Sequential one-pot multienzyme (OPME) synthesis of la fucosyl derivatives

Chemical Communications 51, 7689-7692 DOI: 10.1039/c5cc01330e

Citation Report

#	Article	IF	CITATIONS
3	Chemoenzymatic synthesis of $\hat{I}\pm$ -dystroglycan core M1 O-mannose glycans. Chemical Communications, 2015, 51, 11654-11657.	2.2	19
4	Chemoenzymatic synthesis of tumor-associated antigen N3 minor octasaccharide. Journal of Carbohydrate Chemistry, 2016, 35, 412-422.	0.4	1
5	Biotechnological production of fucosylated human milk oligosaccharides: Prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems. Journal of Biotechnology, 2016, 235, 61-83.	1.9	91
6	High-throughput assays of leloir-glycosyltransferase reactions: The applications of rYND1 in glycotechnology. Journal of Biotechnology, 2016, 227, 10-18.	1.9	4
7	HPLC-Assisted Automated Oligosaccharide Synthesis: Implementation of the Autosampler as a Mode of the Reagent Delivery. Journal of Organic Chemistry, 2016, 81, 8796-8805.	1.7	41
8	Effective one-pot multienzyme (OPME) synthesis of monotreme milk oligosaccharides and other sialosides containing 4-O-acetyl sialic acid. Organic and Biomolecular Chemistry, 2016, 14, 8586-8597.	1.5	22
9	Overcoming the limited availability of human milk oligosaccharides: challenges and opportunities for research and application. Nutrition Reviews, 2016, 74, 635-644.	2.6	109
10	Diversity-Oriented Enzymatic Modular Assembly of ABO Histo-blood Group Antigens. ACS Catalysis, 2016, 6, 8140-8144.	5.5	30
11	One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates. Organic and Biomolecular Chemistry, 2016, 14, 2809-2818.	1.5	126
12	Converting Pasteurella multocida α2–3-sialyltransferase 1 (PmST1) to a regioselective α2–6-sialyltransferase by saturation mutagenesis and regioselective screening. Organic and Biomolecular Chemistry, 2017, 15, 1700-1709.	1.5	27
13	Synthesis of asymmetrical multiantennary human milk oligosaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6954-6959.	3.3	118
14	Functional properties, structural studies and chemo-enzymatic synthesis of oligosaccharides. Trends in Food Science and Technology, 2017, 66, 135-145.	7.8	77
15	Enzymatic and Chemoenzymatic Syntheses of Disialyl Glycans and Their Necrotizing Enterocolitis Preventing Effects. Journal of Organic Chemistry, 2017, 82, 13152-13160.	1.7	36
16	Chemoenzymatic Synthesis of Galectin Binding Glycopolymers. Bioconjugate Chemistry, 2018, 29, 4030-4039.	1.8	18
17	Chemoenzymatic synthesis of sialylated lactuloses and their inhibitory effects on Staphylococcus aureus. PLoS ONE, 2018, 13, e0199334.	1.1	14
18	Synthetic Strategies for Modified Glycosphingolipids and Their Design as Probes. Chemical Reviews, 2018, 118, 8188-8241.	23.0	34
19	Toward Automated Enzymatic Synthesis of Oligosaccharides. Chemical Reviews, 2018, 118, 8151-8187.	23.0	153
20	The chemical synthesis of human milk oligosaccharides: Lacto-N-neotetraose (Galβ1→4GlcNAcβ1→3Galβ1→4 Carbobydrate Research 2019 483 107743	Glc).	25

CITATION REPORT

#	Article	IF	CITATIONS
21	Modular pathway engineering of key precursor supply pathways for lacto-N-neotetraose production in Bacillus subtilis. Biotechnology for Biofuels, 2019, 12, 212.	6.2	32
22	Oligosaccharide Synthesis and Translational Innovation. Journal of the American Chemical Society, 2019, 141, 3735-3754.	6.6	129
23	Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnology Advances, 2019, 37, 107406.	6.0	40
24	Prebiotics: tools to manipulate the gut microbiome and metabolome. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1445-1459.	1.4	54
25	Biochemical characterization of Helicobacter pylori α1–3-fucosyltransferase and its application in the synthesis of fucosylated human milk oligosaccharides. Carbohydrate Research, 2019, 480, 1-6.	1.1	23
26	Clycosynthase Principle Transformed into Biocatalytic Process Technology: Lacto- <i>N</i> -triose II Production with Engineered <i>exo</i> -Hexosaminidase. ACS Catalysis, 2019, 9, 5503-5514.	5.5	43
27	Reprogramming the enzymatic assembly line for site-specific fucosylation. Nature Catalysis, 2019, 2, 514-522.	16.1	52
28	Redox-Controlled Site-Specific α2–6-Sialylation. Journal of the American Chemical Society, 2019, 141, 4547-4552.	6.6	31
29	Shaping the Infant Microbiome With Non-digestible Carbohydrates. Frontiers in Microbiology, 2019, 10, 343.	1.5	43
30	Functional Oligosaccharides: Production and Action. ACS Symposium Series, 2019, , 155-180.	0.5	5
31	Sialylated variants of lacto- <i>N</i> -tetraose exhibit antimicrobial activity against Group B <i>Streptococcus</i> . Organic and Biomolecular Chemistry, 2019, 17, 1893-1900.	1.5	40
32	Biosynthesis of Raffinose and Stachyose from Sucrose via an <i>In Vitro</i> Multienzyme System. Applied and Environmental Microbiology, 2019, 85, .	1.4	22
33	Strategies for chemoenzymatic synthesis of carbohydrates. Carbohydrate Research, 2019, 472, 86-97.	1.1	67
34	Effect of the lactose source on the ultrasound-assisted enzymatic production of galactooligosaccharides and gluconic acid. Ultrasonics Sonochemistry, 2020, 67, 104945.	3.8	16
35	Production of Lacto- <i>N</i> -triose II and Lacto- <i>N</i> -neotetraose from Chitin by a Novel β- <i>N</i> -Acetylhexosaminidase Expressed in Pichia pastoris. ACS Sustainable Chemistry and Engineering, 2020, 8, 15466-15474.	3.2	11
36	Bacterial sialyltransferases and their use in biocatalytic cascades for sialo-oligosaccharide production. Biotechnology Advances, 2020, 44, 107613.	6.0	24
37	Highly efficient biocatalytic cascade for the diversity-oriented synthesis of complex blood group Sd ^a antigens. Green Chemistry, 2020, 22, 8002-8011.	4.6	7
38	Screening and characterization of an α-L-fucosidase from Bacteroides fragilis NCTC9343 for synthesis of fucosyl-N-acetylglucosamine disaccharides. Applied Microbiology and Biotechnology, 2020, 104, 7827-7840.	1.7	16

ARTICLE IF CITATIONS # Human milk oligosaccharides as bioactive compounds in infant formula: recent advances and trends 39 5.4 38 in synthetic methods. Critical Reviews in Food Science and Nutrition, 2022, 62, 181-214. Immunomodulation by Human Milk Oligosaccharides: The Potential Role in Prevention of Allergic 2.2 59 Diseases. Frontiers in Ímmunology, 2020, 11, 801. Enzymatic modular synthesis and microarray assay of poly-<i>N</i>-acetyllactosamine derivatives. 41 2.2 15 Chemical Communications, 2020, 56, 7549-7552. From lab bench to formulated ingredient: Characterization, production, and commercialization of 44 human milk oligosaccharides. Journal of Functional Foods, 2020, 72, 104052. Efficient sequential synthesis of lacto-N-triose II and lacto-N-neotetraose by a novel 43 4.2 21 β-N-acetylhexosaminidase from Tyzzerella nexilis. Food Chemistry, 2020, 332, 127438. CRISPRi-Guided Multiplexed Fine-Tuning of Metabolic Flux for Enhanced Lacto-<i>N</i>-neotetraose Production in <i>Bacillus subtilis</i>. Journal of Agricultural and Food Chemistry, 2020, 68, 2.4 2477-2484. Strategies in Oligosaccharide Synthesis., 2021, , 1-48. 45 1 Streamlined Subclass-Specific Absolute Quantification of Serum IgG Glycopeptides Using Synthetic 3.2 46 Isotope-Labeled Standards. Analytical Chemistry, 2021, 93, 4449-4455. A Comparison of Two Structurally Related Human Milk Oligosaccharide Conjugates in a Model of 47 2.2 3 Diet-Induced Obesity. Frontiers in Immunology, 2021, 12, 668217. A Novel β-1,4-Galactosyltransferase from <i>Histophilus somni</i> Enables Efficient Biosynthesis of Lacto-<i>N</i>-Neotetraose via Both Enzymatic and Cell Factory Approaches. Journal of Agricultural and Food Chemistry, 2021, 69, 5683-5690. Synthetic biology for future food: Research progress and future directions. Future Foods, 2021, 3, 49 31 2.4 100025. Physiological effects, biosynthesis, and derivatization of key human milk tetrasaccharides, 5.1 lacto-<i>Ň</i>-tetraose, and lacto-<i>N</i>-neotetraose. Crítical Reviews in Biotechnology, 2021, , 1-19. Glycan Assembly Strategy: From Concept to Application. Chemical Record, 2021, 21, 3256-3277. 51 2.9 5 Efficient biosynthesis of lacto-N-neotetraose by a novel β-1,4-galactosyltransferase from Aggregatibacter actinomycetemcomitans NUM4039. Enzyme and Microbial Technology, 2022, 153, 109912. 1.6 Microbes, human milk, and prebiotics., 2021, , 197-237. 53 2 Chemical Biology of Protein <i>O</i>-Glycosylation. Chemical Biology, 2017, , 48-93. Enzymatic and Chemoenzymatic Synthesis of Human Milk Oligosaccharides (HMOS). Chemical Biology, 55 0.17 2019, , 254-280. Targeted fucosylation of glycans with engineered bacterial fucosyltransferase variants. 1.8 ChemCatChem, 0, , .

CITATION REPORT

IF ARTICLE CITATIONS # Recent Advances on Lacto-<i>N</i>-neotetraose, a Commercially Added Human Milk Oligosaccharide in 57 2.4 9 Infant Formula. Journal of Agricultural and Food Chemistry, 2022, 70, 4534-4547. HPLCâ€Based Automated Synthesis of Glycans in Solution. Chemistry - A European Journal, 2022, 28, . 1.7 Enzymatic and chemoenzymatic synthesis of human milk oligosaccharides and derivatives. 59 5.1 19 Carbohydrate Polymers, 2022, 291, 119564. A Redoxâ€Controlled Substrate Engineering Strategy for Siteâ€Specific Enzymatic Fucosylation. Angewandte Chemie - International Edition, 2022, 61, . A Redoxâ€Controlled Substrate Engineering Strategy for Siteâ€Specific Enzymatic Fucosylation. 61 1.6 0 Angewandte Chemie, 0, , . Sialic acid and food allergies: The link between nutrition and immunology. Critical Reviews in Food Science and Nutrition, 0, , 1-27. 5.4 Specific Human Milk Oligosaccharides Differentially Promote Th1 and Regulatory Responses in a 63 1.8 4 CpG-Activated Epithelial/Immune Cell Coculture. Biomolecules, 2023, 13, 263. Biosynthesis of Human Milk Oligosaccharides: Enzyme Cascade and Metabolic Engineering Approaches. Journal of Agricultural and Food Chemistry, 2023, 71, 2234-2243. 2.4 High-Level Productivity of Lacto-<i>N</i>-neotetraose in <i>Escherichia coli</i>) by Systematic 65 2.4 8 Metabolic Engineering. Journal of Agricultural and Food Chemistry, 2023, 71, 4051-4058.

CITATION REPORT