Molecular profiling of low grade serous ovarian tumour driver genes

Oncotarget 6, 37663-37677

DOI: 10.18632/oncotarget.5438

Citation Report

#	Article	IF	Citations
1	The genetics of uveal melanoma: current insights. The Application of Clinical Genetics, 2016, Volume 9, 147-155.	3.0	99
2	Molecular Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis and Treatment. International Journal of Molecular Sciences, 2016, 17, 2113.	4.1	165
3	Genome-wide association studies and epigenome-wide association studies go together in cancer control. Future Oncology, 2016, 12, 1645-1664.	2.4	28
4	Basic Molecular Pathology and Cytogenetics for Practicing Pathologists: Correlation With Morphology and With a Focus on Aspects of Diagnostic or Therapeutic Utility. Advances in Anatomic Pathology, 2016, 23, 368-380.	4.3	11
5	SF3B1 and EIF1AX mutations occur in primary leptomeningeal melanocytic neoplasms; yet another similarity to uveal melanomas. Acta Neuropathologica Communications, 2016, 4, 5.	5. 2	35
6	Perspectives on targeting the phosphatidylinositol 3-kinase pathway for personalized medicine in endometrial and ovarian cancers. Personalized Medicine Universe, 2016, 5, 3-7.	0.3	O
7	The molecular pathology of ovarian serous borderline tumors. Annals of Oncology, 2016, 27, i16-i19.	1.2	39
8	Low-grade serous ovarian cancer: A review. Gynecologic Oncology, 2016, 143, 433-438.	1.4	135
9	Novel population of small tumour-initiating stem cells in the ovaries of women with borderline ovarian cancer. Scientific Reports, 2016, 6, 34730.	3.3	44
10	p53 downregulates the Fanconi anaemia DNA repair pathway. Nature Communications, 2016, 7, 11091.	12.8	42
10	p53 downregulates the Fanconi anaemia DNA repair pathway. Nature Communications, 2016, 7, 11091. Molecular Subtyping of Serous Ovarian Cancer Based on Multi-omics Data. Scientific Reports, 2016, 6, 26001.	12.8 3.3	42
	Molecular Subtyping of Serous Ovarian Cancer Based on Multi-omics Data. Scientific Reports, 2016, 6,		
11	Molecular Subtyping of Serous Ovarian Cancer Based on Multi-omics Data. Scientific Reports, 2016, 6, 26001. Genomic testing and precision medicine — What does this mean for gynecologic oncology?.	3.3	42
11	Molecular Subtyping of Serous Ovarian Cancer Based on Multi-omics Data. Scientific Reports, 2016, 6, 26001. Genomic testing and precision medicine — What does this mean for gynecologic oncology?. Gynecologic Oncology, 2016, 140, 3-5.	3.3 1.4	42 5
11 12 13	Molecular Subtyping of Serous Ovarian Cancer Based on Multi-omics Data. Scientific Reports, 2016, 6, 26001. Genomic testing and precision medicine — What does this mean for gynecologic oncology?. Gynecologic Oncology, 2016, 140, 3-5. The biology of uveal melanoma. Cancer and Metastasis Reviews, 2017, 36, 109-140. Recurrent low grade serous ovarian cancer in a 20 year old woman: A case from the Ohio State	3.3 1.4 5.9	42 5 160
11 12 13	Molecular Subtyping of Serous Ovarian Cancer Based on Multi-omics Data. Scientific Reports, 2016, 6, 26001. Genomic testing and precision medicine — What does this mean for gynecologic oncology?. Gynecologic Oncology, 2016, 140, 3-5. The biology of uveal melanoma. Cancer and Metastasis Reviews, 2017, 36, 109-140. Recurrent low grade serous ovarian cancer in a 20 year old woman: A case from the Ohio State University College of Medicine. Gynecologic Oncology, 2017, 144, 451-455.	3.3 1.4 5.9	42 5 160 2
11 12 13 14 15	Molecular Subtyping of Serous Ovarian Cancer Based on Multi-omics Data. Scientific Reports, 2016, 6, 26001. Genomic testing and precision medicine — What does this mean for gynecologic oncology?. Gynecologic Oncology, 2016, 140, 3-5. The biology of uveal melanoma. Cancer and Metastasis Reviews, 2017, 36, 109-140. Recurrent low grade serous ovarian cancer in a 20 year old woman: A case from the Ohio State University College of Medicine. Gynecologic Oncology, 2017, 144, 451-455. Precision Medicine in Gynecology and Obstetrics. Comprehensive Gynecology and Obstetrics, 2017, , . A harmine-derived beta-carboline displays anti-cancer effects in vitro by targeting protein synthesis.	3.3 1.4 5.9 1.4	42 5 160 2

#	Article	IF	Citations
19	Endocrine therapy in epithelial ovarian cancer. Expert Review of Anticancer Therapy, 2017, 17, 109-117.	2.4	41
20	Comprehensive analyses of somatic TP53 mutation in tumors with variable mutant allele frequency. Scientific Data, 2017, 4, 170120.	5.3	9
21	Mutation of NRAS is a rare genetic event in ovarian low-grade serous carcinoma. Human Pathology, 2017, 68, 87-91.	2.0	19
22	<i>EIF1AX</i> and <i>NRAS</i> Mutations Co-occur and Cooperate in Low-Grade Serous Ovarian Carcinomas. Cancer Research, 2017, 77, 4268-4278.	0.9	56
23	Molecular alterations in indolent, aggressive and recurrent ovarian lowâ€grade serous carcinoma. Histopathology, 2017, 70, 347-358.	2.9	24
24	Identifying Gene Signature for the Detection of Ovarian Cancer Based on the Achieved Related Genes. Gynecologic and Obstetric Investigation, 2017, 82, 361-370.	1.6	4
25	CAISMOV24, a new human low-grade serous ovarian carcinoma cell line. BMC Cancer, 2017, 17, 756.	2.6	7
26	Low frequency of BRAF and KRAS mutations in Chinese patients with low-grade serous carcinoma of the ovary. Diagnostic Pathology, 2017, 12, 87.	2.0	11
27	The NCI-MATCH trial and precision medicine in gynecologic cancers. Gynecologic Oncology, 2018, 148, 585-590.	1.4	38
28	Emerging growth factor receptor antagonists for ovarian cancer treatment. Expert Opinion on Emerging Drugs, 2018, 23, 1-16.	2.4	2
29	An Ovarian Adenocarcinoma With Combined Low-grade Serous and Mesonephric Morphologies Suggests a MÃ $\frac{1}{4}$ llerian Origin for Some Mesonephric Carcinomas. International Journal of Gynecological Pathology, 2018, 37, 448-459.	1.4	54
30	Targeted Next-Generation Sequencing Reveals Clinically Actionable <i>BRAF</i> and <i>ESR1</i> Mutations in Low-Grade Serous Ovarian Carcinoma. JCO Precision Oncology, 2018, 2018, 1-8.	3.0	8
31	Ovarian Cancer Genetics: Subtypes and Risk Factors. , 0, , .		17
32	Comparison of Primary Tumor Size in Stage I and III Epithelial Ovarian Cancer. Anticancer Research, 2018, 38, 6507-6511.	1.1	5
33	Pathogenesis, Genetics, and Genomics of Non–High Grade Serous Ovarian Cancers. Hematology/Oncology Clinics of North America, 2018, 32, 929-942.	2.2	4
34	Association of p16 expression with prognosis varies across ovarian carcinoma histotypes: an Ovarian Tumor Tissue Analysis consortium study. Journal of Pathology: Clinical Research, 2018, 4, 250-261.	3.0	70
35	Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells. Medicines (Basel, Switzerland), 2018, 5, 16.	1.4	123
36	PARAGON: A Phase II study of anastrozole in patients with estrogen receptor-positive recurrent/metastatic low-grade ovarian cancers and serous borderline ovarian tumors. Gynecologic Oncology, 2019, 154, 531-538.	1.4	49

#	Article	IF	Citations
37	Current Status of Patient-Derived Ovarian Cancer Models. Cells, 2019, 8, 505.	4.1	69
38	Loss of 1p36.33 Frequent in Low-Grade Serous Ovarian Cancer. Neoplasia, 2019, 21, 582-590.	5.3	24
39	Response to trametinib in recurrent low-grade serous ovarian cancer with NRAS mutation: A case report. Gynecologic Oncology Reports, 2019, 28, 26-28.	0.6	16
40	Heterogeneous alteration of the ERBB3–MYC axis associated with MEK inhibitor resistance in a <i>KRAS</i> -mutated low-grade serous ovarian cancer patient. Journal of Physical Education and Sports Management, 2019, 5, a004341.	1.2	8
41	Clinicopathologic and Molecular Features of Paired Cases of Metachronous Ovarian Serous Borderline Tumor and Subsequent Serous Carcinoma. American Journal of Surgical Pathology, 2019, 43, 1462-1472.	3.7	33
42	Somatic genetic alterations in synchronous and metachronous lowâ€grade serous tumours and highâ€grade carcinomas of the adnexa. Histopathology, 2019, 74, 638-650.	2.9	11
43	New Treatment Options for Ovarian Cancer. , 2019, , 533-540.		0
44	Cancer-Associated Eukaryotic Translation Initiation Factor 1A Mutants Impair Rps3 and Rps10 Binding and Enhance Scanning of Cell Cycle Genes. Molecular and Cellular Biology, 2019, 39, .	2.3	13
45	MALDI″maging for Classification of Epithelial Ovarian Cancer Histotypes from a Tissue Microarray Using Machine Learning Methods. Proteomics - Clinical Applications, 2019, 13, e1700181.	1.6	45
46	Markers of MEK inhibitor resistance in low-grade serous ovarian cancer: EGFR is a potential therapeutic target. Cancer Cell International, 2019, 19, 10.	4.1	31
47	Detection of MAPK/ERK pathway proteins and KRAS mutations in adenomatoid odontogenic tumors. Oral Diseases, 2019, 25, 481-487.	3.0	16
48	High Frequency of PIK3CA Mutations in Low-Grade Serous Ovarian Carcinomas of Japanese Patients. Diagnostics, 2020, 10, 13.	2.6	9
49	Low-grade serous ovarian carcinoma: an evolution toward targeted therapy. International Journal of Gynecological Cancer, 2020, 30, 1619-1626.	2.5	9
50	Clinical significance of ERBB2 exon 16 skipping: analysis of a real-world retrospective observational cohort study. ESMO Open, 2020, 5, e000985.	4.5	4
51	Management of low-grade serous ovarian neoplasm in the setting of fertility preservation. International Journal of Gynecological Cancer, 2020, 30, 1834-1839.	2.5	1
52	mRNA expression in low grade serous ovarian cancer: Results of a nanoString assay in a diverse population. Gynecologic Oncology, 2020, 159, 554-562.	1.4	5
53	Morphological and molecular heterogeneity of epithelial ovarian cancer: Therapeutic implications. European Journal of Cancer, Supplement, 2020, 15, 1-15.	2.2	15
54	Evaluation of MTAP immunohistochemistry loss of expression in ovarian serous borderline tumors as a potential marker for prognosis and progression. Annals of Diagnostic Pathology, 2020, 48, 151582.	1.3	1

#	ARTICLE	IF	Citations
55	MEK Inhibitors for the Treatment of Low-Grade Serous Ovarian Cancer: Expanding Therapeutic Options for a Rare Ovarian Cancer Subtype. Journal of Clinical Oncology, 2020, 38, 3731-3734.	1.6	10
56	MILO/ENGOT-ov11: Binimetinib Versus Physician's Choice Chemotherapy in Recurrent or Persistent Low-Grade Serous Carcinomas of the Ovary, Fallopian Tube, or Primary Peritoneum. Journal of Clinical Oncology, 2020, 38, 3753-3762.	1.6	82
57	Therapeutic Approach to Low-Grade Serous Ovarian Carcinoma: State of Art and Perspectives of Clinical Research. Cancers, 2020, 12, 1336.	3.7	27
58	Low-grade serous ovarian cancer: State of the science. Gynecologic Oncology, 2020, 156, 715-725.	1.4	74
59	Characterization of TP53-wildtype tubo-ovarian high-grade serous carcinomas: rare exceptions to the binary classification of ovarian serous carcinoma. Modern Pathology, 2021, 34, 490-501.	5 . 5	18
60	A systematic review and meta-analysis of hormone receptor expression in low-grade serous ovarian carcinoma. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2021, 256, 172-178.	1.1	5
61	Genomic analysis of lowâ€grade serous ovarian carcinoma to identify key drivers and therapeutic vulnerabilities. Journal of Pathology, 2021, 253, 41-54.	4. 5	54
62	Current and Futuristic Roadmap of Ovarian Cancer Management: An Overview. Advances in Experimental Medicine and Biology, 2021, 1330, 1-19.	1.6	1
63	Epithelial ovarian cancer: Genomic landscape and evolving precision treatment., 2021,, 1-23.		0
64	Can integrative biomarker approaches improve prediction of platinum and PARP inhibitor response in ovarian cancer?. Seminars in Cancer Biology, 2021, 77, 67-82.	9.6	12
65	Ovarian Cancer: Molecular Classification and Targeted Therapy. , 0, , .		4
66	Fertility preservation in rare ovarian tumors. International Journal of Gynecological Cancer, 2021, 31, 432-441.	2.5	4
67	Genomic alterations in gynecological malignancies: histotype-associated driver mutations, molecular subtyping schemes, and tumorigenic mechanisms. Journal of Human Genetics, 2021, 66, 853-868.	2.3	5
68	Mutational spectrum in clinically aggressive low-grade serous carcinoma/serous borderline tumors of the ovaryâ€"Clinical significance of BRCA2 gene variants in genomically stable tumors. Gynecologic Oncology, 2021, 161, 762-768.	1.4	5
69	The Molecular Landscape Influencing Prognoses of Epithelial Ovarian Cancer. Biomolecules, 2021, 11, 998.	4.0	4
70	Hormone therapy for ovarian cancer: Emphasis on mechanisms and applications (Review). Oncology Reports, 2021, 46, .	2.6	21
71	Ovarian-Cancer-Associated Extracellular Vesicles: Microenvironmental Regulation and Potential Clinical Applications. Cells, 2021, 10, 2272.	4.1	17
72	Molecular Pathology of Ovarian Epithelial Neoplasms. Surgical Pathology Clinics, 2021, 14, 415-428.	1.7	2

#	Article	IF	Citations
73	RNA-binding proteins of COSMIC importance in cancer. Journal of Clinical Investigation, 2021, 131, .	8.2	15
74	Emerging molecular alterations leading to histology-specific targeted therapies in ovarian cancer beyond PARP inhibitors. Cancer Treatment Reviews, 2021, 101, 102298.	7.7	11
75	Spectrum of <i>BRAF</i> Mutations and Gene Rearrangements in Ovarian Serous Carcinoma. JCO Precision Oncology, 2021, 5, 1480-1492.	3.0	8
76	Observational study on serum markers and circulating tumor cells in ovarian cancer. IP Archives of Cytology and Histopathology Research, 2021, 6, 181-186.	0.1	0
77	Multiomics Characterization of Low-Grade Serous Ovarian Carcinoma Identifies Potential Biomarkers of MEK Inhibitor Sensitivity and Therapeutic Vulnerability. Cancer Research, 2021, 81, 1681-1694.	0.9	19
78	Immunohistochemical Biomarkers as a Surrogate of Molecular Analysis in Ovarian Carcinomas: A Review of the Literature. Diagnostics, $2021,11,199.$	2.6	24
79	Low-grade Serous Tumors: Are We Making Progress?. Current Oncology Reports, 2020, 22, 8.	4.0	13
80	Identification and validation of salivary proteomic signatures for non-invasive detection of ovarian cancer. International Journal of Biological Macromolecules, 2018, 108, 503-514.	7.5	23
81	The Many Uses of p53 Immunohistochemistry in Gynecological Pathology: Proceedings of the ISGyP Companion Society Session at the 2020 USCAP Annual9 Meeting. International Journal of Gynecological Pathology, 2021, 40, 32-40.	1.4	37
82	Antiangiogenesis and gene aberration-related therapy may improve overall survival in patients with concurrent KRAS and TP53 hotspot mutant cancer. Oncotarget, 2017, 8, 33796-33806.	1.8	5
83	miR-451a is underexpressed and targets AKT/mTOR pathway in papillary thyroid carcinoma. Oncotarget, 2016, 7, 12731-12747.	1.8	77
84	Mutation analysis and genomic imbalances of cells found in effusion fluids from patients with ovarian cancer. Oncology Letters, 2020, 20, 2273-2279.	1.8	3
85	An Introduction to the Current Management of Ovarian Cancer in the Era of Precision Oncology. , 2021, , 19-57.		0
86	The Role of Omics Approaches to Characterize Molecular Mechanisms of Rare Ovarian Cancers: Recent Advances and Future Perspectives. Biomedicines, 2021, 9, 1481.	3.2	8
87	Diversity in Pathology and Genomics in Ovarian Cancer. Comprehensive Gynecology and Obstetrics, 2017, , 117-126.	0.0	0
89	MEK inhibition for low-grade serous ovarian cancer: are we there yet?. International Journal of Gynecological Cancer, 2021, 31, 155-156.	2.5	1
90	Differences in MEK inhibitor efficacy in molecularly characterized low-grade serous ovarian cancer cell lines. American Journal of Cancer Research, 2016, 6, 2235-2251.	1.4	14
92	Investigating a clinically actionable BRAF mutation for monitoring low-grade serous ovarian cancer: A case report. Case Reports in Women's Health, 2022, 34, e00395.	0.5	0

#	ARTICLE	IF	CITATIONS
93	The genomic landscape of low-grade serous ovarian/peritoneal carcinoma and its impact on clinical outcomes. Gynecologic Oncology, 2022, 165, 560-567.	1.4	22
94	Ovarian Combined Serous Borderline Tumor/Low-grade Serous Carcinoma and Mesonephric-like Lesion: Report of 2 Cases With New Observations. International Journal of Gynecological Pathology, 2023, 42, 182-191.	1.4	8
95	Association of Anti-EGFR Antibody and MEK Inhibitor in Gynecological Cancer Harboring RAS Mutation: A Case Series. International Journal of Molecular Sciences, 2022, 23, 3343.	4.1	1
96	Development of Low-Grade Serous Ovarian Carcinoma from Benign Ovarian Serous Cystadenoma Cells. Cancers, 2022, 14, 1506.	3.7	3
97	Patient-derived tumor models are attractive tools to repurpose drugs for ovarian cancer treatment: Pre-clinical updates. Oncotarget, 2022, 13, 553-575.	1.8	6
98	The Uncertain Benefit of Adjuvant Chemotherapy in Advanced Low-Grade Serous Ovarian Cancer and the Pivotal Role of Surgical Cytoreduction. Journal of Clinical Medicine, 2021, 10, 5927.	2.4	9
99	MAPK Pathway Genetic Alterations Are Associated with Prolonged Overall Survival in Low-Grade Serous Ovarian Carcinoma. Clinical Cancer Research, 2022, 28, 4456-4465.	7.0	25
101	BAP1 and Claudin-4, But Not MTAP, Reliably Distinguish Borderline and Low-grade Serous Ovarian Tumors From Peritoneal Mesothelioma. International Journal of Gynecological Pathology, 2023, 42, 159-166.	1.4	5
102	Molecular characterization of low-grade serous ovarian carcinoma identifies genomic aberrations according to hormone receptor expression. Npj Precision Oncology, 2022, 6, .	5.4	9
103	Insights Into the Role of Epigenetic Factors Determining the Estrogen Response in Estrogen-Positive Ovarian Cancer and Prospects of Combining Epi-Drugs With Endocrine Therapy. Frontiers in Genetics, 0, 13, .	2.3	2
104	Clinical characteristics and molecular aspects of low-grade serous ovarian and peritoneal cancer: a multicenter, observational, retrospective analysis of MITO Group (MITO 22). British Journal of Cancer, 2022, 127, 1479-1486.	6.4	7
105	Recent Advances in Classification and Histopathological Diagnosis of Ovarian Epithelial Malignant Tumours. , 0, , .		0
106	Taking the Road Less Traveled: Following Molecular Trail Markers. Clinical Cancer Research, 2022, 28, 4357-4359.	7.0	2
108	Genomic profiling in low grade serous ovarian cancer: Identification of novel markers for disease diagnosis and therapy. Gynecologic Oncology, 2022, 167, 306-313.	1.4	8
109	Translational Regulation by eIFs and RNA Modifications in Cancer. Genes, 2022, 13, 2050.	2.4	4
110	Low-Grade Serous Ovarian Carcinoma: Challenges and Solutions. Indian Journal of Gynecologic Oncology, 2022, 20, .	0.3	0
111	Aberrant MAPK Signaling Offers Therapeutic Potential for Treatment of Ovarian Carcinoma. OncoTargets and Therapy, 0, Volume 15, 1331-1346.	2.0	3
112	Role of RAS signaling in ovarian cancer. F1000Research, 0, 11, 1253.	1.6	8

#	Article	IF	CITATIONS
113	Integrated multi-omic analysis of low-grade ovarian serous carcinoma collected from short and long-term survivors. Journal of Translational Medicine, 2022, 20, .	4.4	2
114	Investigation of the prevalence and clinical implications of ERBB2 exon 16 skipping mutations in Chinese pan-cancer patients. Frontiers in Oncology, 0, 12, .	2.8	0
115	Molecular characteristics of lowâ€grade serous carcinoma in effusions. Cytopathology, 2023, 34, 99-105.	0.7	0
116	Molecular characteristics and clinical behaviour of epithelial ovarian cancers. Cancer Letters, 2023, 555, 216057.	7.2	16
117	Serous Tumors of the Ovary. Encyclopedia of Pathology, 2023, , 1-12.	0.0	0
118	Genetics and RNA Regulation of Uveal Melanoma. Cancers, 2023, 15, 775.	3.7	8
119	Molecular genetic testing in ovarian cancer. Pacific Medical Journal, 2023, , 11-18.	0.3	0
120	The adaptor protein VEPH1 interacts with the kinase domain of ERBB2 and impacts EGF signaling in ovarian cancer cells. Cellular Signalling, 2023, 106, 110634.	3.6	0
121	Investigating the suitability of in vitro cell lines as models for the major subtypes of epithelial ovarian cancer. Frontiers in Cell and Developmental Biology, 0, 11 , .	3.7	5
122	Interobserver Reproducibility in Assessing Eosinophilic Cells in Ovarian Serous Borderline Tumors to Predict BRAF Mutational Status. International Journal of Gynecological Pathology, 2023, 42, 472-481.	1.4	1
123	Patient Derived Organoids (PDOs), Extracellular Matrix (ECM), Tumor Microenvironment (TME) and Drug Screening: State of the Art and Clinical Implications of Ovarian Cancer Organoids in the Era of Precision Medicine. Cancers, 2023, 15, 2059.	3.7	5
124	Engineering Approaches in Ovarian Cancer Cell Culture. Current Cancer Research, 2023, , 231-253.	0.2	0
125	Whole exome sequencing of low grade serous ovarian carcinoma identifies genomic events associated with clinical outcome. Gynecologic Oncology, 2023, 174, 157-166.	1.4	2
126	Rare Epithelial Ovarian Cancers: Low Grade Serous and Mucinous Carcinomas. Cold Spring Harbor Perspectives in Medicine, 2023, 13, a038190.	6.2	1
127	Molecular Testing in Ovarian Tumours: Challenges from the Pathologist's Perspective. Diagnostics, 2023, 13, 2072.	2.6	0
128	Distinct histopathological features are associated with molecular subtypes and outcome in low grade serous ovarian carcinoma. Scientific Reports, 2023, 13, .	3.3	1
129	KRAS mutation in primary ovarian serous borderline tumors correlates with tumor recurrence. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2023, 483, 71-79.	2.8	0
131	Molecular Results and Potential Biomarkers Identified from the Phase 3 MILO/ENGOT-ov11 Study of Binimetinib versus Physician Choice of Chemotherapy in Recurrent Low-Grade Serous Ovarian Cancer. Clinical Cancer Research, 2023, 29, 4068-4075.	7.0	1

#	Article	IF	CITATIONS
132	Low-grade serous ovarian cancer: expert consensus report on the state of the science. International Journal of Gynecological Cancer, 2023, 33, 1331-1344.	2.5	1
134	Recurrent Somatic Copy Number Alterations and Their Association with Oncogene Expression Levels in High-Grade Ovarian Serous Carcinoma. Life, 2023, 13, 2192.	2.4	1
136	Molecular Pathology of Ovarian Tumors. , 2023, , 271-296.		0
137	Serous Tumors, Pathology of the Ovary. Encyclopedia of Pathology, 2023, , 554-564.	0.0	0
138	Somatic Genomic and Transcriptomic Characterization of Primary Ovarian Serous Borderline Tumors and Low-Grade Serous Carcinomas. Journal of Molecular Diagnostics, 2024, 26, 257-266.	2.8	0
139	The Molecular Classification of Ovarian Cancer and Implication for Treatment. , 2023, , 285-315.		0
140	Serous Tumours of the Ovary. , 2023, , 397-416.		0
141	In Silico Approach to Molecular Profiling of the Transition from Ovarian Epithelial Cells to Low-Grade Serous Ovarian Tumors for Targeted Therapeutic Insights. Current Issues in Molecular Biology, 2024, 46, 1777-1798.	2.4	0
142	Premature Classification of Early-stage Endometrioid Ovarian Carcinoma With Mesonephric-like Differentiation as Mesonephric-like Adenocarcinoma. International Journal of Gynecological Pathology, 0, , .	1.4	0