The Ischemic Environment Drives Microglia and Macro

Frontiers in Neurology 6, 81 DOI: 10.3389/fneur.2015.00081

Citation Report

#	Article	IF	CITATIONS
1	Prolonged diet-induced obesity in mice modifies the inflammatory response and leads to worse outcome after stroke. Journal of Neuroinflammation, 2015, 12, 140.	3.1	55
2	Rehabilitation and plasticity following stroke: Insights from rodent models. Neuroscience, 2015, 311, 180-194.	1.1	69
3	Contribution of metabolic reprogramming to macrophage plasticity and function. Seminars in Immunology, 2015, 27, 267-275.	2.7	150
4	Distribution and Quantification of Choroidal Macrophages in Human Eyes With Age-Related Macular Degeneration. , 2016, 57, 5843.		79
5	Reducing GABAA-mediated inhibition improves forelimb motor function after focal cortical stroke in mice. Scientific Reports, 2016, 6, 37823.	1.6	61
6	Clucose consumption of inflammatory cells masks metabolic deficits in the brain. NeuroImage, 2016, 128, 54-62.	2.1	52
7	Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Progress in Neurobiology, 2016, 142, 23-44.	2.8	494
8	Macrophages are essential for maintaining a M2 protective response early after ischemic brain injury. Neurobiology of Disease, 2016, 96, 284-293.	2.1	82
9	Neuroprotective Properties of a Macrolide Antibiotic in a Mouse Model of Middle Cerebral Artery Occlusion: Characterization of the Immunomodulatory Effects and Validation of the Efficacy of Intravenous Administration. Assay and Drug Development Technologies, 2016, 14, 298-307.	0.6	21
10	Microglia and Monocyte-Derived Macrophages in Stroke. Neurotherapeutics, 2016, 13, 702-718.	2.1	105
11	Myeloperoxidase Inhibition Increases Neurogenesis after Ischemic Stroke. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 262-272.	1.3	49
12	Mannan binding lectin-associated serine protease-2 (MASP-2) critically contributes to post-ischemic brain injury independent of MASP-1. Journal of Neuroinflammation, 2016, 13, 213.	3.1	59
13	Blood/Brain Biomarkers of Inflammation After Stroke and Their Association With Outcome: From C-Reactive Protein to Damage-Associated Molecular Patterns. Neurotherapeutics, 2016, 13, 671-684.	2.1	78
14	Osteopontin directly modulates cytokine expression of primary microglia and increases their survival. Journal of Neuroimmunology, 2016, 299, 130-138.	1.1	45
15	Cell Surface CD36 Protein in Monocyte/Macrophage Contributes to Phagocytosis during the Resolution Phase of Ischemic Stroke in Mice. Journal of Biological Chemistry, 2016, 291, 23654-23661.	1.6	96
16	Fumarate modulates the immune/inflammatory response and rescues nerve cells and neurological function after stroke in rats. Journal of Neuroinflammation, 2016, 13, 269.	3.1	67
17	In vivo inhibition of miR-155 significantly alters post-stroke inflammatory response. Journal of Neuroinflammation, 2016, 13, 287.	3.1	83
18	Lectin Complement Pathway and Its Bloody Interactions in Brain Ischemia. Stroke, 2016, 47, 3067-3073.	1.0	33

	CITATION	CITATION REPORT	
# 19	ARTICLE The Role of Nonneuronal Nrf2 Pathway in Ischemic Stroke: Damage Control and Potential Tissue Repair. Springer Series in Translational Stroke Research, 2016, , 377-397.	IF 0.1	CITATIONS
20	Pathogenesis of <i>Taenia solium</i> taeniasis and cysticercosis. Parasite Immunology, 2016, 38, 136-146.	0.7	49
21	Inflammatory Disequilibrium in Stroke. Circulation Research, 2016, 119, 142-158.	2.0	190
22	Crosstalk between microglia and T cells contributes to brain damage and recovery after ischemic stroke. Neurological Research, 2016, 38, 495-503.	0.6	54
23	Sildenafil, a cyclic GMP phosphodiesterase inhibitor, induces microglial modulation after focal ischemia in the neonatal mouse brain. Journal of Neuroinflammation, 2016, 13, 95.	3.1	47
24	Neuronal deficiency of HIF prolyl 4-hydroxylase 2 in mice improves ischemic stroke recovery in an HIF dependent manner. Neurobiology of Disease, 2016, 91, 221-235.	2.1	41
25	Drug repurposing for immune modulation in acute ischemic stroke. Current Opinion in Pharmacology, 2016, 26, 124-130.	1.7	45
26	Neuroprotective impact of prothymosin alpha-derived hexapeptide against retinal ischemia–reperfusion. Neuroscience, 2016, 318, 206-218.	1.1	14
27	Fractalkine Receptor Deficiency Is Associated with Early Protection but Late Worsening of Outcome following Brain Trauma in Mice. Journal of Neurotrauma, 2016, 33, 1060-1072.	1.7	75
28	Azithromycin protects mice against ischemic stroke injury by promoting macrophage transition towards M2 phenotype. Experimental Neurology, 2016, 275, 116-125.	2.0	81
29	Female sex steroids and glia cells: Impact on multiple sclerosis lesion formation and fine tuning of the local neurodegenerative cellular network. Neuroscience and Biobehavioral Reviews, 2016, 67, 125-136.	2.9	28
30	Signal transduction and epigenetic mechanisms in the control of microglia activation during neuroinflammation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 339-351.	1.8	118
31	Polarization of Microglia/Macrophages in Brain Ischaemia: Relevance for Stroke Therapy. Springer Series in Translational Stroke Research, 2017, , 303-328.	0.1	0
32	Modulators of microglial activation and polarization after intracerebral haemorrhage. Nature Reviews Neurology, 2017, 13, 420-433.	4.9	552
33	Targeting resolution of neuroinflammation after ischemic stroke with a lipoxin A ₄ analog: Protective mechanisms and longâ€ŧerm effects on neurological recovery. Brain and Behavior, 2017, 7, e00688.	1.0	47
34	BCL6 mediates the effects of Castrodin on promoting M2-like macrophage polarization and protecting against oxidative stress-induced apoptosis and cell death in macrophages. Biochemical and Biophysical Research Communications, 2017, 486, 458-464.	1.0	23
35	Targeting Extracellular Cyclophilin A Reduces Neuroinflammation and Extends Survival in a Mouse Model of Amyotrophic Lateral Sclerosis. Journal of Neuroscience, 2017, 37, 1413-1427.	1.7	42
36	Microglia in Physiology and Disease. Annual Review of Physiology, 2017, 79, 619-643.	5.6	1,011

#	Article	IF	CITATIONS
37	A 2B adenosine receptors stimulate IL-6 production in primary murine microglia through p38 MAPK kinase pathway. Pharmacological Research, 2017, 117, 9-19.	3.1	57
38	Inhibiting the Migration of M1 Microglia at Hyperacute Period Could Improve Outcome of tMCAO Rats. CNS Neuroscience and Therapeutics, 2017, 23, 222-232.	1.9	28
39	The application of nanoparticles for neuroprotection in acute ischemic stroke. Therapeutic Delivery, 2017, 8, 915-928.	1.2	25
40	Microglial-mediated PDGF-CC activation increases cerebrovascular permeability during ischemic stroke. Acta Neuropathologica, 2017, 134, 585-604.	3.9	82
41	Gamma-Secretase Inhibitors Attenuate Neurotrauma and Neurogenic Acute Lung Injury in Rats by Rescuing the Accumulation of Hypertrophic Microglia. Cellular Physiology and Biochemistry, 2017, 44, 1726-1740.	1.1	12
42	Carotid Artery Stenting and Blood–Brain Barrier Permeability in Subjects with Chronic Carotid Artery Stenosis. International Journal of Molecular Sciences, 2017, 18, 1008.	1.8	11
43	miR-145-5p/Nurr1/TNF-α Signaling-Induced Microglia Activation Regulates Neuron Injury of Acute Cerebral Ischemic/Reperfusion in Rats. Frontiers in Molecular Neuroscience, 2017, 10, 383.	1.4	55
44	Microglia at center stage: a comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget, 2017, 8, 114393-114413.	0.8	87
45	Targeting CD14 on blood derived cells improves intracortical microelectrode performance. Biomaterials, 2018, 163, 163-173.	5.7	47
46	Blood biomarkers in ischemic stroke: potential role and challenges in clinical practice and research. Critical Reviews in Clinical Laboratory Sciences, 2018, 55, 294-328.	2.7	85
47	Inhibition of HMGB1 mediates neuroprotection of traumatic brain injury by modulating the microglia/macrophage polarization. Biochemical and Biophysical Research Communications, 2018, 497, 430-436.	1.0	53
48	The multifaceted link between inflammation and human diseases. Journal of Cellular Physiology, 2018, 233, 6458-6471.	2.0	97
49	What Do Experimental Models Teach Us About Comorbidities in Stroke?. Stroke, 2018, 49, 501-507.	1.0	18
50	Intravenously Delivered Allogeneic Mesenchymal Stem Cells Bidirectionally Regulate Inflammation and Induce Neurotrophic Effects in Distal Middle Cerebral Artery Occlusion Rats Within the First 7 Days After Stroke. Cellular Physiology and Biochemistry, 2018, 46, 1951-1970.	1.1	42
51	The role of the complement system in traumatic brain injury: a review. Journal of Neuroinflammation, 2018, 15, 24.	3.1	115
52	Positron emission tomography of cerebral angiogenesis and TSPO expression in a mouse model of chronic hypoxia. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 687-696.	2.4	4
53	Dimethyl fumarate improves white matter function following severe hypoperfusion: Involvement of microglia/macrophages and inflammatory mediators. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1354-1370.	2.4	46
54	Microglia: Housekeeper of the Central Nervous System. Cellular and Molecular Neurobiology, 2018, 38, 53-71.	1.7	170

#	Article	IF	CITATIONS
55	Myeloid cells contribute indirectly to VEGF expression upon hypoxia via activation of Müller cells. Experimental Eye Research, 2018, 166, 56-69.	1.2	11
56	Malectin gene polymorphisms promote cerebral palsy via M2â€like macrophage polarization. Clinical Genetics, 2018, 93, 794-799.	1.0	4
57	Tibolone Reduces Oxidative Damage and Inflammation in Microglia Stimulated with Palmitic Acid through Mechanisms Involving Estrogen Receptor Beta. Molecular Neurobiology, 2018, 55, 5462-5477.	1.9	52
58	TREM2 expression in the human brain: a marker of monocyte recruitment?. Brain Pathology, 2018, 28, 595-602.	2.1	55
59	Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Progress in Neurobiology, 2018, 163-164, 118-143.	2.8	158
60	Increased Inflammatory Response in Old Mice is Associated with More Severe Neuronal Injury at the Acute Stage of Ischemic Stroke. , 2018, 10, 12-22.		37
61	Prophylactic Palmitoylethanolamide Prolongs Survival and Decreases Detrimental Inflammation in Aged Mice With Bacterial Meningitis. Frontiers in Immunology, 2018, 9, 2671.	2.2	15
62	Recent progress of drug nanoformulations targeting to brain. Journal of Controlled Release, 2018, 291, 37-64.	4.8	134
63	Mannose-Binding Lectin Drives Platelet Inflammatory Phenotype and Vascular Damage After Cerebral Ischemia in Mice via IL (Interleukin)-1α. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2678-2690.	1.1	34
64	Neuroplasticity in stroke recovery. The role of microglia in engaging and modifying synapses and networks. European Journal of Neuroscience, 2018, 47, 1414-1428.	1.2	67
65	Curcumin Prevents Acute Neuroinflammation and Long-Term Memory Impairment Induced by Systemic Lipopolysaccharide in Mice. Frontiers in Pharmacology, 2018, 9, 183.	1.6	73
66	Invasion of Peripheral Immune Cells into Brain Parenchyma after Cardiac Arrest and Resuscitation. , 2018, 9, 412.		33
67	Paradigm Shift to Neuroimmunomodulation for Translational Neuroprotection in Stroke. Frontiers in Neuroscience, 2018, 12, 241.	1.4	17
68	The Role of Microglia in Diabetic Retinopathy: Inflammation, Microvasculature Defects and Neurodegeneration. International Journal of Molecular Sciences, 2018, 19, 110.	1.8	249
69	Mesenchymal derived exosomes enhance recovery of motor function in a monkey model of cortical injury. Restorative Neurology and Neuroscience, 2019, 37, 347-362.	0.4	24
70	Poster Viewing Sessions PB01-B01 to PB03-V09. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 167-523.	2.4	7
71	Combined Genetic Deletion of IL (Interleukin)-4, IL-5, IL-9, and IL-13 Does Not Affect Ischemic Brain Injury in Mice. Stroke, 2019, 50, 2207-2215.	1.0	14
72	Newly Detected Atrial Fibrillation after Acute Stroke: A Narrative Review of Causes and Implications. Cardiology, 2019, 144, 112-121.	0.6	17

#	Article	IF	CITATIONS
73	The interrelationship between cerebral ischemic stroke and glioma: a comprehensive study of recent reports. Signal Transduction and Targeted Therapy, 2019, 4, 42.	7.1	40
74	Selective Liposomal Transport through Blood Brain Barrier Disruption in Ischemic Stroke Reveals Two Distinct Therapeutic Opportunities. ACS Nano, 2019, 13, 12470-12486.	7.3	66
75	Microglial Phagocytosis of Neurons: Diminishing Neuronal Loss in Traumatic, Infectious, Inflammatory, and Autoimmune CNS Disorders. Frontiers in Psychiatry, 2019, 10, 712.	1.3	54
76	The Involvement and Therapy Target of Immune Cells After Ischemic Stroke. Frontiers in Immunology, 2019, 10, 2167.	2.2	152
77	Fractalkine Modulates Microglia Metabolism in Brain Ischemia. Frontiers in Cellular Neuroscience, 2019, 13, 414.	1.8	51
78	Induction of NTPDase1/CD39 by Reactive Microglia and Macrophages Is Associated With the Functional State During EAE. Frontiers in Neuroscience, 2019, 13, 410.	1.4	19
79	Individual in vivo Profiles of Microglia Polarization After Stroke, Represented by the Genes iNOS and Ym1. Frontiers in Immunology, 2019, 10, 1236.	2.2	37
80	Cell based therapy reduces secondary damage and increases extent of microglial activation following cortical injury. Brain Research, 2019, 1717, 147-159.	1.1	11
81	Role of microRNAâ€145 in protection against myocardial ischemia/reperfusion injury in mice by regulating expression of GZMK with the treatment of sevoflurane. Journal of Cellular Physiology, 2019, 234, 16526-16539.	2.0	17
82	Protective Effect of N-Arachidonoyl Glycine-GPR18 Signaling after Excitotoxical Lesion in Murine Organotypic Hippocampal Slice Cultures. International Journal of Molecular Sciences, 2019, 20, 1266.	1.8	28
83	Microthrombusâ€Targeting Micelles for Neurovascular Remodeling and Enhanced Microcirculatory Perfusion in Acute Ischemic Stroke. Advanced Materials, 2019, 31, e1808361.	11.1	105
84	Glatiramer acetate reduces infarct volume in diabetic mice with cerebral ischemia and prevents long-term memory loss. Brain, Behavior, and Immunity, 2019, 80, 315-327.	2.0	18
85	The Role of Connexin and Pannexin Channels in Perinatal Brain Injury and Inflammation. Frontiers in Physiology, 2019, 10, 141.	1.3	48
86	ECDIâ€fixed donor splenocytes prolong skin allograft survival by promoting M2 macrophage polarization and inducing regulatory T cells. FASEB BioAdvances, 2019, 1, 706-718.	1.3	2
87	Hypertension and Its Impact on Stroke Recovery: From a Vascular to a Parenchymal Overview. Neural Plasticity, 2019, 2019, 1-14.	1.0	23
88	Spatiotemporal analysis of impaired microglia process movement at sites of secondary neurodegeneration post-stroke. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2456-2470.	2.4	52
89	Pretreatment With PCSK9 Inhibitor Protects the Brain Against Cardiac Ischemia/Reperfusion Injury Through a Reduction of Neuronal Inflammation and Amyloid Beta Aggregation. Journal of the American Heart Association, 2019, 8, e010838.	1.6	56
90	The phagocytic state of brain myeloid cells after ischemia revealed by superresolution structured illumination microscopy. Journal of Neuroinflammation, 2019, 16, 9.	3.1	20

#	Article	IF	CITATIONS
91	Microglia Receptors in Animal Models of Traumatic Brain Injury. Molecular Neurobiology, 2019, 56, 5202-5228.	1.9	43
92	Triggering receptor expressed on myeloid cells-2 expression in the brain is required for maximal phagocytic activity and improved neurological outcomes following experimental stroke. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1906-1918.	2.4	49
93	Store-operated calcium entry in thrombosis and thrombo-inflammation. Cell Calcium, 2019, 77, 39-48.	1.1	55
94	Protective effects of dexamethasone on hypoxia-induced retinal edema in a mouse model. Experimental Eye Research, 2019, 178, 82-90.	1.2	8
95	Preâ€ischemic renal lavage protects against renal ischemiaâ€reperfusion injury by attenuation of local and systemic inflammatory responses. FASEB Journal, 2020, 34, 16307-16318.	0.2	5
96	The role of peripheral monocytes and macrophages in ischemic stroke. Neurological Sciences, 2020, 41, 3589-3607.	0.9	38
97	Monocyte Transmodulation: The Next Novel Therapeutic Approach in Overcoming Ischemic Stroke?. Frontiers in Neurology, 2020, 11, 578003.	1.1	14
98	Neuroprotective epi-drugs quench the inflammatory response and microglial/macrophage activation in a mouse model of permanent brain ischemia. Journal of Neuroinflammation, 2020, 17, 361.	3.1	36
99	Neuroinflammation Mediated by NLRP3 Inflammasome After Intracerebral Hemorrhage and Potential Therapeutic Targets. Molecular Neurobiology, 2020, 57, 5130-5149.	1.9	57
100	Distinct Residential and Infiltrated Macrophage Populations and Their Phagocytic Function in Mild and Severe Neonatal Hypoxic-Ischemic Brain Damage. Frontiers in Cellular Neuroscience, 2020, 14, 244.	1.8	9
101	The CCL2/CCL7/CCL12/CCR2 pathway is substantially and persistently upregulated in mice after traumatic brain injury, and CCL2 modulates the complement system in microglia. Molecular and Cellular Probes, 2020, 54, 101671.	0.9	26
102	Tissue regeneration and reprogramming. , 2020, , 515-534.		1
103	Lysophosphatidic Acid Receptor 5 Plays a Pathogenic Role in Brain Damage after Focal Cerebral Ischemia by Modulating Neuroinflammatory Responses. Cells, 2020, 9, 1446.	1.8	17
104	Metabolic Reprograming of Microglia in the Regulation of the Innate Inflammatory Response. Frontiers in Immunology, 2020, 11, 493.	2.2	152
105	The Local and Peripheral Immune Responses to Stroke: Implications for Therapeutic Development. Neurotherapeutics, 2020, 17, 414-435.	2.1	48
106	Sustained Increases in Immune Transcripts and Immune Cell Trafficking During the Recovery of Experimental Brain Ischemia. Stroke, 2020, 51, 2514-2525.	1.0	16
107	Albendazole-Schisandrin B Co-Therapy on Angiostrongylus cantonensis-Induced Meningoencephalitis in Mice. Biomolecules, 2020, 10, 1001.	1.8	11
108	miR-155 Knockdown Protects against Cerebral Ischemia and Reperfusion Injury by Targeting MafB. BioMed Research International, 2020, 2020, 1-11.	0.9	22

#	Article	IF	CITATIONS
109	Pre-treatment with the viral Toll-like receptor 3 agonist poly(I:C) modulates innate immunity and protects neutropenic mice infected intracerebrally with Escherichia coli. Journal of Neuroinflammation, 2020, 17, 24.	3.1	14
110	Human iPSCâ€derived microglia: A growing toolset to study the brain's innate immune cells. Clia, 2020, 68, 721-739.	2.5	77
111	Crosstalk between stressed brain cells: direct and indirect effects of ischemia and aglycemia on microglia. Journal of Neuroinflammation, 2020, 17, 33.	3.1	7
112	Neonatal Stroke and TLR1/2 Ligand Recruit Myeloid Cells through the Choroid Plexus in a CX3CR1-CCR2- and Context-Specific Manner. Journal of Neuroscience, 2020, 40, 3849-3861.	1.7	22
113	Hypoxic Preconditioning Enhances the Efficacy of Mesenchymal Stem Cells-Derived Conditioned Medium in Switching Microglia toward Anti-inflammatory Polarization in Ischemia/Reperfusion. Cellular and Molecular Neurobiology, 2021, 41, 505-524.	1.7	35
114	Changes in arginase isoforms in a murine model of neonatal brain hypoxia–ischemia. Pediatric Research, 2021, 89, 830-837.	1.1	4
115	MFG-E8 alleviates oxygen-glucose deprivation-induced neuronal cell apoptosis by STAT3 regulating the selective polarization of microglia. International Journal of Neuroscience, 2021, 131, 15-24.	0.8	19
116	Deletion of muscarinic acetylcholine receptor 3 in microglia impacts brain ischemic injury. Brain, Behavior, and Immunity, 2021, 91, 89-104.	2.0	13
117	CNS and peripheral immunity in cerebral ischemia: partition and interaction. Experimental Neurology, 2021, 335, 113508.	2.0	21
118	Sickle cell disease mice have cerebral oxidative stress and vascular and white matter abnormalities. Blood Cells, Molecules, and Diseases, 2021, 86, 102493.	0.6	3
119	Microglial metabolic disturbances and neuroinflammation in cerebral infarction. Journal of Pharmacological Sciences, 2021, 145, 130-139.	1.1	72
120	Downregulation of Long Noncoding RNA TUG1 Attenuates MTDH-Mediated Inflammatory Damage via Targeting miR-29b-1-5p After Spinal Cord Ischemia Reperfusion. Journal of Neuropathology and Experimental Neurology, 2021, 80, 254-264.	0.9	13
121	Argon Inhalation for 24Âh After Closed-Head Injury Does not Improve Recovery, Neuroinflammation, or Neurologic Outcome in Mice. Neurocritical Care, 2021, 34, 833-843.	1.2	9
122	β2 glycoprotein I participates in phagocytosis of apoptotic neurons and in vascular injury in experimental brain stroke. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 0271678X2098455.	2.4	8
123	Cellular and Molecular Mechanisms of R/S-Roscovitine and CDKs Related Inhibition under Both Focal and Global Cerebral Ischemia: A Focus on Neurovascular Unit and Immune Cells. Cells, 2021, 10, 104.	1.8	7
124	Neuroprotection Following Stroke. , 2021, , .		Ο
125	Additive Behavioral Improvement after Combined Cell Therapy and Rehabilitation Despite Long-Term Microglia Presence in Stroke Rats. International Journal of Molecular Sciences, 2021, 22, 1512.	1.8	10
126	Microglia Fighting for Neurological and Mental Health: On the Central Nervous System Frontline of COVID-19 Pandemic. Frontiers in Cellular Neuroscience, 2021, 15, 647378.	1.8	27

#	Article	IF	CITATIONS
127	Oligodeoxynucleotides containing unmethylated cytosine-guanine motifs are effective immunostimulants against pneumococcal meningitis in the immunocompetent and neutropenic host. Journal of Neuroinflammation, 2021, 18, 39.	3.1	2
128	Can quantifying morphology and TMEM119 expression distinguish between microglia and infiltrating macrophages after ischemic stroke and reperfusion in male and female mice?. Journal of Neuroinflammation, 2021, 18, 58.	3.1	29
129	Neuroimmunology in neurological and psychiatric disorders. Clinical and Experimental Neuroimmunology, 2021, 12, 92-100.	0.5	0
130	Autophagy & Phagocytosis in Neurological Disorders and their Possible Cross-talk. Current Neuropharmacology, 2021, 19, 1912-1924.	1.4	16
131	Salvianolic Acids for Injection alleviates cerebral ischemia/reperfusion injury by switching M1/M2 phenotypes and inhibiting NLRP3 inflammasome/pyroptosis axis in microglia in vivo and in vitro. Journal of Ethnopharmacology, 2021, 270, 113776.	2.0	46
132	Lipocalin 2 regulates iron homeostasis, neuroinflammation, and insulin resistance in the brains of patients with dementia: Evidence from the current literature. CNS Neuroscience and Therapeutics, 2021, 27, 883-894.	1.9	30
133	C-Reactive Protein Levels and Clinical Prognosis in LAA-Type Stroke Patients: A Prospective Cohort Study. BioMed Research International, 2021, 2021, 1-8.	0.9	6
134	The Metaflammatory and Immunometabolic Role of Macrophages and Microglia in Diabetic Retinopathy. Human Cell, 2021, 34, 1617-1628.	1.2	18
135	Glial Fibrillary Acidic Protein and Ionized Calcium-Binding Adapter Molecule 1 Immunostaining Score for the Central Nervous System of Horses With Non-suppurative Encephalitis and Encephalopathies. Frontiers in Veterinary Science, 2021, 8, 660022.	0.9	4
136	Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model. Journal of Neuroinflammation, 2021, 18, 160.	3.1	13
137	Modulating poststroke inflammatory mechanisms: Novel aspects of mesenchymal stem cells, extracellular vesicles and microglia. World Journal of Stem Cells, 2021, 13, 1030-1048.	1.3	13
138	Microglia react to partner loss in a sex- and brain site-specific manner in prairie voles. Brain, Behavior, and Immunity, 2021, 96, 168-186.	2.0	14
139	Cerebral Edema Formation After Stroke: Emphasis on Blood–Brain Barrier and the Lymphatic Drainage System of the Brain. Frontiers in Cellular Neuroscience, 2021, 15, 716825.	1.8	59
141	Hypoxia/ischemia impairs CD33 (Siglec-3)/TREM2 signaling: Potential role in Alzheimer's pathogenesis. Neurochemistry International, 2021, 150, 105186.	1.9	8
142	Microglia Transcriptome Changes in a Model of Depressive Behavior after Immune Challenge. PLoS ONE, 2016, 11, e0150858.	1.1	35
143	Growth differentiation factor-11 supplementation improves survival and promotes recovery after ischemic stroke in aged mice. Aging, 2020, 12, 8049-8066.	1.4	25
144	Modulation of Inflammatory Response to Implanted Biomaterials Using Natural Compounds. Current Pharmaceutical Design, 2018, 23, 6347-6357.	0.9	29
145	Polarizing the immune system towards neuroprotection in brain ischemia. Neural Regeneration Research, 2016, 11, 81.	1.6	4

#	Article	IF	CITATIONS
146	Increased CD68/TGFβ Co-expressing Microglia/ Macrophages after Transient Middle Cerebral Artery Occlusion in Rhesus Monkeys. Experimental Neurobiology, 2019, 28, 458-473.	0.7	19
147	Gut microbiota: A potential therapeutic target for management of diabetic retinopathy?. Life Sciences, 2021, 286, 120060.	2.0	12
148	Immunization with Cop-1 promotes neuroprotection and neurogenesis after ischemic stroke. Neural Regeneration Research, 2015, 10, 1733.	1.6	2
151	Cell transplantation as a novel therapeutic strategy for autism spectrum disorders: a clinical study. American Journal of Stem Cells, 2020, 9, 89-100.	0.4	2
152	The Long Pentraxin PTX3 as a New Biomarker and Pharmacological Target in Age-Related Macular Degeneration and Diabetic Retinopathy. Frontiers in Pharmacology, 2021, 12, 811344.	1.6	8
153	Nox2 underpins microvascular inflammation and vascular contributions to cognitive decline. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1176-1191.	2.4	5
154	Protein Expression of the Microglial Marker Tmem119 Decreases in Association With Morphological Changes and Location in a Mouse Model of Traumatic Brain Injury. Frontiers in Cellular Neuroscience, 2022, 16, 820127.	1.8	24
155	Microglia and Macrophages in Neuroprotection, Neurogenesis, and Emerging Therapies for Stroke. Cells, 2021, 10, 3555.	1.8	20
156	Baicalein—A Potent Pro-Homeostatic Regulator of Microglia in Retinal Ischemic Injury. Frontiers in Immunology, 2022, 13, 837497.	2.2	8
157	Temporal Characterization of Microglia-Associated Pro- and Anti-Inflammatory Genes in a Neonatal Inflammation-Sensitized Hypoxic-Ischemic Brain Injury Model. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-16.	1.9	10
158	Direct Current Electric Field Coordinates the Migration of BV2 Microglia via ERK/GSK3β/Cofilin Signaling Pathway. Molecular Neurobiology, 2022, 59, 3665-3677.	1.9	3
176	Delayed Infiltration of Peripheral Monocyte Contributes to Phagocytosis and Transneuronal Degeneration in Chronic Stroke. Stroke, 2022, 53, 2377-2388.	1.0	13
177	Comparative Use of Contralateral and Sham-Operated Controls Reveals Traces of a Bilateral Genetic Response in the Rat Brain after Focal Stroke. International Journal of Molecular Sciences, 2022, 23, 7308.	1.8	5
178	Phagocytosis converts infiltrated monocytes to microglia-like phenotype in experimental brain ischemia. Journal of Neuroinflammation, 2022, 19, .	3.1	12
179	Dynamics of Microglia Activation in the Ischemic Brain: Implications for Myelin Repair and Functional Recovery. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	10
180	X, but not Y, Chromosomal Complement Contributes to Stroke Sensitivity in Aged Animals. Translational Stroke Research, 2023, 14, 776-789.	2.3	6
181	Lactate receptor HCAR1 regulates neurogenesis and microglia activation after neonatal hypoxia-ischemia. ELife, 0, 11, .	2.8	16
182	Assessing the Global Impact on the Mouse Kidney After Traumatic Brain Injury: A Transcriptomic Study. Journal of Inflammation Research, 0, Volume 15, 4833-4851.	1.6	1

#	Article	IF	CITATIONS
183	Post-Stroke Administration of H2 Relaxin Reduces Functional Deficits, Neuronal Apoptosis and Immune Cell Infiltration into the Mouse Brain. SSRN Electronic Journal, 0, , .	0.4	0
184	Secondary White Matter Injury Mediated by Neuroinflammation after Intracerebral Hemorrhage and Promising Therapeutic Strategies of Targeting the NLRP3 Inflammasome. Current Neuropharmacology, 2023, 21, 669-686.	1.4	4
185	The dual function of microglial polarization and its treatment targets in ischemic stroke. Frontiers in Neurology, 0, 13, .	1.1	10
186	Targeting Persistent Neuroinflammation after Hypoxic-Ischemic Encephalopathy—Is Exendin-4 the Answer?. International Journal of Molecular Sciences, 2022, 23, 10191.	1.8	6
187	Tackling Neuroinflammation After Traumatic Brain Injury: Complement Inhibition as a Therapy for Secondary Injury. Neurotherapeutics, 2023, 20, 284-303.	2.1	10
188	Cannabidiol Exerts a Neuroprotective and Glia-Balancing Effect in the Subacute Phase of Stroke. International Journal of Molecular Sciences, 2022, 23, 12886.	1.8	4
189	Mechanism and Regulation of Microglia Polarization in Intracerebral Hemorrhage. Molecules, 2022, 27, 7080.	1.7	8
190	Reinventing the Penumbra — the Emerging Clockwork of a Multi-modal Mechanistic Paradigm. Translational Stroke Research, 2023, 14, 643-666.	2.3	9
191	Differential gene expression in the contralateral hemisphere of the rat brain after focal ischemia. Scientific Reports, 2023, 13, .	1.6	6
192	Tumor Necrosis Factor (TNF)-α-Stimulated Gene 6 (TSG-6): A Promising Immunomodulatory Target in Acute Neurodegenerative Diseases. International Journal of Molecular Sciences, 2023, 24, 1162.	1.8	4
193	Modulatory effects of mesenchymal stem cells on microglia in ischemic stroke. Frontiers in Neurology, 0, 13, .	1.1	2
194	Friends or foes: The mononuclear phagocyte system in ischemic stroke. Brain Pathology, 2023, 33, .	2.1	2
205	Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	23
208	Neuro–glia communication and glycolysis. , 2024, , 27-50.		0
209	Biology-driven material design for ischaemic stroke repair. , 0, , .		0
214	The niche matters: origin, function and fate of CNS-associated macrophages during health and disease. Acta Neuropathologica, 2024, 147, .	3.9	1