Functional consequences for primary human alveolar m with long, but not short, multiwalled carbon nanotubes

International Journal of Nanomedicine 10, 3115 DOI: 10.2147/ijn.s77867

Citation Report

#	Article	IF	CITATIONS
1	Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP). Particle and Fibre Toxicology, 2015, 13, 11.	6.2	115
2	DNA Microarray Analysis of Submandibular Glands in IgG4-Related Disease Indicates a Role for MARCO and Other Innate Immune-Related Proteins. Medicine (United States), 2016, 95, e2853.	1.0	19
4	Toxicity determinants of multi-walled carbon nanotubes: The relationship between functionalization and agglomeration. Toxicology Reports, 2016, 3, 230-243.	3.3	141
5	Lysosomal Disorders Drive Susceptibility to Tuberculosis by Compromising Macrophage Migration. Cell, 2016, 165, 139-152.	28.9	117
6	Poly(dopamine)-modified carbon nanotube multilayered film and its effects on macrophages. Carbon, 2017, 113, 176-191.	10.3	34
7	Different Cellular Response of Human Mesothelial Cell MeT-5A to Short-Term and Long-Term Multiwalled Carbon Nanotubes Exposure. BioMed Research International, 2017, 2017, 1-10.	1.9	11
8	Stromelysin-2 (MMP-10) facilitates clearance and moderates inflammation and cell death following lung exposure to long multiwalled carbon nanotubes. International Journal of Nanomedicine, 2017, Volume 12, 1019-1031.	6.7	6
9	Threshold Rigidity Values for the Asbestos-like Pathogenicity of High-Aspect-Ratio Carbon Nanotubes in a Mouse Pleural Inflammation Model. ACS Nano, 2018, 12, 10867-10879.	14.6	20
10	Carbon nanotubes and crystalline silica induce matrix remodeling and contraction by stimulating myofibroblast transformation in a three-dimensional culture of human pulmonary fibroblasts: role of dimension and rigidity. Archives of Toxicology, 2018, 92, 3291-3305.	4.2	15
11	Toxicological Profiling of Highly Purified Singleâ€Walled Carbon Nanotubes with Different Lengths in the Rodent Lung and <i>Escherichia Coli</i> . Small, 2018, 14, e1703915.	10.0	21
12	Comparative in Vitro Cytotoxicity of Realistic Doses of Benchmark Multi-Walled Carbon Nanotubes towards Macrophages and Airway Epithelial Cells. Nanomaterials, 2019, 9, 982.	4.1	16
13	Antagonistic effect of co-exposure to short-multiwalled carbon nanotubes and benzo[a]pyrene in human lung cells (A549). Toxicology and Industrial Health, 2019, 35, 445-456.	1.4	1
14	Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials. Particle and Fibre Toxicology, 2019, 16, 18.	6.2	276
15	Length-dependent toxicity of TiO ₂ nanofibers: mitigation via shortening. Nanotoxicology, 2020, 14, 433-452.	3.0	11
16	Adverse outcome pathways as a tool for the design of testing strategies to support the safety assessment of emerging advanced materials at the nanoscale. Particle and Fibre Toxicology, 2020, 17, 16.	6.2	139
17	Toxicity of Carbon Nanotubes: Molecular Mechanisms, Signaling Cascades, and Remedies in Biomedical Applications. Chemical Research in Toxicology, 2021, 34, 24-46.	3.3	59
18	Scavenger Receptor A1 Mediates the Uptake of Carboxylated and Pristine Multi-Walled Carbon Nanotubes Coated with Bovine Serum Albumin. Nanomaterials, 2021, 11, 539.	4.1	4
19	Role of Innate Immune System in Environmental Lung Diseases. Current Allergy and Asthma Reports, 2021, 21, 34.	5.3	9

#	Article	IF	CITATIONS
20	Carbon Dioxide Conversion to Nanomaterials: Methods, Applications, and Challenges. Energy & Fuels, 2021, 35, 11820-11834.	5.1	19
21	Shape-Related Toxicity of Titanium Dioxide Nanofibres. PLoS ONE, 2016, 11, e0151365.	2.5	47