Thalamocortical Dysrhythmia: A Theoretical Update in

Frontiers in Neurology 6, 124 DOI: 10.3389/fneur.2015.00124

Citation Report

#	Article	IF	CITATIONS
1	Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus. Frontiers in Cellular Neuroscience, 2015, 9, 421.	1.8	18
2	Tinnitus and Headache. BioMed Research International, 2015, 2015, 1-7.	0.9	40
3	Human Auditory Cortex Neurochemistry Reflects the Presence and Severity of Tinnitus. Journal of Neuroscience, 2015, 35, 14822-14828.	1.7	41
4	Enhanced GABAA-Mediated Tonic Inhibition in Auditory Thalamus of Rats with Behavioral Evidence of Tinnitus. Journal of Neuroscience, 2015, 35, 9369-9380.	1.7	59
5	Tinnitus: perspectives from human neuroimaging. Nature Reviews Neuroscience, 2015, 16, 632-642.	4.9	255
6	EXPLORING THE DICHOTOMY OF TRANSCRANIAL MAGNETIC STIMULATION'S FREQUENCIES ON BRAIN WAVE PATTERNS. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.3	0
7	Increased Low- and High-Frequency Oscillatory Activity in the Prefrontal Cortex of Fibromyalgia Patients. Frontiers in Human Neuroscience, 2016, 10, 111.	1.0	85
8	An Increase in Alpha Band Frequency in Resting State EEG after Electrical Stimulation of the Ear in Tinnitus Patients—A Pilot Study. Frontiers in Neuroscience, 2016, 10, 453.	1.4	14
9	The Impact of Cortical Lesions on Thalamo-Cortical Network Dynamics after Acute Ischaemic Stroke: A Combined Experimental and Theoretical Study. PLoS Computational Biology, 2016, 12, e1005048.	1.5	26
10	No Laughing Matter: Gelastic Migraine and Other Unusual Headache Syndromes. Current Pain and Headache Reports, 2016, 20, 32.	1.3	1
11	Differential tinnitus-related neuroplastic alterations of cortical thickness and surface area. Hearing Research, 2016, 342, 1-12.	0.9	47
12	An Integrative Tinnitus Model Based on Sensory Precision. Trends in Neurosciences, 2016, 39, 799-812.	4.2	145
13	Past, Present, and Future Pharmacological Therapies for Tinnitus. Springer Handbook of Auditory Research, 2016, , 165-195.	0.3	3
14	Animal models of tinnitus. Hearing Research, 2016, 338, 88-97.	0.9	63
15	Cannabinoids, cannabinoid receptors and tinnitus. Hearing Research, 2016, 332, 210-216.	0.9	18
16	Alucinaciones auditivas en neurologÃa cognitiva. NeurologÃa, 2017, 32, 345-354.	0.3	1
17	Unified principles of thalamo-cortical processing: the neural switch. Biomedical Engineering Letters, 2017, 7, 229-235.	2.1	17
18	Auditory hallucinations in cognitive neurology. NeurologÃa (English Edition), 2017, 32, 345-354.	0.2	3

#	Article	IF	CITATIONS
19	EEG oscillatory power dissociates between distress- and depression-related psychopathology in subjective tinnitus. Brain Research, 2017, 1663, 194-204.	1.1	30
20	Noninvasive Transcranial Magnetic and Electrical Stimulation: Working Mechanisms. , 2017, , 193-223.		1
21	Acute effects and after-effects of acoustic coordinated reset neuromodulation in patients with chronic subjective tinnitus. NeuroImage: Clinical, 2017, 15, 541-558.	1.4	34
22	Noise Trauma-Induced Behavioral Gap Detection Deficits Correlate with Reorganization of Excitatory and Inhibitory Local Circuits in the Inferior Colliculus and Are Prevented by Acoustic Enrichment. Journal of Neuroscience, 2017, 37, 6314-6330.	1.7	62
23	Auditory thalamic circuits and GABAA receptor function: Putative mechanisms in tinnitus pathology. Hearing Research, 2017, 349, 197-207.	0.9	62
24	Reductions in cortical alpha activity, enhancements in neural responses and impaired gap detection caused by sodium salicylate in awake guinea pigs. European Journal of Neuroscience, 2017, 45, 398-409.	1.2	11
25	Pairing sound with vagus nerve stimulation modulates cortical synchrony and phase coherence in tinnitus: An exploratory retrospective study. Scientific Reports, 2017, 7, 17345.	1.6	42
26	Auditory Brainstem Responses in Tinnitus: A Review of Who, How, and What?. Frontiers in Aging Neuroscience, 2017, 9, 237.	1.7	58
27	Neurofeedback for Tinnitus Treatment – Review and Current Concepts. Frontiers in Aging Neuroscience, 2017, 9, 386.	1.7	32
28	Differential Modulation of Rhythmic Brain Activity in Healthy Adults by a T-Type Calcium Channel Blocker: An MEG Study. Frontiers in Human Neuroscience, 2017, 11, 24.	1.0	4
29	Habituation of laser-evoked potentials by migraine phase: a blinded longitudinal study. Journal of Headache and Pain, 2017, 18, 100.	2.5	16
30	Effect of distress on transient network dynamics and topological equilibrium in phantom sound perception. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 79-92.	2.5	10
32	Transcranial magnetic stimulation and subjective tinnitus. A review of the literature, 2014–2016. European Annals of Otorhinolaryngology, Head and Neck Diseases, 2018, 135, 51-58.	0.4	27
33	Thalamocortical dysrhythmia detected by machine learning. Nature Communications, 2018, 9, 1103.	5.8	171
34	High-definition transcranial direct current stimulation of the dorsolateral prefrontal cortex for tinnitus modulation: a preliminary trial. Journal of Neural Transmission, 2018, 125, 163-171.	1.4	21
35	Acouphènes associés aux surdités. , 2018, , 101-113.		0
36	Sound Change Integration Error: An Explanatory Model of Tinnitus. Frontiers in Neuroscience, 2018, 12, 831.	1.4	4
37	Adapted Acoustic CR Neuromodulation in Patients With Chronic Tonal Tinnitus and Hearing Loss. Frontiers in Medicine, 2018, 5, 288.	1.2	8

#	Article	IF	CITATIONS
38	Normal Hearing Young Adults with Mild Tinnitus: Reduced Inhibition as Measured Through Sensory Gating. Audiology Research, 2018, 8, 214.	0.8	24
39	Optimization of Transcranial Direct Current Stimulation of Dorsolateral Prefrontal Cortex for Tinnitus: A Non-Linear Dose-Response Effect. Scientific Reports, 2018, 8, 8311.	1.6	39
40	Fundamentals of Burst Stimulation of the Spinal Cord and Brain. , 2018, , 147-160.		5
41	Targeting Heterogeneous Findings in Neuronal Oscillations in Tinnitus: Analyzing MEG Novices and Mental Health Comorbidities. Frontiers in Psychology, 2018, 9, 235.	1.1	6
42	The Functional Alterations in Top-Down Attention Streams of Parkinson's disease Measured by EEG. Scientific Reports, 2018, 8, 10609.	1.6	14
43	Tinnitus Abnormal Brain Region Detection Based on Dynamic Causal Modeling and Exponential Ranking. BioMed Research International, 2018, 2018, 1-10.	0.9	7
44	A Computational Model of Thalamocortical Dysrhythmia in People With Tinnitus. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1845-1857.	2.7	8
45	Distressâ€dependent temporal variability of regions encoding domainâ€specific and domainâ€general behavioral manifestations of phantom percepts. European Journal of Neuroscience, 2018, 48, 1743-1764.	1.2	13
46	A Review of Auditory Prediction and Its Potential Role in Tinnitus Perception. Journal of the American Academy of Audiology, 2018, 29, 533-547.	0.4	8
47	Therapeutic Approaches to the Treatment of Tinnitus. Annual Review of Pharmacology and Toxicology, 2019, 59, 291-313.	4.2	78
48	Tinnitus and neuropathic pain share a common neural substrate in the form of specific brain connectivity and microstate profiles. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 88, 388-400.	2.5	38
49	Inhibition of Experimental Tinnitus With High Frequency Stimulation of the Rat Medial Geniculate Body. Neuromodulation, 2019, 22, 416-424.	0.4	18
50	Sensory neurologic disorders: Tinnitus. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 165, 365-381.	1.0	4
51	Changes in the Resting-State Cortical Oscillatory Activity 6 Months After Modified Tinnitus Retraining Therapy. Frontiers in Neuroscience, 2019, 13, 1123.	1.4	23
52	Aberrant thalamocortical coherence in an animal model of tinnitus. Journal of Neurophysiology, 2019, 121, 893-907.	0.9	14
53	Tinnitus: Does Gain Explain?. Neuroscience, 2019, 407, 213-228.	1.1	86
54	Auditory Streaming and Prediction in Tinnitus Sufferers. Ear and Hearing, 2019, 40, 345-357.	1.0	12
55	Residual inhibition: From the putative mechanisms to potential tinnitus treatment. Hearing Research, 2019, 375, 1-13.	0.9	35

#	Article	IF	CITATIONS
56	Low-intensity repetitive transcranial magnetic stimulation over prefrontal cortex in an animal model alters activity in the auditory thalamus but does not affect behavioural measures of tinnitus. Experimental Brain Research, 2019, 237, 883-896.	0.7	10
57	Visual hallucinations, thalamocortical physiology and Lewy body disease: A review. Neuroscience and Biobehavioral Reviews, 2019, 103, 337-351.	2.9	17
58	Changes in auditory thalamus neural firing patterns after acoustic trauma in rats. Hearing Research, 2019, 379, 89-97.	0.9	12
59	Investigating the Efficacy of an Individualized Alpha/Delta Neurofeedback Protocol in the Treatment of Chronic Tinnitus. Neural Plasticity, 2019, 2019, 1-15.	1.0	31
60	Towards a Mechanistic-Driven Precision Medicine Approach for Tinnitus. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 115-131.	0.9	17
61	Musical hallucinations and their relation with epilepsy. Journal of Neurology, 2019, 266, 1501-1515.	1.8	12
62	Treating Chronic Migraine With Neuromodulation: The Role of Neurophysiological Abnormalities and Maladaptive Plasticity. Frontiers in Pharmacology, 2019, 10, 32.	1.6	22
63	Cannabinoid drugs: will they relieve or exacerbate tinnitus?. Current Opinion in Neurology, 2019, 32, 131-136.	1.8	15
64	Top-down and Bottom-up Regulated Auditory Phantom Perception. Journal of Neuroscience, 2019, 39, 364-378.	1.7	51
65	The Brain Network in a Model of Thalamocortical Dysrhythmia. Brain Connectivity, 2019, 9, 273-284.	0.8	17
66	Active listening to tinnitus and its relation to resting state EEG activity. Neuroscience Letters, 2019, 694, 176-183.	1.0	8
67	Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques. Journal of Zhejiang University: Science B, 2019, 20, 116-130.	1.3	22
68	Effective connectivity analysis of inter- and intramodular hubs in phantom sound perception – identifying the core distress network. Brain Imaging and Behavior, 2020, 14, 289-307.	1.1	16
69	Transcranial direct current stimulation improves tinnitus perception and modulates cortical electrical activity in patients with tinnitus: A randomized clinical trial. Neurophysiologie Clinique, 2020, 50, 289-300.	1.0	12
70	Combining neurofeedback with source estimation: Evaluation of an sLORETA neurofeedback protocol for chronic tinnitus treatment. Restorative Neurology and Neuroscience, 2020, 38, 283-299.	0.4	7
71	Electrophysiological correlates of focused attention on low- and high-distressed tinnitus. PLoS ONE, 2020, 15, e0236521.	1.1	9
72	Pharmacotherapy of Tinnitus. Current Topics in Behavioral Neurosciences, 2020, 51, 193-212.	0.8	8
73	Differences in Clinical Characteristics and Brain Activity between Patients with Low- and High-Frequency Tinnitus. Neural Plasticity, 2020, 2020, 1-12.	1.0	9

#	Article	IF	Citations
74	Bimodal Auditory Electrical Stimulation for the Treatment of Tinnitus: Preclinical and Clinical Studies. Current Topics in Behavioral Neurosciences, 2020, 51, 295-323.	0.8	6
75	The Neural Bases of Tinnitus: Lessons from Deafness and Cochlear Implants. Journal of Neuroscience, 2020, 40, 7190-7202.	1.7	65
76	Avenue for Future Tinnitus Treatments. Otolaryngologic Clinics of North America, 2020, 53, 667-683.	0.5	41
77	Investigating functional changes in the brain to intermittently induced auditory illusions and its relevance to chronic tinnitus. Human Brain Mapping, 2020, 41, 1819-1832.	1.9	14
78	Visual snow syndrome. Neurology, 2020, 94, e564-e574.	1.5	80
79	Darwinian computation with a functional map of the auditory cortex. Acoustical Science and Technology, 2020, 41, 39-47.	0.3	0
80	Clobal restingâ€state functional connectivity of neural oscillations in tinnitus with and without hearing loss. Human Brain Mapping, 2020, 41, 2846-2861.	1.9	11
81	Vagus nerve stimulation for tinnitus: A review and perspective. Progress in Brain Research, 2021, 262, 451-467.	0.9	6
82	Chronic pain as a brain imbalance between pain input and pain suppression. Brain Communications, 2021, 3, fcab014.	1.5	30
83	Thalamocortical dysrhythmia underpin the log-dynamics in phantom sounds. Progress in Brain Research, 2021, 262, 511-526.	0.9	4
84	Application of Latent Growth Curve modeling to predict individual trajectories during neurofeedback treatment for tinnitus. Progress in Brain Research, 2021, 263, 109-136.	0.9	5
86	Event related potentials (ERPs) to assess the tinnitus complaint during drug treatment. Progress in Brain Research, 2021, 262, 175-187.	0.9	3
87	Tinnitus and Brain Stimulation. Current Topics in Behavioral Neurosciences, 2021, 51, 249-293.	0.8	14
88	Brain rhythms and connectivity changes in tinnitus patients. , 2021, , 169-194.		0
89	The Bayesian brain in imbalance: Medial, lateral and descending pathways in tinnitus and pain: A perspective. Progress in Brain Research, 2021, 262, 309-334.	0.9	27
90	Changes in Prefrontal Cortex–Thalamic Circuitry after Acoustic Trauma. Biomedicines, 2021, 9, 77.	1.4	3
91	Animal Models of Tinnitus Treatment: Cochlear and Brain Stimulation. Current Topics in Behavioral Neurosciences, 2021, 51, 83-129.	0.8	2
92	Noise-induced neurophysiological alterations in the rat medial geniculate body and thalamocortical desynchronization by deep brain stimulation. Journal of Neurophysiology, 2021, 125, 661-671.	0.9	6

#	Article	IF	CITATIONS
93	Salience, emotion, and attention: The neural networks underlying tinnitus distress revealed using music and rest. Brain Research, 2021, 1755, 147277.	1.1	15
94	Does tinnitus lead to chaos?. Brazilian Journal of Otorhinolaryngology, 2021, 87, 125-126.	0.4	5
95	Auditory thalamus dysfunction and pathophysiology in tinnitus: a predictive network hypothesis. Brain Structure and Function, 2021, 226, 1659-1676.	1.2	9
97	Musical Hallucinations in Chronic Pain: The Anterior Cingulate Cortex Regulates Internally Generated Percepts. Frontiers in Neurology, 2021, 12, 669172.	1.1	3
98	Aberrant cerebral blood flow in tinnitus patients with migraine: a perfusion functional MRI study. Journal of Headache and Pain, 2021, 22, 61.	2.5	13
99	Heading for Personalized rTMS in Tinnitus: Reliability of Individualized Stimulation Protocols in Behavioral and Electrophysiological Responses. Journal of Personalized Medicine, 2021, 11, 536.	1.1	5
100	A Gestalt Theory Approach to Structure in Language. Frontiers in Psychology, 2021, 12, 649384.	1.1	1
101	Multidisciplinary Tinnitus Research: Challenges and Future Directions From the Perspective of Early Stage Researchers. Frontiers in Aging Neuroscience, 2021, 13, 647285.	1.7	12
102	Neurophysiological correlates of residual inhibition in tinnitus: Hints for trait-like EEG power spectra. Clinical Neurophysiology, 2021, 132, 1694-1707.	0.7	9
103	The Psychiatric Symptomology of Visual Snow Syndrome. Frontiers in Neurology, 2021, 12, 703006.	1.1	20
104	Excitatory Repetitive Transcranial Magnetic Stimulation Over Prefrontal Cortex in a Guinea Pig Model Ameliorates Tinnitus. Frontiers in Neuroscience, 2021, 15, 693935.	1.4	5
105	Short-Wave Sensitive ("Blueâ€) Cone Activation Is an Aggravating Factor for Visual Snow Symptoms. Frontiers in Neurology, 2021, 12, 697923.	1.1	7
106	Shannon entropy measures for EEG signals in tinnitus. Neuroscience Letters, 2021, 762, 136153.	1.0	8
107	Development of Tinnitus and Hyperacusis in a Mouse Model of Tobramycin Cochleotoxicity. Frontiers in Molecular Neuroscience, 2021, 14, 715952.	1.4	0
108	Visual snow syndrome, the spectrum of perceptual disorders, and migraine as a common risk factor: A narrative review. Headache, 2021, 61, 1306-1313.	1.8	22
109	What's the buzz? The neuroscience and the treatment of tinnitus. Physiological Reviews, 2021, 101, 1609-1632.	13.1	39
110	Bayesian brain in tinnitus: Computational modeling of three perceptual phenomena using a modified Hierarchical Gaussian Filter. Hearing Research, 2021, 410, 108338.	0.9	6
111	Subjective tinnitus: lesion-induced pathological central homeostasis remodeling. Journal of Otology, 2021, 16, 266-272.	0.4	1

#	Article	IF	CITATIONS
112	Learning to control tinnitus. Psychology of Learning and Motivation - Advances in Research and Theory, 2021, , 47-94.	0.5	3
113	A portable neurofeedback device for treating chronic subjective tinnitus: Feasibility and results of a pilot study. Progress in Brain Research, 2021, 260, 167-185.	0.9	10

114 Tinnitus and tinnitus disorder: Theoretical and operational definitions (an international) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50,662 Td (m

115	Unified Principles of Thalamocortical Network Dynamics: A Framework for Typical/Atypical Functional Connectivity. , 2019, , 543-570.		4
116	Unified Principles of Thalamocortical Network Dynamics: A Framework for Typical/Atypical Functional Connectivity. , 2019, , 1-28.		3
117	Relationship between headaches and tinnitus in a Swedish study. Scientific Reports, 2020, 10, 8494.	1.6	24
118	The Effect of Auditory Residual Inhibition on Tinnitus and the Electroencephalogram. Ear and Hearing, 2021, 42, 130-141.	1.0	11
119	The Neural Correlates of Chronic Symptoms of Vertigo Proneness in Humans. PLoS ONE, 2016, 11, e0152309.	1.1	12
120	Self-Administered Domiciliary tDCS Treatment for Tinnitus: A Double-Blind Sham-Controlled Study. PLoS ONE, 2016, 11, e0154286.	1.1	38
121	Advances in Studies on Stroke-Induced Secondary Neurodegeneration (SND) and Its Treatment. Current Topics in Medicinal Chemistry, 2020, 20, 1154-1168.	1.0	10
122	Non-Invasive Neuromodulation for Tinnitus. Journal of Audiology and Otology, 2020, 24, 113-118.	0.2	23
123	Testing A Hypothesis: Tinnitus Control by Enhancing Physiological Inhibition. Indian Journal of Otolaryngology and Head and Neck Surgery, 0, , 1.	0.3	0
124	Striatal networks for tinnitus treatment targeting. Human Brain Mapping, 2022, 43, 633-646.	1.9	11
125	Thalamocortical dysrhythmia in patients with schizophrenia spectrum disorder and individuals at clinical high risk for psychosis. Neuropsychopharmacology, 2022, 47, 673-680.	2.8	8
130	Too Blind to See the Elephant? Why Neuroscientists Ought to Be Interested in Tinnitus. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 609-621.	0.9	13
131	Tinnitus and auditory cortex: using adapted functional near-infrared spectroscopy to measure resting-state functional connectivity. NeuroReport, 2021, 32, 66-75.	0.6	6
132	Change in EEG Activity is Associated with a Decrease in Tinnitus Awareness after rTMS. , 2021, 2, .		2
133	Methodological aspects of studying the mechanisms of consciousness. Behavioural Brain Research, 2022, 419, 113684.	1.2	6

		CITATION REPORT		
#	Article		lF	CITATIONS
134	The Pathological Mechanisms and Treatments of Tinnitus. Discoveries, 2021, 9, e137.		1.5	3
135	EEG theta and beta bands as brain oscillations for different knee osteoarthritis phenoty to disease severity. Scientific Reports, 2022, 12, 1480.	vpes according	1.6	15
136	Personalization of Repetitive Transcranial Magnetic Stimulation for the Treatment of C Subjective Tinnitus. Brain Sciences, 2022, 12, 203.	hronic	1.1	3
137	Specific brain network predictors of interventions with different mechanisms for tinnit EBioMedicine, 2022, 76, 103862.	us patients.	2.7	8
138	Effect of tinnitus distress on auditory steady-state response amplitudes in chronic tinn Journal of Clinical Neuroscience, 2022, 97, 49-55.	itus sufferers.	0.8	4
139	The role of the medial geniculate body of the thalamus in the pathophysiology of tinnit implications for treatment. Brain Research, 2022, 1779, 147797.	us and	1.1	7
140	Top-down tinnitus models. , 2022, , 231-260.			0
142	Investigating the Effects of Auditory and Vibrotactile Rhythmic Sensory Stimulation on An EEG Pilot Study. Cureus, 2022, 14, e22557.	Depression:	0.2	3
143	Visual Snow: Updates on Pathology. Current Neurology and Neuroscience Reports, 202	22, 22, 209-217.	2.0	10
145	Hearing Loss Increases Inhibitory Effects of Prefrontal Cortex Stimulation on Sound Eve in Medial Geniculate Nucleus. Frontiers in Synaptic Neuroscience, 2022, 14, 840368.	oked Activity	1.3	2
146	Cytoarchitectonic Maps of the Human Metathalamus in 3D Space. Frontiers in Neuroa 837485.	natomy, 2022, 16,	0.9	3
147	Tinnitus: at a crossroad between phantom perception and sleep. Brain Communication	s, 2022, 4, .	1.5	5
148	Chronic neuropathic pain is more than a perception: Systems and methods for an integ characterization. Neuroscience and Biobehavioral Reviews, 2022, 136, 104599.	gral	2.9	8
149	Cortical oscillatory dysrhythmias in visual snow syndrome: a magnetoencephalography Communications, 2022, 4, fcab296.	study. Brain	1.5	10
151	Effects of Axonal Demyelination, Inflammatory Cytokines and Divalent Cation Chelator HCN Channels and Oscillatory Bursting. International Journal of Molecular Sciences, 20	s on Thalamic)22, 23, 6285.	1.8	5
152	Aberrant Modulations of Neurocognitive Network Dynamics in Migraine Comorbid Wit Frontiers in Aging Neuroscience, 0, 14, .	h Tinnitus.	1.7	1
153	Recovering Hidden Responder Groups in Individuals Receiving Neurofeedback for Tinni Neuroscience, 0, 16, .	tus. Frontiers in	1.4	0
154	Intrinsic Noise Improves Speech Recognition in a Computational Model of the Auditory Frontiers in Neuroscience, 0, 16, .	Pathway.	1.4	17

#	Article	IF	CITATIONS
155	Functional ear symptoms referred to an otology clinic: Incidence, comorbidity, etiological factors, and a new experience-driven clinical model. Journal of Laryngology and Otology, 0, , 1-29.	0.4	0
156	EEG signal classification of tinnitus based on SVM and sample entropy. Computer Methods in Biomechanics and Biomedical Engineering, 2023, 26, 580-594.	0.9	2
157	The Effect of Noise Trauma and Deep Brain Stimulation of the Medial Geniculate Body on Tissue Activity in the Auditory Pathway. Brain Sciences, 2022, 12, 1099.	1.1	2
158	Effectiveness of bimodal auditory and electrical stimulation in patients with tinnitus: A feasibility study. Frontiers in Neuroscience, 0, 16, .	1.4	5
159	A proposed association between subjective nonpulsatile tinnitus and migraine. World Journal of Otorhinolaryngology - Head and Neck Surgery, 2023, 9, 107-114.	0.7	5
160	Long-term effect of transcranial direct current stimulation in the treatment of chronic tinnitus: A randomized, placebo-controlled trial. Frontiers in Psychiatry, 0, 13, .	1.3	0
161	Self-Directed Neurofeedback Treatment for Subjective Tinnitus Patients Evaluated by Multimodal Functional Imaging. Neural Plasticity, 2022, 2022, 1-11.	1.0	1
162	Zumbido crônico: análise das contribuições clÃnicas de diferentes avaliações audiológicas. Audiology: Communication Research, 0, 27, .	0.1	2
163	Chronic tinnitus: analysis of clinical contributions from different audiological evalutions. Audiology: Communication Research, 0, 27, .	0.1	0
164	Combined Bifrontal Transcranial Direct Current Stimulation and Auditory Stroop Training in Chronic Tinnitus. Indian Journal of Otolaryngology and Head and Neck Surgery, 0, , .	0.3	0
165	Triple network activation causes tinnitus in patients with sudden sensorineural hearing loss: A model-based volume-entropy analysis. Frontiers in Neuroscience, 0, 16, .	1.4	1
166	Prediction of network pharmacology and molecular docking-based strategy to determine potential pharmacological mechanism of Liuwei Dihuang pill against tinnitus. Medicine (United States), 2022, 101, e31711.	0.4	2
167	Feasibility and Safety of High-Definition Infraslow Pink Noise Stimulation for Treating Chronic Tinnitus—A Randomized Placebo-Controlled Trial. Neuromodulation, 2022, , .	0.4	0
168	Customised acoustic therapy delivered through a webâ€based platform—An innovative approach to tinnitus treatment. Clinical Otolaryngology, 2023, 48, 226-234.	0.6	1
169	Onset-offset cortical auditory evoked potential amplitude differences indicate auditory cortical hyperactivity and reduced inhibition in people with tinnitus. Clinical Neurophysiology, 2023, 149, 223-233.	0.7	3
170	Brain Effective Connectivity Analysis Facilitates the Treatment Outcome Expectation of Sound Therapy in Patients With Tinnitus. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 1158-1166.	2.7	2
171	Effectiveness of transcutaneous vagus nerve stimulation for the treatment of tinnitus: an interventional prospective controlled study. International Journal of Audiology, 0, , 1-10.	0.9	4
172	Comparative analysis of acoustic therapies for tinnitus treatment based on auditory event-related potentials. Frontiers in Neuroscience, 0, 17, .	1.4	0

#	Article	IF	CITATIONS
173	A parahippocampal-sensory Bayesian vicious circle generates pain or tinnitus: a source-localized EEG study. Brain Communications, 2023, 5, .	1.5	5
183	Eavesdropping on Tinnitus Using MEC: Lessons Learned and Future Perspectives. JARO - Journal of the Association for Research in Otolaryngology, 0, , .	0.9	1
192	The Bayesian Brain and Tinnitus. , 2024, , 189-203.		0
193	The Electrophysiological Explorations in Tinnitus Over the Decades Using EEG and MEC. , 2024, , 175-186.		0
194	Neurofeedback. , 2024, , 653-666.		0
195	Bimodal Stimulation for the Treatment of Tinnitus. , 2024, , 693-703.		0
196	Similarities Between Tinnitus and Pain. , 2024, , 81-98.		0