High-Pitch, Low-Voltage and Low-Iodine-Concentration Assessment of Image Quality and Radiation Dose with I

PLoS ONE 10, e0117469 DOI: 10.1371/journal.pone.0117469

Citation Report

#	Article	IF	CITATIONS
1	Coronary CT Angiography in Heavily Calcified Coronary Arteries. Medicine (United States), 2015, 94, e2148.	0.4	24
2	Indirect CT Venography at 80 kVp with Sinogram-Affirmed Iterative Reconstruction Compared to 120 kVp with Filtered Back Projection: Assessment of Image Quality and Radiation Dose. PLoS ONE, 2016, 11, e0163416.	1.1	5
3	lodine Concentration and Optimization in Computed Tomography Angiography. Investigative Radiology, 2016, 51, 816-822.	3.5	40
4	Effect of automated tube voltage selection, integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of 3rd generation dual-source aortic CT angiography: An intra-individual comparison. European Journal of Radiology, 2016, 85, 972-978.	1.2	25
5	Recommendations for accurate CT diagnosis of suspected acute aortic syndrome (AAS)—on behalf of the British Society of Cardiovascular Imaging (BSCI)/British Society of Cardiovascular CT (BSCCT). British Journal of Radiology, 2016, 89, 20150705.	1.0	51
6	Computed Tomographic Angiography of the Abdominal Aorta. Radiologic Clinics of North America, 2016, 54, 35-54.	0.9	14
7	Diagnostic performance and radiation dose of lower extremity CT angiography using a 128-slice dual source CT at 80 kVp and high pitch. Acta Radiologica, 2016, 57, 822-828.	0.5	9
8	Iterative reconstruction in single-source dual-energy CT angiography: feasibility of low and ultra-low volume contrast medium protocols. British Journal of Radiology, 2017, 90, 20160506.	1.0	10
9	Intravascular contrast agents in diagnostic applications: Use of red blood cells to improve the lifespan and efficacy of blood pool contrast agents. Nano Research, 2017, 10, 731-766.	5.8	13
10	Whole-Body High-Pitch CT Angiography: Strategies to Reduce Radiation Dose and Contrast Volume. American Journal of Roentgenology, 2017, 209, 1396-1403.	1.0	6
11	Use of pulmonary CT angiography with low tube voltage and low-iodine-concentration contrast agent to diagnose pulmonary embolism. Scientific Reports, 2017, 7, 12741.	1.6	8
12	CT-angiography of the aorta in patients with Marfan disease - High-pitch MDCT at different levels of tube voltage combined with Sinogram Affirmed Iterative Reconstruction. Clinical Imaging, 2018, 51, 123-132.	0.8	10
13	Low Tube Voltage and Iterative Model Reconstruction in Follow-up CT Angiography After Thoracic Endovascular Aortic Repair. Academic Radiology, 2018, 25, 494-501.	1.3	12
14	Hybrid ECG-gated versus non-gated 512-slice CT angiography of the aorta and coronary artery: image quality and effect of a motion correction algorithm. Acta Radiologica, 2018, 59, 170-179.	0.5	1
15	Diagnostic value of iterative reconstruction algorithm in low kV CT angiography (CTA) with low contrast medium volume for transcatheter aortic valve implantation (TAVI) planning: image quality and radiation dose exposure. British Journal of Radiology, 2018, 91, 20170802.	1.0	22
16	Optimization of Computed Tomography Angiography Protocols for Follow-Up Type B Aortic Dissection Patients by Using 3D Printed Model. Applied Sciences (Switzerland), 2021, 11, 6844.	1.3	8
17	Dual Energy CT Angiography of Peripheral Arterial Disease: Feasibility of Using Lower Contrast Medium Volume. PLoS ONE, 2015, 10, e0139275.	1.1	29
18	Optimization of Scan and Reconstruction Parameters for Renal Artery CT Angiography with Iterative Reconstruction at Low kVp Compared with Filtered Back Projection at 120 kVp Acquisition. Iranian Journal of Radiology, 2018, 15, .	0.1	1

		CITATION REPORT		
#	Article		IF	CITATIONS
19	The Feasibility of Combined Coronary and Supra-aortic Arteries CT Angiography with a S High-pitch Acquisition Protocol using Dualsource CT. Angiology: Open Access, 2015, 03	ingle	0.1	0
20	CT-angiografie body. , 2018, , 387-420.			0
21	Multislice computed tomography angiography in the diagnosis of patients with suspected dissection: A single centre experience. , 2019, 12, .	ed aortic		0
22	Deep Learning-Based Image Reconstruction for CT Angiography of the Aorta. Diagnostic	s, 2021, 11, 2037.	1.3	4
23	Computed Tomography Angiography of the Aorta—Optimization of Automatic Tube V Settings to Reduce Radiation Dose or Contrast Medium in a Prospective Randomized Tri Radiology, 2021, 56, 283-291.	oltage Selection al. Investigative	3.5	11
24	Evaluation of image quality and radiation dose in low tube voltage coronary computed t angiography. ARYA Atherosclerosis, 2019, 15, 205-210.	omography	0.4	4
25	Determine Cumulative Radiation Dose and Lifetime Cancer Risk in Marfan Syndrome Pat Underwent Computed Tomography Angiography of the Aorta in Northeast Thailand: A 5 Retrospective Cohort Study. Tomography, 2022, 8, 120-130.		0.8	0
26	Prospective Study of Low-Radiation and Low-Iodine Dose Aortic CT Angiography in Obes Non-Obese Patients: Image Quality and Impact of Patient Characteristics. Diagnostics, 2		1.3	5
28	Non-ECG-gated high-pitch CT angiography versus hybrid ECG-gated CT angiography for a 512-slice CT: comparison of image quality and radiation dose. Acta Radiologica, 2023, 6	aorta using 4, 515-523.	0.5	3
29	Assessment of optimization of computed tomography angiography protocols for follow aortic dissection patients by using aÂ3D-printed model. Journal of 3D Printing in Medicir 117-127.	up type B ie, 2022, 6,	1.0	4
30	An image-based approach for the estimation of arterial local stiffness in vivo. Frontiers ir Bioengineering and Biotechnology, 0, 11, .	1	2.0	5