Brain Networks Responsible for Sense of Agency: An EE

PLoS ONE 10, e0135261 DOI: 10.1371/journal.pone.0135261

Citation Report

#	Article	IF	CITATIONS
1	Effects of Ketamine on Resting-State EEG Activity and Their Relationship to Perceptual/Dissociative Symptoms in Healthy Humans. Frontiers in Pharmacology, 2016, 7, 348.	1.6	79
2	Physiology of free will. Annals of Neurology, 2016, 80, 5-12.	2.8	34
3	A psychoengineering paradigm for the neurocognitive mechanisms of biofeedback and neurofeedback. Neuroscience and Biobehavioral Reviews, 2016, 68, 891-910.	2.9	80
4	Measurement of the Perception of Control during Continuous Movement using Electroencephalography. Frontiers in Human Neuroscience, 2017, 11, 392.	1.0	15
5	"Do You Feel in Control?â€: Towards Novel Approaches to Characterise, Manipulate and Measure the Sense of Agency in Virtual Environments. IEEE Transactions on Visualization and Computer Graphics, 2018, 24, 1486-1495.	2.9	57
6	Visual capture of gait during redirected walking. Scientific Reports, 2018, 8, 17974.	1.6	19
7	Towards a Pragmatic Approach to a Psychophysiological Unit of Analysis for Mental and Brain Disorders: An EEG-Copeia for Neurofeedback. Applied Psychophysiology Biofeedback, 2019, 44, 151-172.	1.0	11
8	Belief of agency changes dynamics in sensorimotor networks. Scientific Reports, 2019, 9, 1995.	1.6	11
9	The Sense of Agency in Driving Automation. Frontiers in Psychology, 2019, 10, 2691.	1.1	40
10	Neural correlates of sense of agency in motor control: A neuroimaging meta-analysis. PLoS ONE, 2020, 15, e0234321.	1.1	37
11	Associations of Alpha and Beta Interhemispheric EEG Coherences with Indices of Attentional Control and Academic Performance. Behavioural Neurology, 2020, 2020, 1-7.	1.1	9
12	Quantitative Analysis of EEG Power Spectrum and EMG Median Power Frequency Changes after Continuous Passive Motion Mirror Therapy System. Sensors, 2020, 20, 2354.	2.1	11
13	Control Modification of Grasp Force Covaries Agency and Performance on Rigid and Compliant Surfaces. Frontiers in Bioengineering and Biotechnology, 2020, 8, 574006.	2.0	7
14	Parieto-Occipital Alpha and Low-Beta EEG Power Reflect Sense of Agency. Brain Sciences, 2021, 11, 743.	1.1	10
17	Investigating the Relationship Between Assisted Driver's SoA and EEG. Biosystems and Biorobotics, 2019, , 1039-1043.	0.2	3
18	Cognitive and Physiological Intent for the Adaptation of Motor Prostheses. , 2020, , 123-153.		1
20	Impaired sense of agency in functional movement disorders: An fMRI study. PLoS ONE, 2017, 12, e0172502.	1.1	83
21	Functional Magnetic Resonance Imaging Demonstrates That Hypnosis Is Conscious and Voluntary. Psychology, 2018, 09, 1571-1581.	0.3	6

#	Article	IF	Citations
22	Granone's Plastic Monoideism Demonstrated by Functional Magnetic Resonance Imaging (fMRI). Psychology, 2019, 10, 434-448.	0.3	2
23	Brain Activity Reflects Subjective Response to Delayed Input When Using an Electromyography-Controlled Robot. Frontiers in Systems Neuroscience, 2021, 15, 767477.	1.2	1
24	Hand dominance in the performance and perceptions of virtual reach control. Acta Psychologica, 2022, 223, 103494.	0.7	6
25	Leveraging Factors of Self-Efficacy and Motivation to Optimize Stroke Recovery. Frontiers in Neurology, 2022, 13, 823202.	1.1	14
26	Sense of Agency on Handheld AR for Virtual Object Translation. , 2022, , .		6
27	Movement Augmentation in Virtual Reality: Impact on Sense of Agency Measured by Subjective Responses and Electroencephalography. , 2022, , .		6
28	The borderland of multiple sclerosis and functional neurological disorder: A call for clinical research and vigilance. European Journal of Neurology, 0, , .	1.7	1
29	Effects of Delayed Visual Feedback on Brain Activity: A Near-Infrared Spectroscopy Study. , 2023, , .		0
31	Clinical Usefulness of Real-time Sensory Compensation Feedback Training on Sensorimotor Dysfunction After Stroke. , 0, , .		0
32	Multimodal Augmented Feedback for Functional Grasp Training Using a Smart Glove and Virtual Reality for Persons with Spinal Cord Injury. , 2023, , .		0
33	EEG and Motor Effects of Multimodal Feedback to Train Functional Grasp after Traumatic Brain Injury. , 2023, , .		0
38	Experiment Design for EEG-based Continuous Action Sense of Agency. , 2023, , .		0

CITATION REPORT