A New Glycan-Dependent CD4-Binding Site Neutralizin Vivo

PLoS Pathogens 11, e1005238 DOI: 10.1371/journal.ppat.1005238

Citation Report

#	Article	IF	CITATIONS
1	Key gp120 Glycans Pose Roadblocks to the Rapid Development of VRC01-Class Antibodies in an HIV-1-Infected Chinese Donor. Immunity, 2016, 44, 939-950.	6.6	85
2	Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site. Journal of Virology, 2016, 90, 10220-10235.	1.5	32
3	Antigenic landscape of the HIV-1 envelope and new immunological concepts defined by HIV-1 broadly neutralizing antibodies. Current Opinion in Immunology, 2016, 42, 56-64.	2.4	30
4	Development of Broadly Neutralizing Antibodies and Their Mapping by Monomeric gp120 in Human Immunodeficiency Virus Type 1-Infected Humans and Simian-Human Immunodeficiency Virus SHIV _{SF162P3N} -Infected Macaques. Journal of Virology, 2016, 90, 4017-4031.	1.5	24
5	Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Science Translational Medicine, 2017, 9, .	5.8	128
6	<scp>HIV</scp> antibodies for treatment of <scp>HIV</scp> infection. Immunological Reviews, 2017, 275, 313-323.	2.8	59
7	Germlineâ€ŧargeting immunogens. Immunological Reviews, 2017, 275, 203-216.	2.8	105
8	Survivors Remorse: antibodyâ€mediated protection against <scp>HIV</scp> â€1. Immunological Reviews, 2017, 275, 271-284.	2.8	25
9	Differential induction of anti-V3 crown antibodies with cradle- and ladle-binding modes in response to HIV-1 envelope vaccination. Vaccine, 2017, 35, 1464-1473.	1.7	15
10	Clycosylation of the core of the HIV-1 envelope subunit protein gp120 is not required for native trimer formation or viral infectivity. Journal of Biological Chemistry, 2017, 292, 10197-10219.	1.6	29
11	Structural principles controlling HIV envelope glycosylation. Current Opinion in Structural Biology, 2017, 44, 125-133.	2.6	99
12	Progress in HIV-1 antibody research using humanized mice. Current Opinion in HIV and AIDS, 2017, 12, 285-293.	1.5	12
13	The glycanâ€mediated mechanism on the interactions of gp120 with <scp>CD</scp> 4 and antibody: Insights from molecular dynamics simulation. Chemical Biology and Drug Design, 2017, 90, 1237-1246.	1.5	6
14	Molecular Architecture of the Cleavage-Dependent Mannose Patch on a Soluble HIV-1 Envelope Glycoprotein Trimer. Journal of Virology, 2017, 91, .	1.5	77
15	The molecular mechanism of two coreceptor binding site antibodies X5 and 17b neutralizing <scp>HIV</scp> â€l: Insights from molecular dynamics simulation. Chemical Biology and Drug Design, 2018, 92, 1357-1365.	1.5	2
16	Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages. Journal of Proteome Research, 2018, 17, 987-999.	1.8	23
17	Structure and Immune Recognition of the HIV Glycan Shield. Annual Review of Biophysics, 2018, 47, 499-523.	4.5	115
18	Antibody-mediated prevention and treatment of HIV-1 infection. Retrovirology, 2018, 15, 73.	0.9	53

CITATION REPORT

#	Article	IF	CITATIONS
19	Glycoengineering HIV-1 Env creates â€~supercharged' and â€~hybrid' glycans to increase neutralizing antibody potency, breadth and saturation. PLoS Pathogens, 2018, 14, e1007024.	2.1	22
20	HIV Broadly Neutralizing Antibodies: VRC01 and Beyond. Advances in Experimental Medicine and Biology, 2018, 1075, 53-72.	0.8	10
21	Diverse pathways of escape from all well-characterized VRC01-class broadly neutralizing HIV-1 antibodies. PLoS Pathogens, 2018, 14, e1007238.	2.1	18
22	Protein and Glycan Mimicry in HIV Vaccine Design. Journal of Molecular Biology, 2019, 431, 2223-2247.	2.0	91
23	Overcoming Steric Restrictions of VRC01 HIV-1 Neutralizing Antibodies through Immunization. Cell Reports, 2019, 29, 3060-3072.e7.	2.9	26
24	Broadly neutralizing antibodies and vaccine design against HIV-1 infection. Frontiers of Medicine, 2020, 14, 30-42.	1.5	24
25	A Bispecific Antibody That Simultaneously Recognizes the V2- and V3-Glycan Epitopes of the HIV-1 Envelope Glycoprotein Is Broader and More Potent than Its Parental Antibodies. MBio, 2020, 11, .	1.8	27
26	Development of Antibodies with Broad Neutralization Specificities against HIV-1 after Long Term SHIV Infection in Macaques. Viruses, 2020, 12, 163.	1.5	6
27	Envelope characteristics in individuals who developed neutralizing antibodies targeting different epitopes in HIV-1 subtype C infection. Virology, 2020, 546, 1-12.	1.1	5
28	Human antibodies targeting a Mycobacterium transporter protein mediate protection against tuberculosis. Nature Communications, 2021, 12, 602.	5.8	48
29	Antibodies: what makes us stronger. Human Vaccines and Immunotherapeutics, 2021, 17, 3551-3553.	1.4	1
30	Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design. Chemical Biology, 2017, , 300-357.	0.1	4
31	Features of Recently Transmitted HIV-1 Clade C Viruses that Impact Antibody Recognition: Implications for Active and Passive Immunization. PLoS Pathogens, 2016, 12, e1005742.	2.1	81
32	To bnAb or Not to bnAb: Defining Broadly Neutralising Antibodies Against HIV-1. Frontiers in Immunology, 2021, 12, 708227.	2.2	26
33	Clinical Relevance of Humanized Mice. , 2017, , 579-599.		0
35	Structural basis of glycan276-dependent recognition by HIV-1 broadly neutralizing antibodies. Cell Reports, 2021, 37, 109922.	2.9	5
37	Antibodies Against Biofilms: Mechanisms and Applications. Springer Series on Biofilms, 2022, , 263-298.	0.0	0
38	HIV-1 Vpu restricts Fc-mediated effector functions inÂvivo. Cell Reports, 2022, 41, 111624.	2.9	8

#	Article	IF	CITATIONS
39	Characterization of a VRC01-like antibody lineage with immature VL from an HIV-1 infected Chinese donor. Molecular Immunology, 2023, 154, 11-23.	1.0	0
40	The Humanized Mouse Model: What Added Value Does It Offer for HIV Research?. Pathogens, 2023, 12, 608.	1.2	5