The Role of Astrocytes in Multiple Sclerosis Progression

Frontiers in Neurology 6, 180 DOI: 10.3389/fneur.2015.00180

Citation Report

#	Article	IF	CITATIONS
1	Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Frontiers in Cell and Developmental Biology, 2016, 4, 71.	3.7	292
2	The Role of Astrocytes in the Generation, Migration, and Integration of New Neurons in the Adult Olfactory Bulb. Frontiers in Neuroscience, 2016, 10, 149.	2.8	67
3	Viral Vector-Based Dissection of Marmoset GFAP Promoter in Mouse and Marmoset Brains. PLoS ONE, 2016, 11, e0162023.	2.5	20
4	Multiple Sclerosis and Obesity: Possible Roles of Adipokines. Mediators of Inflammation, 2016, 2016, 1-24.	3.0	170
5	Astrocytes in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1114-1124.	3.0	108
6	Acute axonal damage in three different murine models of multiple sclerosis: A comparative approach. Brain Research, 2016, 1650, 125-133.	2.2	38
7	Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain, 2017, 140, aww258.	7.6	311
8	Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Progress in Neurobiology, 2016, 144, 5-26.	5.7	101
9	IL-17 induces MIP-1α expression in primary mouse astrocytes via TRPC channel. Inflammopharmacology, 2016, 24, 33-42.	3.9	7
10	Regulatory effect of triiodothyronine on brain myelination and astrogliosis after cuprizone-induced demyelination in mice. Metabolic Brain Disease, 2016, 31, 425-433.	2.9	28
11	MicroRNA-19b-3p Modulates Japanese Encephalitis Virus-Mediated Inflammation via Targeting RNF11. Journal of Virology, 2016, 90, 4780-4795.	3.4	85
12	Sphingosine 1-phosphate signaling in astrocytes: Implications for progressive multiple sclerosis. Journal of the Neurological Sciences, 2016, 361, 60-65.	0.6	25
13	Effects of multiwalled carbon nanotubes on electrospun poly(lactide-co-glycolide)-based nanocomposite scaffolds on neural cells proliferation. , 2017, 105, 934-943.		13
14	Toll-like receptor signalling as a cannabinoid target in Multiple Sclerosis. Neuropharmacology, 2017, 113, 618-626.	4.1	37
15	Adenosine Triphosphate Metabolism Measured by Phosphorus Magnetic Resonance Spectroscopy: A Potential Biomarker for Multiple Sclerosis Severity. European Neurology, 2017, 77, 316-321.	1.4	21
16	Drug discovery for remyelination and treatment of MS. Glia, 2017, 65, 1565-1589.	4.9	41
17	Increased total sodium concentration in gray matter better explains cognition than atrophy in MS. Neurology, 2017, 88, 289-295.	1.1	40
18	Insights in pathogenesis of multiple sclerosis: nitric oxide may induce mitochondrial dysfunction of oligodendrocytes. Reviews in the Neurosciences, 2017, 29, 39-53.	2.9	38

#	Article	IF	CITATIONS
19	The effects of berberine on a murine model of multiple sclerosis and the SPHK1/S1P signaling pathway. Biochemical and Biophysical Research Communications, 2017, 490, 927-932.	2.1	13
20	Gestational Hypothyroxinemia Imprints a Switch in the Capacity of Astrocytes and Microglial Cells of the Offspring to React in Inflammation. Molecular Neurobiology, 2018, 55, 4373-4387.	4.0	5
21	Involvement of the IL-1 system in experimental autoimmune encephalomyelitis and multiple sclerosis: Breaking the vicious cycle between IL-1β and GM-CSF. Brain, Behavior, and Immunity, 2017, 62, 1-8.	4.1	41
22	Achievements and obstacles of remyelinating therapies in multiple sclerosis. Nature Reviews Neurology, 2017, 13, 742-754.	10.1	89
23	A mathematical model of cellular swelling in Neuromyelitis optica. Journal of Theoretical Biology, 2017, 433, 39-48.	1.7	3
24	Microsomal Prostaglandin E Synthase-1 Facilitates an Intercellular Interaction between CD4+ T Cells through IL-11² Autocrine Function in Experimental Autoimmune Encephalomyelitis. International Journal of Molecular Sciences, 2017, 18, 2758.	4.1	8
25	The Transcriptome of Type I Murine Astrocytes under Interferon-Gamma Exposure and Remyelination Stimulus. Molecules, 2017, 22, 808.	3.8	21
26	p21-Activated Kinase 4 Signaling Promotes Japanese Encephalitis Virus-Mediated Inflammation in Astrocytes. Frontiers in Cellular and Infection Microbiology, 2017, 7, 271.	3.9	18
27	Modulation of P2X7 Receptor during Inflammation in Multiple Sclerosis. Frontiers in Immunology, 2017, 8, 1529.	4.8	53
28	A Refined Bead-Free Method to Identify Astrocytic Exosomes in Primary Glial Cultures and Blood Plasma. Frontiers in Neuroscience, 2017, 11, 335.	2.8	29
29	Does the Gut Microbiota Influence Immunity and Inflammation in Multiple Sclerosis Pathophysiology?. Journal of Immunology Research, 2017, 2017, 1-14.	2.2	52
30	Salutary effects of glibenclamide during the chronic phase of murine experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2017, 14, 177.	7.2	25
31	The critical chemical and mechanical regulation of folic acid on neural engineering. Biomaterials, 2018, 178, 504-516.	11.4	31
32	<scp>A</scp> strocyte disruption of neurovascular communication is linked to cortical damage in an an animal model of multiple sclerosis. Glia, 2018, 66, 1098-1117.	4.9	37
33	Evidence of progressive tissue loss in the core of chronic MS lesions: A longitudinal DTI study. NeuroImage: Clinical, 2018, 17, 1028-1035.	2.7	46
34	The Neuropathology of Progressive Multiple Sclerosis. , 2018, , 49-69.		2
35	What role does multiple sclerosis play in the development of untreatable painful conditions?. Pain Management, 2018, 8, 37-44.	1.5	9
36	Kolaviron protects the brain in cuprizone-induced model of experimental multiple sclerosis via enhancement of intrinsic antioxidant mechanisms: Possible therapeutic applications?. Pathophysiology, 2018, 25, 299-306.	2.2	32

#	Article	IF	CITATIONS
37	Cholinergic imbalance in lumbar spinal cord of a rat model of multiple sclerosis. Journal of Neuroimmunology, 2018, 318, 29-35.	2.3	0
38	Voltage Gated Potassium Channel Kv1.3 Is Upregulated on Activated Astrocytes in Experimental Autoimmune Encephalomyelitis. Neurochemical Research, 2018, 43, 1020-1034.	3.3	18
39	Clonal Glial Response in a Multiple Sclerosis Mouse Model. Frontiers in Cellular Neuroscience, 2018, 12, 375.	3.7	22
40	Endothelial Microsomal Prostaglandin E Synthetase-1 Upregulates Vascularity and Endothelial Interleukin-1β in Deteriorative Progression of Experimental Autoimmune Encephalomyelitis. International Journal of Molecular Sciences, 2018, 19, 3647.	4.1	2
41	Targeting senescence to delay progression of multiple sclerosis. Journal of Molecular Medicine, 2018, 96, 1153-1166.	3.9	30
42	Serum GFAP as a biomarker for disease severity in multiple sclerosis. Scientific Reports, 2018, 8, 14798.	3.3	164
43	Impact of Glatiramer Acetate on B Cell-Mediated Pathogenesis of Multiple Sclerosis. CNS Drugs, 2018, 32, 1039-1051.	5.9	25
44	Human Induced Pluripotent Stem Cell-Derived Astrocytes Are Differentially Activated by Multiple Sclerosis-Associated Cytokines. Stem Cell Reports, 2018, 11, 1199-1210.	4.8	114
45	Specific Alterations in Astrocyte Properties via the GluA2-GAPDH Complex Associated with Multiple Sclerosis. Scientific Reports, 2018, 8, 12856.	3.3	9
46	Astrocyte Neuroprotection and Dehydroepiandrosterone. Vitamins and Hormones, 2018, 108, 175-203.	1.7	10
47	Laquinimod protects the optic nerve and retina in an experimental autoimmune encephalomyelitis model. Journal of Neuroinflammation, 2018, 15, 183.	7.2	39
48	NLR-Dependent Regulation of Inflammation in Multiple Sclerosis. Frontiers in Immunology, 2017, 8, 2012.	4.8	66
49	Microscale Architecture in Biomaterial Scaffolds for Spatial Control of Neural Cell Behavior. Frontiers in Materials, 2018, 5, .	2.4	16
50	Coagulation Factor XII Levels and Intrinsic Thrombin Generation in Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 245.	2.4	23
51	Granulocyte-macrophage colony-stimulating factor as a mediator of autoimmunity in multiple sclerosis. Journal of Neuroimmunology, 2018, 323, 1-9.	2.3	15
52	KIAA1199 expression and hyaluronan degradation colocalize in multiple sclerosis lesions. Glycobiology, 2018, 28, 958-967.	2.5	10
53	Blockade of sustained tumor necrosis factor in a transgenic model of progressive autoimmune encephalomyelitis limits oligodendrocyte apoptosis and promotes oligodendrocyte maturation. Journal of Neuroinflammation, 2018, 15, 121.	7.2	27
54	Increased expression of colonyâ€stimulating factorâ€1 in mouse spinal cord with experimental autoimmune encephalomyelitis correlates with microglial activation and neuronal loss. Glia, 2018, 66, 2108-2125.	4.9	36

#	Article	IF	CITATIONS
55	Genome sequencing uncovers phenocopies in primary progressive multiple sclerosis. Annals of Neurology, 2018, 84, 51-63.	5.3	38
56	Neuro-Immune-Endocrine Interactions in Multiple Sclerosis. Advances in Neuroimmune Biology, 2018, 7, 55-65.	0.7	3
57	Neurotoxic potential of reactive astrocytes in canine distemper demyelinating leukoencephalitis. Scientific Reports, 2019, 9, 11689.	3.3	13
58	Retinal pathology in experimental optic neuritis is characterized by retrograde degeneration and gliosis. Acta Neuropathologica Communications, 2019, 7, 116.	5.2	48
59	The Bu Shen Yi Sui Formula Promotes Axonal Regeneration via Regulating the Neurotrophic Factor BDNF/TrkB and the Downstream PI3K/Akt Signaling Pathway. Frontiers in Pharmacology, 2019, 10, 796.	3.5	12
60	Engineering biomaterial microenvironments to promote myelination in the central nervous system. Brain Research Bulletin, 2019, 152, 159-174.	3.0	17
61	The Potassium Channel Kv1.5 Expression Alters During Experimental Autoimmune Encephalomyelitis. Neurochemical Research, 2019, 44, 2733-2745.	3.3	6
62	High mobility group box 1 (HMGB1) protein in Multiple Sclerosis (MS): Mechanisms and therapeutic potential. Life Sciences, 2019, 238, 116924.	4.3	20
63	On elucidation of the role of mitochondria dysfunction and oxidative stress in multiple sclerosis. Neurology and Clinical Neuroscience, 2019, 7, 305-317.	0.4	6
64	Excitatory Amino Acid Transporters in Physiology and Disorders of the Central Nervous System. International Journal of Molecular Sciences, 2019, 20, 5671.	4.1	97
65	Co-stimulation with IL-1β and TNF-α induces an inflammatory reactive astrocyte phenotype with neurosupportive characteristics in a human pluripotent stem cell model system. Scientific Reports, 2019, 9, 16944.	3.3	93
66	The Relationship Between Neuroimmunity and Bipolar Disorder: Mechanism and Translational Application. Neuroscience Bulletin, 2019, 35, 595-607.	2.9	19
67	Central nervous system targeted autoimmunity causes regional atrophy: a 9.4T MRI study of the EAE mouse model of Multiple Sclerosis. Scientific Reports, 2019, 9, 8488.	3.3	28
68	The effects of a combination of ion channel inhibitors on pathology in a model of demyelinating disease. Multiple Sclerosis and Related Disorders, 2019, 34, 1-8.	2.0	6
69	The role of fatty acid binding protein 7 in spinal cord astrocytes in a mouse model of experimental autoimmune encephalomyelitis. Neuroscience, 2019, 409, 120-129.	2.3	19
70	Effect of mesenchymal stem cells on glial cells population in cuprizone induced demyelination model. Neuropeptides, 2019, 75, 75-84.	2.2	17
71	Nox2-dependent neuroinflammation in an EAE model of multiple sclerosis. Translational Neuroscience, 2019, 10, 1-9.	1.4	30
72	Unsupervised quantification of tissue immunofluorescence in animal models of multiple sclerosis – Instructions for use. Journal of Neuroscience Methods, 2019, 320, 87-97.	2.5	1

#		IE	CITATIONS
#	Mechanisms of neurobebavioral abnormalities in multiple sclerosis: Contributions from neural and	IF	CHAHONS
73	immune components. Clinical Neurophysiology Practice, 2019, 4, 39-46.	1.4	8
74	Mechanisms of Neurodegeneration and Axonal Dysfunction in Progressive Multiple Sclerosis. Biomedicines, 2019, 7, 14.	3.2	76
75	Remyelination Pharmacotherapy Investigations Highlight Diverse Mechanisms Underlying Multiple Sclerosis Progression. ACS Pharmacology and Translational Science, 2019, 2, 372-386.	4.9	28
76	Multiple Sclerosis: Destruction and Regeneration of Astrocytes in Acute Lesions. Journal of Neuropathology and Experimental Neurology, 2019, 78, 140-156.	1.7	28
77	Human Remyelination Promoting Antibody Stimulates Astrocytes Proliferation Through Modulation of the Sphingolipid Rheostat in Primary Rat Mixed Glial Cultures. Neurochemical Research, 2019, 44, 1460-1474.	3.3	8
78	Microglial modulation through colonyâ€stimulating factorâ€1 receptor inhibition attenuates demyelination. Clia, 2019, 67, 291-308.	4.9	29
79	Astrocyte ablation induced by La-aminoadipate (L-AAA) potentiates remyelination in a cuprizone demyelinating mouse model. Metabolic Brain Disease, 2019, 34, 593-603.	2.9	31
80	The formation of a glial scar does not prohibit remyelination in an animal model of multiple sclerosis. Glia, 2019, 67, 467-481.	4.9	31
81	Participación de los astrocitos en la patogénesis de la esclerosis múltiple. NeurologÃa, 2020, 35, 400-408.	0.7	7
82	Towards a comprehensive etiopathogenetic and pathophysiological theory of multiple sclerosis. International Journal of Neuroscience, 2020, 130, 279-300.	1.6	11
83	Roles of glial ion transporters in brain diseases. Glia, 2020, 68, 472-494.	4.9	43
84	Exercise in multiple sclerosis and its models: Focus on the central nervous system outcomes. Journal of Neuroscience Research, 2020, 98, 509-523.	2.9	27
85	â€~Prototypical' proinflammatory cytokine (IL-1) in multiple sclerosis: role in pathogenesis and therapeutic targeting. Expert Opinion on Therapeutic Targets, 2020, 24, 37-46.	3.4	16
86	Iron Metabolism in Oligodendrocytes and Astrocytes, Implications for Myelination and Remyelination. ASN Neuro, 2020, 12, 175909142096268.	2.7	73
87	A Score Based on NfL and Glial Markers May Differentiate Between Relapsing–Remitting and Progressive MS Course. Frontiers in Neurology, 2020, 11, 608.	2.4	25
88	Protection of Fecal Microbiota Transplantation in a Mouse Model of Multiple Sclerosis. Mediators of Inflammation, 2020, 2020, 1-13.	3.0	50
89	The role of astrocytes in multiple sclerosis pathogenesis. NeurologÃa (English Edition), 2020, 35, 400-408.	0.4	1
90	Antiâ€inflammatory and immuneâ€modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation. Journal of Cellular and Molecular Medicine, 2020, 24, 13573-13588.	3.6	63

#	ARTICLE Transplantation of induced neural stem cells (iNSCs) into chronically demyelinated corpus callosum	IF	CITATIONS
91 92	ameliorates motor deficits. Acta Neuropathologica Communications, 2020, 8, 84. Remodeling of the interstitial extracellular matrix in white matter multiple sclerosis lesions:	5.2 2.9	21 29
93	Aberrant DNA methylation profile exacerbates inflammation and neurodegeneration in multiple sclerosis patients. Journal of Neuroinflammation, 2020, 17, 21.	7.2	46
94	Astrocyteâ€T cell crosstalk regulates regionâ€specific neuroinflammation. Glia, 2020, 68, 1361-1374.	4.9	36
95	Astrocyte metabolism in multiple sclerosis investigated by 1-C-11 acetate PET. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 369-379.	4.3	15
96	Ethyl Pyruvate–Derived Transdifferentiation of Astrocytes to Oligodendrogenesis in Cuprizone-Induced Demyelinating Model. Neurotherapeutics, 2021, 18, 488-502.	4.4	8
97	A mathematical model of the multiple sclerosis plaque. Journal of Theoretical Biology, 2021, 512, 110532.	1.7	6
98	Primary neuron and astrocyte cultures from postnatal Callithrix jacchus: a non-human primate in vitro model for research in neuroscience, nervous system aging, and neurological diseases of aging. GeroScience, 2021, 43, 115-124.	4.6	1
99	Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia, 2021, 69, 1341-1368.	4.9	24
100	Intranasal antiâ€caspaseâ€1 therapy preserves myelin and glucose metabolism in a model of progressive multiple sclerosis. Glia, 2021, 69, 216-229.	4.9	10
101	Astrocytes: a double-edged sword in neurodegenerative diseases. Neural Regeneration Research, 2021, 16, 1702.	3.0	74
102	Preclinical Therapy with Vitamin D3 in Experimental Encephalomyelitis: Efficacy and Comparison with Paricalcitol. International Journal of Molecular Sciences, 2021, 22, 1914.	4.1	10
103	Increased Expression of Ephrins on Immune Cells of Patients with Relapsing Remitting Multiple Sclerosis Affects Oligodendrocyte Differentiation. International Journal of Molecular Sciences, 2021, 22, 2182.	4.1	4
104	m6A RNA Methylation in Systemic Autoimmune Diseases—A New Target for Epigenetic-Based Therapy?. Pharmaceuticals, 2021, 14, 218.	3.8	16
105	Mitochondrial Behavior in Axon Degeneration and Regeneration. Frontiers in Aging Neuroscience, 2021, 13, 650038.	3.4	37
106	Myelin Repair: From Animal Models to Humans. Frontiers in Cellular Neuroscience, 2021, 15, 604865.	3.7	21
107	BMSCs differentiated into neurons, astrocytes and oligodendrocytes alleviated the inflammation and demyelination of EAE mice models. PLoS ONE, 2021, 16, e0243014.	2.5	8
108	Specific Blockade of Bone Morphogenetic Protein-2/4 Induces Oligodendrogenesis and Remyelination in Demyelinating Disorders. Neurotherapeutics, 2021, 18, 1798-1814.	4.4	5

#	Article	IF	CITATIONS
109	Baicalein Delays H ₂ O ₂ -Induced Astrocytic Senescence through Inhibition of Senescence-Associated Secretory Phenotype (SASP), Suppression of JAK2/STAT1/NF-I®B Pathway, and Regulation of Leucine Metabolism. ACS Chemical Neuroscience, 2021, 12, 2320-2335.	3.5	13
110	RGC-32 Acts as a Hub to Regulate the Transcriptomic Changes Associated With Astrocyte Development and Reactive Astrocytosis. Frontiers in Immunology, 2021, 12, 705308.	4.8	1
111	MANF Is Neuroprotective in Early Stages of EAE, and Elevated in Spinal White Matter by Treatment With Dexamethasone. Frontiers in Cellular Neuroscience, 2021, 15, 640084.	3.7	7
112	Expansion of chronic MS lesions is associated with an increase of radial diffusivity in periplaque white matter. Multiple Sclerosis Journal, 2022, 28, 697-706.	3.0	7
113	Potential of PINK1 and PARKIN Proteins as Biomarkers for Active Multiple Sclerosis: A Japanese Cohort Study. Frontiers in Immunology, 2021, 12, 681386.	4.8	12
114	Clinical and Paraclinical Biomarkers and the Hitches to Assess Conversion to Secondary Progressive Multiple Sclerosis: A Systematic Review. Frontiers in Neurology, 2021, 12, 666868.	2.4	13
115	What telomeres teach us about MS. Multiple Sclerosis and Related Disorders, 2021, 54, 103084.	2.0	8
116	PARKIN modifies peripheral immune response and increases neuroinflammation in active experimental autoimmune encephalomyelitis (EAE). Journal of Neuroimmunology, 2021, 359, 577694.	2.3	8
117	Effect of CSF1R inhibitor on glial cells population and remyelination in the cuprizone model. Neuropeptides, 2021, 89, 102179.	2.2	9
118	RGC-32 Regulates Generation of Reactive Astrocytes in Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2020, 11, 608294.	4.8	4
119	Translational Characterization of the Glia Role in Multiple Sclerosis. Neuromethods, 2021, , 61-76.	0.3	2
120	Structural and Functional Neuroimaging in Multiple Sclerosis: From Atrophy, Lesions to Global Network Disruption. , 2018, , 171-213.		1
121	Latency of Multifocal Visual Evoked Potential in Multiple Sclerosis: A Visual Pathway Biomarker for Clinical Trials of Remyelinating Therapies. Journal of Clinical Neurophysiology, 2021, 38, 186-191.	1.7	8
122	TNFR2 limits proinflammatory astrocyte functions during EAE induced by pathogenic DR2b-restricted T cells. JCI Insight, 2019, 4, .	5.0	13
123	Lack of astrocytes hinders parenchymal oligodendrocyte precursor cells from reaching a myelinating state in osmolyte-induced demyelination. Acta Neuropathologica Communications, 2020, 8, 224.	5.2	14
124	Plasma metabolome and skin proteins in Charcot-Marie-Tooth 1A patients. PLoS ONE, 2017, 12, e0178376.	2.5	16
125	Astrocyte phenotypes: Emphasis on potential markers in neuroinflammation. Histology and Histopathology, 2021, 36, 267-290.	0.7	7
126	Targeting S100B Protein as a Surrogate Biomarker and its Role in Various Neurological Disorders. Current Neuropharmacology, 2020, 19, 265-277.	2.9	29

#	Article	IF	CITATIONS
127	Prevention of Brain Hypoperfusion-Induced Neurodegeneration in Rat's Hippocampus by Black Cumin Fixed Oil Treatment. IIUM Medical Journal Malaysia, 2018, 17, .	0.2	1
128	Tenovin-1 Induces Senescence and Decreases Wound-Healing Activity in Cultured Rat Primary Astrocytes. Biomolecules and Therapeutics, 2019, 27, 283-289.	2.4	11
129	Role of nuclear factor κB in multiple sclerosis and experimental autoimmune encephalomyelitis. Neural Regeneration Research, 2018, 13, 1507.	3.0	55
130	Temporal and spatial evolution of various functional neurons during demyelination induced by cuprizone. Journal of Neurophysiology, 2021, 126, 1756-1771.	1.8	2
131	Astrocytic YAP prevents the demyelination through promoting expression of cholesterol synthesis genes in experimental autoimmune encephalomyelitis. Cell Death and Disease, 2021, 12, 907.	6.3	14
132	B Cell-based Therapies for Multiple Sclerosis. RSC Drug Discovery Series, 2019, , 134-169.	0.3	1
133	Sulfonylurea Receptor 1 in Central Nervous System Injury: An Updated Review. International Journal of Molecular Sciences, 2021, 22, 11899.	4.1	22
135	The Histamine and Multiple Sclerosis Alliance: Pleiotropic Actions and Functional Validation. Current Topics in Behavioral Neurosciences, 2021, , 217-239.	1.7	4
136	The effects of mesenchymal stem cells transplantation on A1 neurotoxic reactive astrocyte and demyelination in the cuprizone model. Journal of Molecular Histology, 2022, , 1.	2.2	11
137	2-Chlorodeoxyadenosine (Cladribine) preferentially inhibits the biological activity of microglial cells. International Immunopharmacology, 2022, 105, 108571.	3.8	8
138	Molecular Mechanisms of Immunosenescene and Inflammaging: Relevance to the Immunopathogenesis and Treatment of Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 811518.	2.4	16
139	Endocannabinoid Modulation in Neurodegenerative Diseases: In Pursuit of Certainty. Biology, 2022, 11, 440.	2.8	13
140	Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines, 2022, 10, 815.	3.2	3
141	Hearing loss among patients with multiple sclerosis (PwMS): A systematic review and meta-analysis. Multiple Sclerosis and Related Disorders, 2022, 62, 103754.	2.0	3
142	Long-term Effect of Permanent Demyelination on Axonal Survival in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	5
143	Functions of astrocytes in multiple sclerosis: A review. Multiple Sclerosis and Related Disorders, 2022, 60, 103749.	2.0	8
144	Astroglial and oligodendroglial markers in the cuprizone animal model for de- and remyelination. Histochemistry and Cell Biology, 2022, 158, 15-38.	1.7	12
145	The matrine derivate MASM inhibits astrocyte reactivity and alleviates experimental autoimmune encephalomyelitis in mice. International Immunopharmacology, 2022, 108, 108771.	3.8	0

#	Article	IF	CITATIONS
146	Treatment of Experimental Autoimmune Encephalomyelitis using AAV Gene Therapy by blocking T-cell Costimulatory Pathways. Molecular Therapy - Methods and Clinical Development, 2022, , .	4.1	2
147	Focus on the Role of the NLRP3 Inflammasome in Multiple Sclerosis: Pathogenesis, Diagnosis, and Therapeutics. Frontiers in Molecular Neuroscience, 2022, 15, .	2.9	17
148	Astrocyte depletion alters extracellular matrix composition in the demyelinating phase of Theiler's murine encephalomyelitis. PLoS ONE, 2022, 17, e0270239.	2.5	6
149	Therapeutic Potential of Astrocyte Transplantation. Cell Transplantation, 2022, 31, 096368972211054.	2.5	13
150	In focus in HCB. Histochemistry and Cell Biology, 2022, 158, 1-4.	1.7	1
151	Potential Utility of Natural Products against Oxidative Stress in Animal Models of Multiple Sclerosis. Antioxidants, 2022, 11, 1495.	5.1	7
152	CTGF/CCN2 has a possible detrimental role in the inflammation and the remyelination failure in the early stages of multiple sclerosis. Journal of Neuroimmunology, 2022, 371, 577936.	2.3	1
153	Role of RGC-32 in multiple sclerosis and neuroinflammation – few answers and many questions. Frontiers in Immunology, 0, 13, .	4.8	1
154	Mechanisms of Neurodegeneration in Multiple Sclerosis. Zhurnal Nevrologii I Psikhiatrii Imeni S S Korsakova, 2022, 122, 5.	0.7	1
155	The Translatability of Multiple Sclerosis Animal Models for Biomarkers Discovery and Their Clinical Use. International Journal of Molecular Sciences, 2022, 23, 11532.	4.1	13
156	Bu Shen Yi Sui Capsule Promotes Myelin Repair by Modulating the Transformation of A1/A2 Reactive Astrocytes In Vivo and In Vitro. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-22.	4.0	10
157	Combination Therapy of Mesenchymal Stem Cell Transplantation and Astrocyte Ablation Improve Remyelination in a Cuprizone-Induced Demyelination Mouse Model. Molecular Neurobiology, 2022, 59, 7278-7292.	4.0	4
158	The regulatory role of NLRX1 in innate immunity and human disease. Cytokine, 2022, 160, 156055.	3.2	5
159	Emodin attenuates inflammation and demyelination in experimental autoimmune encephalomyelitis. Neural Regeneration Research, 2023, 18, 1535.	3.0	5
160	Impact of the Renin-Angiotensin System on the Pathogeny and Pharmacotherapeutics of Neurodegenerative Diseases. Biomolecules, 2022, 12, 1429.	4.0	4
161	Phloretin enhances remyelination by stimulating oligodendrocyte precursor cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	4
162	Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurology, The, 2023, 22, 78-88.	10.2	113
163	Characterisation of the safety profile of evobrutinib in over 1000 patients from phase II clinical trials in multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus: an integrated safety analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2023, 94, 1-9.	1.9	9

#	Article	IF	CITATIONS
164	Cathepsin-B inhibitor CA-074 attenuates retinopathy and optic neuritis in experimental autoimmune encephalomyelitis induced in SJL/J mice. Saudi Pharmaceutical Journal, 2023, 31, 147-153.	2.7	1
165	Neuroaxonal and Glial Markers in Patients of the Same Age With Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2023, 10, .	6.0	6
166	Cerebrospinal fluid immunoglobulins in primary progressive multiple sclerosis are pathogenic. Brain, 2023, 146, 1979-1992.	7.6	4
167	Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell deconvolve. Nature Communications, 2023, 14, .	12.8	10
168	Platelets and platelet-derived vesicles as an innovative cellular and subcellular platform for managing multiple sclerosis. Molecular Biology Reports, 2023, 50, 4675-4686.	2.3	3
169	The Role of BDNF in Multiple Sclerosis Neuroinflammation. International Journal of Molecular Sciences, 2023, 24, 8447.	4.1	11
170	Space Renaissance and Neurodegeneration. , 2022, , 123-132.		0
171	Mechanisms of Neurodegeneration in Multiple Sclerosis. Neuroscience and Behavioral Physiology, 2023, 53, 324-332.	0.4	0
172	Changes in stiffness of the optic nerve and involvement of neurofilament light chains in the course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2023, 1869, 166796.	3.8	0
173	The Role of Vitamin D in Neuroprotection in Multiple Sclerosis: An Update. Nutrients, 2023, 15, 2978.	4.1	6
174	The molecular pathology of neurodegenerative and psychiatric disorders. , 2023, , 3-43.		4
175	Therapeutic Plasma Exchange and Multiple Sclerosis Dysregulations: Focus on the Removal of Pathogenic Circulatory Factors and Altering Nerve Growth Factor and Sphingosine-1-Phosphate Plasma Levels. Current Issues in Molecular Biology, 2023, 45, 7749-7774.	2.4	1
176	The role of stress in mediating inflammation in the context of neurodegeneration. , 2024, , 325-337.		0
177	Predictors of transition from relapsing‑remitting multiple sclerosis to secondary progressive. Medical Alphabet, 2023, , 40-44.	0.2	0
178	Deletion of voltage-gated calcium channels in astrocytes decreases neuroinflammation and demyelination in a murine model of multiple sclerosis. Journal of Neuroinflammation, 2023, 20, .	7.2	1
179	Astrocytes: Lessons Learned from the Cuprizone Model. International Journal of Molecular Sciences, 2023, 24, 16420.	4.1	0
180	Crosstalk between GABAA receptors in astrocytes and neurons triggered by general anesthetic drugs. Translational Research, 2024, 267, 39-53.	5.0	0
181	Toward identifying key mechanisms of progression in multiple sclerosis. Trends in Neurosciences, 2023, , .	8.6	0

	CITAT	CITATION REPORT	
#	Article	IF	CITATIONS
182	Serum glial fibrillary acidic protein and disability progression in progressive multiple sclerosis. Annals of Clinical and Translational Neurology, 2024, 11, 477-485.	3.7	0
183	Dietary Supplementation with 23-Hydroxy Ursolic Acid Reduces the Severity and Incidence of Acute Experimental Autoimmune Encephalomyelitis (EAE) in a Murine Model of Multiple Sclerosis. Nutrients, 2024, 16, 348.	4.1	0
184	The Impact of Aging on Multiple Sclerosis. Current Neurology and Neuroscience Reports, 2024, 24, 83-93.	4.2	0
185	The association of menopausal hormone levels with progression-related biomarkers in multiple sclerosis and Related Disorders, 2024, 85, 105517.	2.0	0