oligopeptides (COP) in aqueous solution. Luminescence, 2022, 37, 1666-1675.	1.5	2
183	Soy protein isolate (SPI)-hemin complex nanoparticles as a novel water-soluble iron-fortifier: Fabrication, formation mechanism and in vitro bioavailability. Food Bioscience, 2022, 49, 101889.	2.0	6
184	Exploration of interaction between porcine myofibrillar proteins and selected ketones by GC–MS, multiple spectroscopy, and molecular docking approaches. Food Research International, 2022, 160, 111624.	2.9	17
185	Soy proteins as vehicles for enhanced bioaccessibility and cholesterolâ€lowering activity of phytosterols. Journal of the Science of Food and Agriculture, 2023, 103, 205-212.	1.7	3
186	Entrapment of curcumin in isolated soy protein-alginate nanogels: antioxidant stability and in vitro gastrointestinal digestion. Journal of Food Measurement and Characterization, 2022, 16, 4754-4770.	1.6	6
187	Dietary proteins as excipient ingredients for improving the solubility, stability, and bioaccessibility of quercetin: Role of intermolecular interactions. Food Research International, 2022, 161, 111806.	2.9	11
188	Binding of curcumin to barley protein Z improves its solubility, stability and bioavailability. Food Chemistry, 2023, 399, 133952.	4.2	18
189	Dual-modified starch nanoparticles containing aromatic systems with highly efficient encapsulation of curcumin and their antibacterial applications. Food Research International, 2022, 162, 111926.	2.9	4
190	Research progress on natural bio-based encapsulation system of curcumin and its stabilization mechanism. Food Science and Technology, 0, 42, .	0.8	3
191	Effects of soluble Antarctic krill protein-curcumin complex combined with photodynamic inactivation on the storage quality of shrimp. Food Chemistry, 2023, 403, 134388.	4.2	8
192	Effect of emulsification methods on the physicochemical properties of emulsion stabilized by calcium carbonate and sodium alginate. Frontiers in Nutrition, 0, 9, .	1.6	1
193	Covalent and Noncovalent Complexation of Phosvitin and Gallic Acid: Effects on Protein Functionality and In Vitro Digestion Properties. Journal of Agricultural and Food Chemistry, 2022, 70, 11715-11726.	2.4	12
194	Generation of curcumin-loaded albumin nanoparticles by using off-the-shelf microfluidics driven by gravity. Food Research International, 2022, 162, 111984.	2.9	0
195	Delivery of bioencapsulated proteins. , 2022, , 63-75.		0
196	Electrospun Hydrophobic Nanofiber Films from Biodegradable Zein and Curcumin with Improved Tensile Strength for Air Filtration. Journal of Polymers and the Environment, 2023, 31, 287-296.	2.4	7
197	Food-grade Biopolymers as Platforms for Nutrient Delivery. RSC Polymer Chemistry Series, 2022, , 54-100.	0.1	0
199	Fabrication of icariin-soymilk nanoparticles with ultrasound-assisted treatment. Ultrasonics Sonochemistry, 2022, 91, 106230.	3.8	2

#	Article	IF	CITATIONS
200	Improved in vitro bioaccessibility of quercetin by nanocomplexation with high-intensity ultrasound treated soy protein isolate. Food Chemistry, 2023, 406, 135004.	4.2	8
201	Effects of catechin types found in tea polyphenols on the structural and functional properties of soybean protein isolate–catechin covalent complexes. LWT - Food Science and Technology, 2023, 173, 114336.	2.5	12
202	Nanocomplexation is a promising strategy to enhance the solubility and anti-Ichthyophthirius multifiliis activity of magnolol. Aquaculture, 2023, 565, 739105.	1.7	2
203	Novel core-shell nanoparticles: Encapsulation and delivery of curcumin using guanidine hydrochloride-induced oleosome protein self-assembly. LWT - Food Science and Technology, 2023, 173, 114352.	2.5	13
204	Effects of Concentration of Soybean Protein Isolate and Maltose and Oil Phase Volume Fraction on Freeze–Thaw Stability of Pickering Emulsion. Foods, 2022, 11, 4018.	1.9	7
205	Astaxanthin-loaded nanoparticles enhance its cell uptake, antioxidant and hypolipidemic activities in multiple cell lines. Journal of Drug Delivery Science and Technology, 2023, 80, 104133.	1.4	6
206	Self-assembled zein hydrolysate glycosylation with dextran for encapsulation and delivery of curcumin. Food Bioscience, 2023, 51, 102364.	2.0	2
207	Pickering emulsions stabilized by reassembled oleosome protein nanoparticles for co-encapsulating hydrophobic nutrients. Food Hydrocolloids, 2023, 138, 108445.	5.6	9
208	Whey protein concentrate/pullulan gel as a novel microencapsulated wall material for astaxanthin with improving stability and bioaccessibility. Food Hydrocolloids, 2023, 138, 108467.	5.6	1
209	Fabrication, properties, and biomedical applications of soy protein-based materials. , 2023, , 93-130.		0
210	Efficacy of alginate and chickpea protein polymeric matrices in encapsulating curcumin for improved stability, sustained release and bioaccessibility. Food Hydrocolloids for Health, 2023, 3, 100119.	1.6	4
211	Emulsion electrospraying and spray drying of whey protein nano and microparticles with curcumin. Food Hydrocolloids for Health, 2023, 3, 100122.	1.6	4
212	Protein-polysaccharide nanocomplexes as nanocarriers for delivery of curcumin: a comprehensive review on preparation methods and encapsulation mechanisms. Journal of Future Foods, 2023, 3, 99-114.	2.0	16
213	Different interactions between Tartary buckwheat protein and Tartary buckwheat phenols during extraction: Alterations in the conformation and antioxidant activity of protein. Food Chemistry, 2023, 418, 135711.	4.2	5
214	The interaction mechanisms, biological activities and digestive properties between Tartary buckwheat protein and phenolic extract under pH-driven methods. Food Chemistry, 2023, 419, 135758.	4.2	3
215	Encapsulating vitamins C and E using food-grade soy protein isolate and pectin particles as carrier: Insights on the vitamin additive antioxidant effects. Food Chemistry, 2023, 418, 135955.	4.2	13
216	Identification of binding sites for Tartary buckwheat protein-phenols covalent complex and alterations in protein structure and antioxidant properties. International Journal of Biological Macromolecules, 2023, 233, 123436.	3.6	10
217	Emerging plant proteins as nanocarriers of bioactive compounds. Journal of Controlled Release, 2023, 355, 327-342.	4.8	19

#	Article	IF	CITATIONS
219	Solubilization mechanism of selfâ€assembled walnut protein nanoparticles and curcumin encapsulation. Journal of the Science of Food and Agriculture, 2023, 103, 4908-4918.	1.7	2
220	Improved water solubility, antioxidant, and sustained-release properties of curcumin through the complexation with soy protein fibrils. LWT - Food Science and Technology, 2023, 180, 114723.	2.5	7
221	Structure, bioavailability and physicochemical properties of icariin-soymilk nanoparticle. , 2023, , 1-20.		0
222	Targeting transportation of curcumin by soybean lipophilic protein nano emulsion: Improving its bioaccessibility and regulating intestinal microorganisms in mice. Food Hydrocolloids, 2023, 142, 108781.	5.6	5