Large oncosomes contain distinct protein cargo and report of tumor-derived extracellular vesicles

Oncotarget 6, 11327-11341

DOI: 10.18632/oncotarget.3598

Citation Report

#	Article	IF	CITATIONS
2	Tumourâ€derived exosomes: TinyÂenvelopesÂfor big stories. Biology of the Cell, 2015, 107, 287-305.	0.7	77
3	When Prostate Cancer Circulates in the Bloodstream. Diagnostics, 2015, 5, 428-474.	1.3	13
4	Focus on Extracellular Vesicles: Introducing the Next Small Big Thing. International Journal of Molecular Sciences, 2016, 17, 170.	1.8	612
5	Focus on Extracellular Vesicles: New Frontiers of Cell-to-Cell Communication in Cancer. International Journal of Molecular Sciences, 2016, 17, 175.	1.8	255
6	MiRNAs and piRNAs from bone marrow mesenchymal stem cell extracellular vesicles induce cell survival and inhibit cell differentiation of cord blood hematopoietic stem cells: a new insight in transplantation. Oncotarget, 2016, 7, 6676-6692.	0.8	86
7	Keratins: Biomarkers and modulators of apoptotic and necrotic cell death in the liver. Hepatology, 2016, 64, 966-976.	3.6	95
8	Oncosomes $\hat{a}\in$ arge and small: what are they, where they came from? Journal of Extracellular Vesicles, 2016, 5, 33109.	5.5	133
9	Extracellular Vesicles from Metastatic Rat Prostate Tumors Prime the Normal Prostate Tissue to Facilitate Tumor Growth. Scientific Reports, 2016, 6, 31805.	1.6	16
10	60 YEARS OF POMC: From POMC and \hat{l}_{\pm} -MSH to PAM, molecular oxygen, copper, and vitamin C. Journal of Molecular Endocrinology, 2016, 56, T63-T76.	1.1	69
11	Enrichment of extracellular vesicles from tissues of the central nervous system by PROSPR. Molecular Neurodegeneration, 2016, 11, 41.	4.4	76
12	Diagnostic, prognostic and predictive value of cell-free miRNAs in prostate cancer: a systematic review. Molecular Cancer, 2016, 15, 41.	7.9	76
13	Extracellular Vesicles and Their Role in Urologic Malignancies. European Urology, 2016, 70, 323-331.	0.9	79
14	Personalized Therapeutics and Value in Renal Cell Carcinoma: Moving Beyond Lines of Therapy. Journal of Oncology Practice, 2016, 12, 424-425.	2.5	0
15	Transferring intercellular signals and traits between cancer cells: extracellular vesicles as "homing pigeons― Cell Communication and Signaling, 2016, 14, 13.	2.7	32
16	Extracellular Vesicles Move Toward Use in Clinical Laboratories. Clinics in Laboratory Medicine, 2016, 36, 587-602.	0.7	4
17	Hunting for the ultimate liquid cancer biopsy - let the TEP dance begin. Cell Communication and Signaling, 2016, 14, 24.	2.7	21
18	Cells release subpopulations of exosomes with distinct molecular and biological properties. Scientific Reports, 2016, 6, 22519.	1.6	728
19	Extracellular vesicles in liver pathobiology: Small particles with big impact. Hepatology, 2016, 64, 2219-2233.	3.6	190

#	Article	IF	Citations
20	The roles and implications of exosomes in sarcoma. Cancer and Metastasis Reviews, 2016, 35, 377-390.	2.7	33
21	Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E968-77.	3.3	2,548
22	ExoCarta: A Web-Based Compendium of Exosomal Cargo. Journal of Molecular Biology, 2016, 428, 688-692.	2.0	1,034
23	Distinct prostate cancer-related mRNA cargo in extracellular vesicle subsets from prostate cell lines. BMC Cancer, 2017, 17, 92.	1.1	45
24	Extracellular vesicles and blood diseases. International Journal of Hematology, 2017, 105, 392-405.	0.7	42
25	The role of extracellular vesicle microRNAs in cancer biology. Clinical Chemistry and Laboratory Medicine, 2017, 55, 648-656.	1.4	89
26	MYC Mediates Large Oncosome-Induced Fibroblast Reprogramming in Prostate Cancer. Cancer Research, 2017, 77, 2306-2317.	0.4	119
27	Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper. Journal of Extracellular Vesicles, 2017, 6, 1286095.	5. 5	561
28	Quantitative Proteomic Analysis of Serum Exosomes from Patients with Locally Advanced Pancreatic Cancer Undergoing Chemoradiotherapy. Journal of Proteome Research, 2017, 16, 1763-1772.	1.8	87
29	A direct-imaging cryo-EM study of shedding extracellular vesicles from leukemic monocytes. Journal of Structural Biology, 2017, 198, 177-185.	1.3	44
30	Acute lymphoblastic leukaemia cells produce large extracellular vesicles containing organelles and an active cytoskeleton. Journal of Extracellular Vesicles, 2017, 6, 1294339.	5 . 5	34
31	Emergent properties of extracellular vesicles: a holistic approach to decode the complexity of intercellular communication networks. Molecular BioSystems, 2017, 13, 1291-1296.	2.9	64
32	Extracellular vesicles in the tumor microenvironment: Therapeutic resistance, clinical biomarkers, and targeting strategies. Medicinal Research Reviews, 2017, 37, 1318-1349.	5.0	39
33	Metalloproteinases in extracellular vesicles. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1989-2000.	1.9	114
34	Emerging Variants of Castration-Resistant Prostate Cancer. Current Oncology Reports, 2017, 19, 32.	1.8	150
35	Extracellular vesicles for liquid biopsy in prostate cancer: where are we and where are we headed?. Prostate Cancer and Prostatic Diseases, 2017, 20, 251-258.	2.0	82
36	Identification of the metabolic alterations associated with the multidrug resistant phenotype in cancer and their intercellular transfer mediated by extracellular vesicles. Scientific Reports, 2017, 7, 44541.	1.6	61
37	The Multifaceted Functions of Exosomes in Health and Disease: An Overview. Advances in Experimental Medicine and Biology, 2017, 998, 3-19.	0.8	54

#	Article	IF	CITATIONS
38	Best practice of identification and proteomic analysis of extracellular vesicles in human health and disease. Expert Review of Proteomics, 2017, 14, 1073-1090.	1.3	35
39	Biological roles and potential applications of immune cellâ€derived extracellular vesicles. Journal of Extracellular Vesicles, 2017, 6, 1400370.	5.5	127
40	Exosomes from metastatic cancer cells transfer amoeboid phenotype to non-metastatic cells and increase endothelial permeability: their emerging role in tumor heterogeneity. Scientific Reports, 2017, 7, 4711.	1.6	77
41	Extracellular vesicles are independent metabolic units with asparaginase activity. Nature Chemical Biology, 2017, 13, 951-955.	3.9	107
42	Proteomic insights into extracellular vesicle biology – defining exosomes and shed microvesicles. Expert Review of Proteomics, 2017, 14, 69-95.	1.3	135
43	High-throughput sequencing of two populations of extracellular vesicles provides an mRNA signature that can be detected in the circulation of breast cancer patients. RNA Biology, 2017, 14, 305-316.	1.5	43
44	Extracellular vesicles swarm the cancer microenvironment: from tumor–stroma communication to drug intervention. Oncogene, 2017, 36, 877-884.	2.6	117
45	Nuclear transportation of exogenous epidermal growth factor receptor and androgen receptor via extracellular vesicles. European Journal of Cancer, 2017, 70, 62-74.	1.3	48
46	Characterisation of tumourâ€derived microvesicles in cancer patients' blood and correlation with clinical outcome. Journal of Extracellular Vesicles, 2017, 6, 1340745.	5.5	65
47	Mesenchymal Stem Cell Derived Extracellular Vesicles: A Role in Hematopoietic Transplantation?. International Journal of Molecular Sciences, 2017, 18, 1022.	1.8	36
48	The biology of extracellular microvesicles. Traffic, 2018, 19, 319-327.	1.3	160
49	Proteomic Analysis of Cancer-Associated Fibroblasts Reveals a Paracrine Role for MFAP5 in Human Oral Tongue Squamous Cell Carcinoma. Journal of Proteome Research, 2018, 17, 2045-2059.	1.8	65
50	Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 19-34.	1.8	284
51	Extracellular Vesicles Provide a Means for Tissue Crosstalk during Exercise. Cell Metabolism, 2018, 27, 237-251.e4.	7.2	426
52	A Role of Vesicular Transduction of Intercellular Signals in Cancer Development. Russian Journal of Bioorganic Chemistry, 2018, 44, 129-139.	0.3	0
53	Future of Liquid Biopsies With Growing Technological and Bioinformatics Studies: Opportunities and Challenges in Discovering Tumor Heterogeneity With Single-Cell Level Analysis. Cancer Journal (Sudbury, Mass), 2018, 24, 104-108.	1.0	34
54	Detection and proteomic characterization of extracellular vesicles in human pancreatic juice. Biochemical and Biophysical Research Communications, 2018, 499, 37-43.	1.0	36
55	A function-blocking CD47 antibody modulates extracellular vesicle-mediated intercellular signaling between breast carcinoma cells and endothelial cells. Journal of Cell Communication and Signaling, 2018, 12, 157-170.	1.8	31

#	Article	IF	Citations
56	Role of extracellular vesicles in glioma progression. Molecular Aspects of Medicine, 2018, 60, 38-51.	2.7	63
57	Why the need and how to approach the functional diversity of extracellular vesicles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160479.	1.8	261
58	The Crosstalk between Cancer Stem Cells and Microenvironment Is Critical for Solid Tumor Progression: The Significant Contribution of Extracellular Vesicles. Stem Cells International, 2018, 2018, 1-11.	1.2	31
59	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5. 5	6,961
60	Imaging extracellular vesicles: current and emerging methods. Journal of Biomedical Science, 2018, 25, 91.	2.6	224
61	Microvesicles as promising biological tools for diagnosis and therapy. Expert Review of Proteomics, 2018, 15, 801-808.	1.3	28
62	Scanning Electron Microscopy of Circulating Tumor Cells and Tumor-Derived Extracellular Vesicles. Cancers, 2018, 10, 416.	1.7	30
63	Understanding extracellular vesicle diversity – current status. Expert Review of Proteomics, 2018, 15, 887-910.	1.3	118
64	Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells, 2018, 7, 167.	1.8	129
65	Emerin Deregulation Links Nuclear Shape Instability to Metastatic Potential. Cancer Research, 2018, 78, 6086-6097.	0.4	49
66	Emergence of exosomal DNA in molecular neuropathology. Laboratoriums Medizin, 2018, 42, 9-22.	0.1	3
67	Extracellular Vesicle Biogenesis in Cancer. , 2018, , 11-26.		3
68	Metabolic alterations in urine extracellular vesicles are associated to prostate cancer pathogenesis and progression. Journal of Extracellular Vesicles, 2018, 7, 1470442.	5 . 5	103
69	The Role of Extracellular Vesicles in Cancer: Cargo, Function, and Therapeutic Implications. Cells, 2018, 7, 93.	1.8	77
70	Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression. Frontiers in Immunology, 2018, 9, 738.	2.2	638
71	Extracellular Vesicles in Prostate Cancer Carcinogenesis, Diagnosis, and Management. Frontiers in Oncology, 2018, 8, 222.	1.3	93
72	Multidimensional communication in the microenvirons of glioblastoma. Nature Reviews Neurology, 2018, 14, 482-495.	4.9	357
73	NRH:quinone oxidoreductase 2 (NQO2) and glutaminase (GLS) both play a role in large extracellular vesicles (LEV) formation in preclinical LNCaP 4â€2B prostate cancer model of progressive metastasis. Prostate, 2018, 78, 1181-1195.	1.2	11

#	Article	IF	CITATIONS
74	Role of exosomes in pancreatic cancer (Review). Oncology Letters, 2018, 15, 7479-7488.	0.8	26
75	Revascularization and endothelial progenitor cells in stroke. American Journal of Physiology - Cell Physiology, 2018, 315, C664-C674.	2.1	41
76	Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. Journal of Extracellular Vesicles, 2018, 7, 1505403.	5.5	286
77	Cancer cells copy migratory behavior and exchange signaling networks via extracellular vesicles. EMBO Journal, 2018, 37, .	3.5	58
78	Effective Refractive Index and Lipid Content of Extracellular Vesicles Revealed Using Optical Waveguide Scattering and Fluorescence Microscopy. Langmuir, 2018, 34, 8522-8531.	1.6	22
79	Analysis of Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Extracellular Vesicles Using Coffee Ring Coffee Ring C	4.0	24
80	Prostate cancer sheds the $\hat{l}\pm v\hat{l}^23$ integrin in vivo through exosomes. Matrix Biology, 2019, 77, 41-57.	1.5	73
81	An Update on Novel Therapeutic Warfronts of Extracellular Vesicles (EVs) in Cancer Treatment: Where We Are Standing Right Now and Where to Go in the Future. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-21.	1.9	17
82	Large oncosomes overexpressing integrin alpha-V promote prostate cancer adhesion and invasion via AKT activation. Journal of Experimental and Clinical Cancer Research, 2019, 38, 317.	3.5	82
83	Extracellular Vesicles and Their Potential Use in Monitoring Cancer Progression and Therapy: The Contribution of Proteomics. Journal of Oncology, 2019, 2019, 1-19.	0.6	64
84	Low-Background Acyl-Biotinyl Exchange Largely Eliminates the Coisolation of Non- <i>S</i> -Acylated Proteins and Enables Deep <i>S</i> -Acylproteomic Analysis. Analytical Chemistry, 2019, 91, 9858-9866.	3.2	32
85	Extracellular vesicles-based drug delivery system for cancer treatment. Cogent Medicine, 2019, 6, 1635806.	0.7	43
86	Detecting ovarian cancer using extracellular vesicles: progress and possibilities. Biochemical Society Transactions, 2019, 47, 295-304.	1.6	18
87	Nanoscale flow cytometry to distinguish subpopulations of prostate extracellular vesicles in patient plasma. Prostate, 2019, 79, 592-603.	1.2	36
88	Microparticles in the blood of patients with SLE: Size, content of mitochondria and role in circulating immune complexes. Journal of Autoimmunity, 2019, 102, 142-149.	3.0	38
89	Intercellular Vesicular Transfer by Exosomes, Microparticles and Oncosomes - Implications for Cancer Biology and Treatments. Frontiers in Oncology, 2019, 9, 125.	1.3	90
90	Dictyostelium: A Model for Studying the Extracellular Vesicle Messengers Involved in Human Health and Disease. Cells, 2019, 8, 225.	1.8	17
91	Extracellular Vesicles: Exosomes and Microvesicles, Integrators of Homeostasis. Physiology, 2019, 34, 169-177.	1.6	250

#	ARTICLE	IF	CITATIONS
92	Serum keratinâ€18 fragments as cell death biomarker in association with disease progression and prognosis in hepatitis B virusâ€related cirrhosis. Journal of Viral Hepatitis, 2019, 26, 835-845.	1.0	8
93	Navigating the Landscape of Tumor Extracellular Vesicle Heterogeneity. International Journal of Molecular Sciences, 2019, 20, 1349.	1.8	39
94	Protein Composition Reflects Extracellular Vesicle Heterogeneity. Proteomics, 2019, 19, e1800167.	1.3	86
95	A GBM-like V-ATPase signature directs cell-cell tumor signaling and reprogramming via large oncosomes. EBioMedicine, 2019, 41, 225-235.	2.7	25
96	Picornavirus infection induces temporal release of multiple extracellular vesicle subsets that differ in molecular composition and infectious potential. PLoS Pathogens, 2019, 15, e1007594.	2.1	46
97	A review of literature on types, stages of recovery and humanitarian logistics operations in the tsunami and earthquake disaster in Indonesia. IOP Conference Series: Materials Science and Engineering, 2019, 674, 012043.	0.3	7
98	Novel Epigenetic Biomarkers in Pregnancy-Related Disorders and Cancers. Cells, 2019, 8, 1459.	1.8	17
99	Extracellular vesicles and chronic inflammation during HIV infection. Journal of Extracellular Vesicles, 2019, 8, 1687275.	5.5	44
100	Dendritic cell extracellular vesicles. International Review of Cell and Molecular Biology, 2019, 349, 213-249.	1.6	43
101	Extracellular vesicle-associated MMPs: A modulator of the tissue microenvironment. Advances in Clinical Chemistry, 2019, 88, 35-66.	1.8	31
102	Quality of extracellular vesicle images by transmission electron microscopy is operator and protocol dependent. Journal of Extracellular Vesicles, 2019, 8, 1555419.	5. 5	140
103	Proteomic Analysis of Extracellular Vesicles for Cancer Diagnostics. Proteomics, 2019, 19, e1800162.	1.3	29
104	Epithelial keratins: Biology and implications as diagnostic markers for liquid biopsies. Molecular Aspects of Medicine, 2020, 72, 100817.	2.7	49
105	Tumor Liquid Biopsies. Recent Results in Cancer Research, 2020, , .	1.8	11
106	Large extracellular vesicles: Size matters in tumor progression. Cytokine and Growth Factor Reviews, 2020, 51, 69-74.	3.2	41
107	Large and small extracellular vesicles released by glioma cells <i>in vitro</i> and <i>in vivo</i> Journal of Extracellular Vesicles, 2020, 9, 1689784.	5.5	57
108	Extracellular Vesicles and Epigenetic Modifications Are Hallmarks of Melanoma Progression. International Journal of Molecular Sciences, 2020, 21, 52.	1.8	38
109	Host- and Microbiota-Derived Extracellular Vesicles, Immune Function, and Disease Development. International Journal of Molecular Sciences, 2020, 21, 107.	1.8	142

#	Article	IF	CITATIONS
110	Extracellular Vesicles as Biomarkers in Cancer Immunotherapy. Cancers, 2020, 12, 2825.	1.7	66
111	Molecular tracing of prostate cancer lethality. Oncogene, 2020, 39, 7225-7238.	2.6	10
112	Emerging Function and Clinical Significance of Exosomal circRNAs in Cancer. Molecular Therapy - Nucleic Acids, 2020, 21, 367-383.	2.3	58
113	CNS-Targeting Therapies for Lysosomal Storage Diseases: Current Advances and Challenges. Frontiers in Molecular Biosciences, 2020, 7, 559804.	1.6	38
114	Orally Administered 5-aminolevulinic Acid for Isolation and Characterization of Circulating Tumor-Derived Extracellular Vesicles in Glioblastoma Patients. Cancers, 2020, 12, 3297.	1.7	10
115	Mitochondrial Transfer and Regulators of Mesenchymal Stromal Cell Function and Therapeutic Efficacy. Frontiers in Cell and Developmental Biology, 2020, 8, 603292.	1.8	81
116	Bioactive DNA from extracellular vesicles and particles. Cell Death and Disease, 2020, 11, 584.	2.7	125
117	Protein Profiling of Extracellular Vesicles Associated With Cisplatin Resistance in Lung Cancer. Anticancer Research, 2020, 40, 5509-5516.	0.5	7
118	A sensitive S-Trap-based approach to the analysis of T cell lipid raft proteome. Journal of Lipid Research, 2020, 61, 1512-1523.	2.0	11
119	Large Extracellular Vesicles—A New Frontier of Liquid Biopsy in Oncology. International Journal of Molecular Sciences, 2020, 21, 6543.	1.8	17
120	Versatile Role of Rab27a in Glioma: Effects on Release of Extracellular Vesicles, Cell Viability, and Tumor Progression. Frontiers in Molecular Biosciences, 2020, 7, 554649.	1.6	9
121	Cooperation and Interplay between EGFR Signalling and Extracellular Vesicle Biogenesis in Cancer. Cells, 2020, 9, 2639.	1.8	13
122	Extracellular Vesicles in Cancer. , 2020, , .		5
123	Microvesicles derived from squamous cell carcinoma induce cell death, autophagy, and invasion of benign myoepithelial cells. Journal of Oral Pathology and Medicine, 2020, 49, 761-770.	1.4	2
124	Modeling of the immune response in the pathogenesis of solid tumors and its prognostic significance. Cellular Oncology (Dordrecht), 2020, 43, 539-575.	2.1	9
125	The αvβ6Âintegrin in cancer cellâ€derived small extracellular vesicles enhances angiogenesis. Journal of Extracellular Vesicles, 2020, 9, 1763594.	5.5	41
126	Mesenchymal stem cell-derived extracellular vesicle-based therapies protect against coupled degeneration of the central nervous and vascular systems in stroke. Ageing Research Reviews, 2020, 62, 101106.	5.0	62
127	The function and clinical application of extracellular vesicles in innate immune regulation. Cellular and Molecular Immunology, 2020, 17, 323-334.	4.8	171

#	ARTICLE	IF	CITATIONS
128	Tumor-derived extracellular vesicles: Regulators of tumor microenvironment and the enlightenment in tumor therapy. Pharmacological Research, 2020, 159, 105041.	3.1	16
129	Comprehensive palmitoylâ€proteomic analysis identifies distinct protein signatures for large and small cancerâ€derived extracellular vesicles. Journal of Extracellular Vesicles, 2020, 9, 1764192.	5 . 5	37
130	Novel Techniques to Study the Bone-Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1225, 1-18.	0.8	12
131	Extracellular Vesicles in Glioblastoma Tumor Microenvironment. Frontiers in Immunology, 2019, 10, 3137.	2.2	88
132	High Levels of Glutaminase II Pathway Enzymes in Normal and Cancerous Prostate Suggest a Role in †Glutamine Addiction'. Biomolecules, 2020, 10, 2.	1.8	32
133	A Comprehensive Picture of Extracellular Vesicles and Their Contents. Molecular Transfer to Cancer Cells. Cancers, 2020, 12, 298.	1.7	83
134	Modeling Cell Communication in Cancer With Organoids: Making the Complex Simple. Frontiers in Cell and Developmental Biology, 2020, 8, 166.	1.8	71
135	Extracellular Vesicles as Signaling Mediators and Disease Biomarkers across Biological Barriers. International Journal of Molecular Sciences, 2020, 21, 2514.	1.8	121
136	Biological insight into the extracellular vesicles in women with and without gestational diabetes. Journal of Endocrinological Investigation, 2021, 44, 49-61.	1.8	16
137	Antioxidant functions of DHHC3 suppress anti-cancer drug activities. Cellular and Molecular Life Sciences, 2021, 78, 2341-2353.	2.4	12
138	The TNF Superfamily. Methods in Molecular Biology, 2021, , .	0.4	1
139	An extracellular vesicle-related gene expression signature identifies high-risk patients in medulloblastoma. Neuro-Oncology, 2021, 23, 586-598.	0.6	8
140	A review of the biomechanical properties of single extracellular vesicles. Nano Select, 2021, 2, 1-15.	1.9	48
141	Defining Breast Cancer. , 2021, , 1-31.		0
142	Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression. Nature Cell Biology, 2021, 23, 87-98.	4.6	209
143	Diverse roles of EV-RNA in cancer progression. Seminars in Cancer Biology, 2021, 75, 127-135.	4.3	10
144	Extracellular Vesicles in Metabolism and Metabolic Diseases. Sub-Cellular Biochemistry, 2021, 97, 393-410.	1.0	11
145	Are Dietary Extracellular Vesicles Bioavailable and Functional in Consuming Organisms?. Sub-Cellular Biochemistry, 2021, 97, 509-521.	1.0	7

#	Article	IF	CITATIONS
146	Viral Nanoparticles: Cancer Vaccines and Immune Modulators. Advances in Experimental Medicine and Biology, 2021, 1295, 317-325.	0.8	2
147	Platinum Nanoparticles Enhance Exosome Release in Human Lung Epithelial Adenocarcinoma Cancer Cells (A549): Oxidative Stress and the Ceramide Pathway are Key Players. International Journal of Nanomedicine, 2021, Volume 16, 515-538.	3.3	35
148	Extracellular Vesicles in Colorectal Cancer Progression, Metastasis, Diagnosis, and Therapy. , 2021, , 401-420.		0
149	Exosomes and Cell Communication: From Tumour-Derived Exosomes and Their Role in Tumour Progression to the Use of Exosomal Cargo for Cancer Treatment. Cancers, 2021, 13, 822.	1.7	40
150	Extracellular Vesicles and Bone-Associated Cancer. Current Osteoporosis Reports, 2021, 19, 223-229.	1.5	4
151	Proteomic Characterization of Two Extracellular Vesicle Subtypes Isolated from Human Glioblastoma Stem Cell Secretome by Sequential Centrifugal Ultrafiltration. Biomedicines, 2021, 9, 146.	1.4	10
152	Mesenchymal Stem Cell Derived Extracellular Vesicles for Repairing the Neurovascular Unit after Ischemic Stroke. Cells, 2021, 10, 767.	1.8	25
153	The Emerging Roles of Extracellular Vesicles in Ovarian Cancer. Current Drug Metabolism, 2021, 22, 139-149.	0.7	2
154	Role of extracellular vesicles in chronic lung disease. Thorax, 2021, 76, 1047-1056.	2.7	27
155	Proteomic profiling in extracellular vesicles for cancer detection and monitoring. Proteomics, 2021, 21, 2000094.	1.3	12
156	Large Extracellular Vesicle Characterization and Association with Circulating Tumor Cells in Metastatic Castrate Resistant Prostate Cancer. Cancers, 2021, 13, 1056.	1.7	21
157	Evaluation of exosome derivatives as bio-informational reprogramming therapy for cancer. Journal of Translational Medicine, 2021, 19, 103.	1.8	6
158	Unbiased proteomic profiling of host cell extracellular vesicle composition and dynamics upon HIVâ€1 infection. EMBO Journal, 2021, 40, e105492.	3.5	36
159	Identification of Angiogenic Cargo in Extracellular Vesicles Secreted from Human Adipose Tissue-Derived Stem Cells and Induction of Angiogenesis In Vitro and In Vivo. Pharmaceutics, 2021, 13, 495.	2.0	18
160	Exosome-based liquid biopsies in cancer: opportunities and challenges. Annals of Oncology, 2021, 32, 466-477.	0.6	405
161	Plant-derived xenomiRs and cancer: Cross-kingdom gene regulation. Saudi Journal of Biological Sciences, 2021, 28, 2408-2422.	1.8	11
162	Extracellular vesicles in prostate cancer: a narrative review. Translational Andrology and Urology, 2021, 10, 1890-1907.	0.6	17
163	Therapeutic and Diagnostic Translation of Extracellular Vesicles in Cardiovascular Diseases. Circulation, 2021, 143, 1426-1449.	1.6	116

#	Article	IF	CITATIONS
164	Integrated transcriptomic and proteomic analysis of microplasts derived from macrophageâ€conditioned mediumâ€treated MCFâ€7 breast cancer cells. FEBS Letters, 2021, 595, 1844-1860.	1.3	1
165	Proteome reprogramming of endometrial epithelial cells by human trophectodermal small extracellular vesicles reveals key insights into embryo implantation. Proteomics, 2021, 21, e2000210.	1.3	18
166	The Cholesterol Metabolite 27HC Increases Secretion of Extracellular Vesicles Which Promote Breast Cancer Progression. Endocrinology, 2021, 162, .	1.4	17
167	Biogenesis, Membrane Trafficking, Functions, and Next Generation Nanotherapeutics Medicine of Extracellular Vesicles. International Journal of Nanomedicine, 2021, Volume 16, 3357-3383.	3.3	54
168	Astrocyte-derived extracellular vesicles: A double-edged sword in central nervous system disorders. Neuroscience and Biobehavioral Reviews, 2021, 125, 148-159.	2.9	45
169	Sunitinib and Axitinib increase secretion and glycolytic activity of small extracellular vesicles in renal cell carcinoma. Cancer Gene Therapy, 2022, 29, 683-696.	2.2	4
170	Extracellular Vesicles under Oxidative Stress Conditions: Biological Properties and Physiological Roles. Cells, 2021, 10, 1763.	1.8	66
171	Exosomes as New Biomarkers and Drug Delivery Tools for the Prevention and Treatment of Various Diseases: Current Perspectives. International Journal of Molecular Sciences, 2021, 22, 7763.	1.8	22
172	Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nature Communications, 2021, 12, 4389.	5.8	342
173	Extracellular Vesicle-Based Detection of Pancreatic Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 697939.	1.8	15
174	Implications and pitfalls for cancer diagnostics exploiting extracellular vesicles. Advanced Drug Delivery Reviews, 2021, 175, 113819.	6.6	23
175	Intercellular communication through extracellular vesicles in cancer and evolutionary biology. Progress in Biophysics and Molecular Biology, 2021, 165, 80-87.	1.4	6
176	Extracellular Vesicles: New Tools for Early Diagnosis of Breast and Genitourinary Cancers. International Journal of Molecular Sciences, 2021, 22, 8430.	1.8	9
177	Extracellular vesicles in urological malignancies. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188570.	3.3	7
178	Retos y oportunidades en el estudio de ves \tilde{A} culas extracelulares: contexto institucional a nivel mundial y situaci \tilde{A}^3 n actual en Colombia. Biomedica, 2021, 41, 555-589.	0.3	0
179	Extracellular vesicles: The key for precision medicine in glioblastoma. Neuro-Oncology, 2022, 24, 184-196.	0.6	22
180	Design and Optimization of the Circulatory Cell-Driven Drug Delivery Platform. Stem Cells International, 2021, 2021, 1-21.	1.2	2
181	Exosomes in the Tumor Microenvironment: From Biology to Clinical Applications. Cells, 2021, 10, 2617.	1.8	33

#	Article	IF	CITATIONS
182	Biogenesis of Extracellular Vesicles. Sub-Cellular Biochemistry, 2021, 97, 19-43.	1.0	39
183	Extracellular vesicle-mediated crosstalk between melanoma and the immune system: Impact on tumor progression and therapy response. Journal of Leukocyte Biology, 2020, 108, 1101-1115.	1.5	13
184	Extracellular Vesicles: Recent Developments in Technology and Perspectives for Cancer Liquid Biopsy. Recent Results in Cancer Research, 2020, 215, 319-344.	1.8	20
186	Extracellular vesicles and intercellular communication within the nervous system. Journal of Clinical Investigation, 2016, 126, 1198-1207.	3.9	188
187	A prospective highlight on exosomal nanoshuttles and cancer immunotherapy and vaccination. BioImpacts, 2015, 5, 117-122.	0.7	16
188	The role of extracellular vesicles in prostate cancer with clinical applications. Endocrine-Related Cancer, 2020, 27, R133-R144.	1.6	12
189	Extracellular vesicles: the next generation of biomarkers for liquid biopsy-based prostate cancer diagnosis. Theranostics, 2020, 10, 2309-2326.	4.6	124
190	Role of Extracellular Vesicles in Cell Death and Inflammation. Cells, 2021, 10, 2663.	1.8	33
191	Application of extracellular vesicles in the diagnosis and treatment of prostate cancer: implications for clinical practice. Critical Reviews in Oncology/Hematology, 2021, 167, 103495.	2.0	11
193	Functionally Essential Tubular Proteins Are Lost to Urine-Excreted, Large Extracellular Vesicles during Chronic Renal Insufficiency. Kidney360, 2020, 1, 1107-1117.	0.9	4
195	Post-translational lipidation in extracellular vesicles: chemical mechanisms, biological functions and applications. Advances in Biomembranes and Lipid Self-Assembly, 2020, , 83-111.	0.3	2
196	Extracellular vesicles and the extracellular matrix: a new paradigm or old news?. Biochemical Society Transactions, 2020, 48, 2335-2345.	1.6	17
197	Detection of TNF-α Protein in Extracellular Vesicles Derived from Tumor Cells by Western Blotting. Methods in Molecular Biology, 2021, 2248, 251-258.	0.4	2
198	Proteomic dissection of large extracellular vesicle surfaceome unravels interactive surface platform. Journal of Extracellular Vesicles, 2021, 10, e12164.	5 . 5	40
199	miR-1227 Targets SEC23A to Regulate the Shedding of Large Extracellular Vesicles. Cancers, 2021, 13, 5850.	1.7	2
200	Communication between cells: exosomes as a delivery system in prostate cancer. Cell Communication and Signaling, 2021, 19, 110.	2.7	16
201	Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: a decade of research. British Journal of Cancer, 2022, 126, 331-350.	2.9	39
202	Quantitative analysis of biochemical processes in living cells at a single-molecule level: a case of olaparib–PARP1 (DNA repair protein) interactions. Analyst, The, 2021, 146, 7131-7143.	1.7	7

#	Article	IF	CITATIONS
203	Induced pluripotent stem cell–derived extracellular vesicles in regenerative medicine. , 2022, , 507-527.		0
204	Extracellular vesicles derived from glioblastoma promote proliferation and migration of neural progenitor cells via PI3K-Akt pathway. Cell Communication and Signaling, 2022, 20, 7.	2.7	21
205	Tumor-derived extracellular vesicles: Potential tool for cancer diagnosis, prognosis, and therapy. Saudi Journal of Biological Sciences, 2022, 29, 2063-2071.	1.8	12
206	Extracellular Vesicles as Biomarkers and Therapeutic Targets in Cancers. Physiology, 0, , .	4.0	1
207	Biogenesis and function of extracellular vesicles in pathophysiological processes of skeletal muscle atrophy. Biochemical Pharmacology, 2022, 198, 114954.	2.0	38
208	Cow Milk Extracellular Vesicle Effects on an In Vitro Model of Intestinal Inflammation. Biomedicines, 2022, 10, 570.	1.4	19
209	Mitochondrial Extracellular Vesicles in CNS Disorders: New Frontiers in Understanding the Neurological Disorders of the Brain. Frontiers in Molecular Biosciences, 2022, 9, 840364.	1.6	6
210	Tackling the effects of extracellular vesicles in fibrosis. European Journal of Cell Biology, 2022, 101, 151221.	1.6	5
211	Diagnostic Impact of Radiological Findings and Extracellular Vesicles: Are We Close to Radiovesicolomics?. Biology, 2021, 10, 1265.	1.3	3
212	The Role of Extracellular Vesicles in the Progression of Tumors towards Metastasis. Physiology, 0, , .	4.0	0
213	Extracellular Vesicles and Their Emerging Roles as Cellular Messengers in Endocrinology: An Endocrine Society Scientific Statement. Endocrine Reviews, 2022, 43, 441-468.	8.9	40
214	Separation of U87 glioblastoma cell-derived small and medium extracellular vesicles using elasto-inertial flow focusing (a spiral channel). Scientific Reports, 2022, 12, 6146.	1.6	8
217	Extracellular Vesicles and Interleukins: Novel Frontiers in Diagnostic and Therapeutic for Cancer. Frontiers in Immunology, 2022, 13, 836922.	2.2	6
218	Disconnecting multicellular networks in brain tumours. Nature Reviews Cancer, 2022, 22, 481-491.	12.8	44
219	Unpacking the Role of Extracellular Vesicles in Ischemic and Hemorrhagic Stroke: Pathophysiology and Therapeutic Implications. Translational Stroke Research, 2023, 14, 146-159.	2.3	5
220	Extracellular vesicles in kidney disease. Nature Reviews Nephrology, 2022, 18, 499-513.	4.1	64
221	Extracellular Vesicles and Hepatocellular Carcinoma: Opportunities and Challenges. Frontiers in Oncology, 0, 12 , .	1.3	8
222	The Role of Extracellular Vesicles in Melanoma Progression. Cancers, 2022, 14, 3086.	1.7	15

#	Article	IF	CITATIONS
223	Muller glia-derived exosomes and their microRNA cargo–potential for glaucoma therapies. , 2022, , 543-559.		0
224	Translating extracellular vesicle packaging into therapeutic applications. Frontiers in Immunology, 0, 13, .	2.2	21
226	Dual contribution of the mTOR pathway and of the metabolism of amino acids in prostate cancer. Cellular Oncology (Dordrecht), 2022, 45, 831-859.	2.1	4
227	Impact of mesenchymal stromal cell–derived vesicular cargo on B-cell acute lymphoblastic leukemia progression. Blood Advances, 2023, 7, 1190-1203.	2.5	3
228	Clinical applications of liquid biopsy in HPVâ€negative and HPVâ€positive head and neck squamous cell carcinoma: advances and challenges. Exploration of Targeted Anti-tumor Therapy, 0, , 533-552.	0.5	2
229	Large Oncosomeâ€Loaded VAPA Promotes Boneâ€Tropic Metastasis of Hepatocellular Carcinoma Via Formation of Osteoclastic Preâ€Metastatic Niche. Advanced Science, 2022, 9, .	5.6	8
230	Extracellular Vesicles and Membrane Protrusions in Developmental Signaling. Journal of Developmental Biology, 2022, 10, 39.	0.9	2
231	HK1 from hepatic stellate cell–derived extracellular vesicles promotes progression of hepatocellular carcinoma. Nature Metabolism, 2022, 4, 1306-1321.	5.1	33
233	Extracellular vesicles from biological fluids as potential markers in castration resistant prostate cancer. Journal of Cancer Research and Clinical Oncology, 2023, 149, 4701-4717.	1.2	2
234	Bacterial extracellular vesicle applications in cancer immunotherapy. Bioactive Materials, 2023, 22, 551-566.	8.6	8
235	Decoding vesicle-based precision oncology in gliomas. Neuro-Oncology Advances, 2022, 4, ii53-ii60.	0.4	1
237	Extracellular Vesicles from Ocular Melanoma Have Pro-Fibrotic and Pro-Angiogenic Properties on the Tumor Microenvironment. Cells, 2022, 11, 3828.	1.8	3
238	Extracellular Vesicles' Role in the Pathophysiology and as Biomarkers in Cystic Fibrosis and COPD. International Journal of Molecular Sciences, 2023, 24, 228.	1.8	5
239	Exosomes: from biology to immunotherapy in infectious diseases. Infectious Diseases, 2023, 55, 79-107.	1.4	5
240	Roles of extracellular vesicles associated non-coding RNAs in Diabetes Mellitus. Frontiers in Endocrinology, 0, 13, .	1.5	8
241	Circulating Extracellular Vesicles: Their Role in Patients with Abdominal Aortic Aneurysm (AAA) Undergoing EndoVascular Aortic Repair (EVAR). International Journal of Molecular Sciences, 2022, 23, 16015.	1.8	1
242	Intracellular and intercellular transport of RNA organelles in CXG repeat disorders: The strength of weak ties. Frontiers in Molecular Biosciences, 0, 9, .	1.6	1
243	Status quo of Extracellular Vesicle isolation and detection methods for clinical utility. Seminars in Cancer Biology, 2023, 88, 157-171.	4.3	7

#	Article	IF	CITATIONS
244	Extracellular Vesicles in Kidney Diseases: Moving Forward. Kidney360, 0, , 10.34067/KID.0001892022.	0.9	3
245	Extracellular vesicles and melanoma: New perspectives on tumor microenvironment and metastasis. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	3
247	Omics insights into extracellular vesicles in embryo implantation and their therapeutic utility. Proteomics, 2023, 23, .	1.3	4
248	Exosome-mediated regulatory mechanisms in skeletal muscle: a narrative review. Journal of Zhejiang University: Science B, 2023, 24 , $1-14$.	1.3	5
249	Different Liquid Biopsies for the Management of Non-Small Cell Lung Cancer in the Mutational Oncology Era. Medical Sciences (Basel, Switzerland), 2023, 11, 8.	1.3	2
250	Role of Extracellular Vesicles in Cancer Pathogenesis. , 2023, , 1-29.		0
251	Nonâ€Contact Microfluidic Analysis of the Stiffness of Single Large Extracellular Vesicles from IDH1â€Mutated Glioblastoma Cells. Advanced Materials Technologies, 2023, 8, .	3.0	2
252	Stem cell- derived extracellular vesicles as new tools in regenerative medicine - Immunomodulatory role and future perspectives. Frontiers in Immunology, 0, 14 , .	2.2	12
253	Cancer Metastasis: Dynamic Hetero-cellular Communications Between Cancer Cells and Host Tissues. , 2023, , 1-31.		1
254	Extracellular vesicles as next generation immunotherapeutics. Seminars in Cancer Biology, 2023, 90, 73-100.	4.3	16
255	Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nature Reviews Molecular Cell Biology, 2023, 24, 454-476.	16.1	112
256	Extracellular vesicles derived from mesenchymal stem cells â€" a novel therapeutic tool in infectious diseases. Inflammation and Regeneration, 2023, 43, .	1.5	14
257	Melanoma Cells Produce Large Vesicular-Bodies That Cause Rapid Disruption of Brain Endothelial Barrier-Integrity and Disassembly of Junctional Proteins. International Journal of Molecular Sciences, 2023, 24, 6082.	1.8	0
258	Small and Large Extracellular Vesicles Derived from Pleural Mesothelioma Cell Lines Offer Biomarker Potential. Cancers, 2023, 15, 2364.	1.7	0
273	Extracellular vesicles: powerful candidates in nano-drug delivery systems. Drug Delivery and Translational Research, $0, \dots$	3.0	0
275	Circulating Tumor Cells (CTC) and Tumor-Derived Extracellular Vesicles (tdEV). Current Cancer Research, 2023, , 113-136.	0.2	0
276	The Role of Liquid Biopsy in Brain Tumors. Current Cancer Research, 2023, , 575-615.	0.2	0