Clinical utilization of genomics data produced by the in aeruginosa consortium

Frontiers in Microbiology 6, 1036 DOI: 10.3389/fmicb.2015.01036

Citation Report

#	Article	IF	CITATIONS
1	Habitatâ€associated skew of clone abundance in the <scp><i>P</i></scp> <i>seudomonas aeruginosa</i> population. Environmental Microbiology Reports, 2015, 7, 955-960.	1.0	43
2	Commentary: Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Frontiers in Microbiology, 2016, 7, 770.	1.5	3
3	Genomic Rearrangements and Functional Diversification of lecA and lecB Lectin-Coding Regions Impacting the Efficacy of Glycomimetics Directed against Pseudomonas aeruginosa. Frontiers in Microbiology, 2016, 7, 811.	1.5	39
4	Phenotype and toxicity of the recently discovered <i>exlA</i> â€positive <i>Pseudomonas aeruginosa</i> strains collected worldwide. Environmental Microbiology, 2016, 18, 3425-3439.	1.8	63
5	Comparative analysis of the volatile metabolomes of <i>Pseudomonas aeruginosa</i> clinical isolates. Journal of Breath Research, 2016, 10, 047102.	1.5	83
6	Genomic analyses of multidrug resistant <i>Pseudomonas aeruginosa</i> PA1 resequenced by single-molecule real-time sequencing. Bioscience Reports, 2016, 36, .	1.1	13
7	SNP synteny analysis ofStaphylococcus aureusandPseudomonas aeruginosapopulation genomics. FEMS Microbiology Letters, 2016, 363, fnw229.	0.7	2
8	Enhanced annotations and features for comparing thousands of <i>Pseudomonas</i> genomes in the Pseudomonas genome database. Nucleic Acids Research, 2016, 44, D646-D653.	6.5	929
9	Microbial genomics and antimicrobial susceptibility testing. Expert Review of Molecular Diagnostics, 2017, 17, 257-269.	1.5	36
10	A <i>Pseudomonas aeruginosa</i> Â <scp>TIR</scp> effector mediates immune evasion by targetingÂ <scp>UBAP</scp> 1 and <scp>TLR</scp> adaptors. EMBO Journal, 2017, 36, 1869-1887.	3.5	31
11	<i>Pseudomonas aeruginosa</i> adaptation and diversification in the non-cystic fibrosis bronchiectasis lung. European Respiratory Journal, 2017, 49, 1602108.	3.1	75
12	Correlation between phenotypic antibiotic susceptibility and the resistome in Pseudomonas aeruginosa. International Journal of Antimicrobial Agents, 2017, 50, 210-218.	1.1	65
13	A Pan-Genomic Approach to Understand the Basis of Host Adaptation in Achromobacter. Genome Biology and Evolution, 2017, 9, 1030-1046.	1.1	40
14	Long-term clinical outcomes of â€ [~] Prairie Epidemic Strain' <i>Pseudomonas aeruginosa</i> infection in adults with cystic fibrosis. Thorax, 2017, 72, 333-339.	2.7	17
15	Draft Genome Sequences of 10 Environmental Pseudomonas aeruginosa Strains Isolated from Soils, Sediments, and Waters. Genome Announcements, 2017, 5, .	0.8	8
16	Evolution of the Pseudomonas aeruginosa mutational resistome in an international Cystic Fibrosis clone. Scientific Reports, 2017, 7, 5555.	1.6	117
17	Comparative genomics of a drug-resistant Pseudomonas aeruginosa panel and the challenges of antimicrobial resistance prediction from genomes. FEMS Microbiology Letters, 2017, 364, .	0.7	40
18	Evolved Aztreonam Resistance Is Multifactorial and Can Produce Hypervirulence in <i>Pseudomonas aeruginosa</i> . MBio, 2017, 8, .	1.8	65

#	Article	IF	CITATIONS
19	Pseudomonas predators: understanding and exploiting phage–host interactions. Nature Reviews Microbiology, 2017, 15, 517-530.	13.6	156
20	Antimicrobial resistance surveillance in the genomic age. Annals of the New York Academy of Sciences, 2017, 1388, 78-91.	1.8	71
21	Genomic characterization of environmental Pseudomonas aeruginosa isolated from dental unit waterlines revealed the insertion sequence ISPa11 as a chaotropic element. FEMS Microbiology Ecology, 2017, 93, .	1.3	21
22	Recent advances in understanding Pseudomonas aeruginosa as a pathogen. F1000Research, 2017, 6, 1261.	0.8	147
23	A Syst-OMICS Approach to Ensuring Food Safety and Reducing the Economic Burden of Salmonellosis. Frontiers in Microbiology, 2017, 8, 996.	1.5	42
24	Discovery and Biosynthesis of the Antibiotic Bicyclomycin in Distantly Related Bacterial Classes. Applied and Environmental Microbiology, 2018, 84, .	1.4	36
25	cAMP and Vfr Control Exolysin Expression and Cytotoxicity of Pseudomonas aeruginosa Taxonomic Outliers. Journal of Bacteriology, 2018, 200, .	1.0	29
26	The Pseudomonas aeruginosa ExoY phenotype of high-copy-number recombinants is not detectable in natural isolates. Open Biology, 2018, 8, 170250.	1.5	9
27	PAMDB: a comprehensive Pseudomonas aeruginosa metabolome database. Nucleic Acids Research, 2018, 46, D575-D580.	6.5	45
28	Environmental reservoirs for <i>exoS+</i> and <i>exoU+</i> strains of <i>Pseudomonas aeruginosa</i> . Environmental Microbiology Reports, 2018, 10, 485-492.	1.0	25
29	Unexpected diversity in the mobilome of a Pseudomonas aeruginosa strain isolated from a dental unit waterline revealed by SMRT Sequencing. Genome, 2018, 61, 359-365.	0.9	2
30	Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections. Science Translational Medicine, 2018, 10, .	5.8	214
31	Comparative genomics of clinical strains of Pseudomonas aeruginosa strains isolated from different geographic sites. Scientific Reports, 2018, 8, 15668.	1.6	61
32	Editorial: complexity and adaptability: an introduction to the special thematic issue on the genus Pseudomonas. FEMS Microbiology Letters, 2018, 365, .	0.7	1
33	Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clinical Microbiology Reviews, 2018, 31, .	5.7	179
34	For the Safety of Fresh Produce: Regulatory Considerations for Canada on the Use of Whole Genome Sequencing to Subtype Salmonella. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	0
35	In Silico and in Vitro-Guided Identification of Inhibitors of Alkylquinolone-Dependent Quorum Sensing in Pseudomonas aeruginosa. Molecules, 2018, 23, 257.	1.7	47
36	Comparative Genomics of Nonoutbreak Pseudomonas aeruginosa Strains Underlines Genome Plasticity and Geographic Relatedness of the Global Clone ST235. Genome Biology and Evolution, 2018, 10, 1852-1857.	1.1	12

#	Article	IF	CITATIONS
37	Population structure of Pseudomonas aeruginosa through a MLST approach and antibiotic resistance profiling of a Mexican clinical collection. Infection, Genetics and Evolution, 2018, 65, 43-54.	1.0	23
38	Genomic characterisation of an international Pseudomonas aeruginosa reference panel indicates that the two major groups draw upon distinct mobile gene pools. FEMS Microbiology Letters, 2018, 365, .	0.7	67
39	Antibiotic resistance in Pseudomonas aeruginosa – Mechanisms, epidemiology and evolution. Drug Resistance Updates, 2019, 44, 100640.	6.5	269
40	The Population Structure of Pseudomonas aeruginosa Is Characterized by Genetic Isolation of exoU+ and exoS+ Lineages. Genome Biology and Evolution, 2019, 11, 1780-1796.	1.1	74
42	Structure, Function, and Evolution of the Pseudomonas aeruginosa Lysine Decarboxylase LdcA. Structure, 2019, 27, 1842-1854.e4.	1.6	9
43	Reservoirs of resistance: polymyxin resistance in veterinaryâ€associated companion animal isolates of <i>Pseudomonas aeruginosa</i> . Veterinary Record, 2019, 185, 206-206.	0.2	10
44	Identification of genomic loci associated with genotypic and phenotypic variation among Pseudomonas aeruginosa clinical isolates from pneumonia. Microbial Pathogenesis, 2019, 136, 103702.	1.3	2
45	TwoPseudomonas aeruginosaclonal groups belonging to the PA14 clade are indigenous to the Churince system in Cuatro Ciénegas Coahuila, México. Environmental Microbiology, 2019, 21, 2964-2976.	1.8	10
46	Contamination of a hospital plumbing system by persister cells of a copper-tolerant high-risk clone of Pseudomonas aeruginosa. Water Research, 2019, 157, 579-586.	5.3	23
47	Major Release of 161 Whole-Genome Sequences from the International Pseudomonas Consortium Database. Microbiology Resource Announcements, 2019, 8, .	0.3	2
48	The Pseudomonas aeruginosa Population among Cystic Fibrosis Patients in Quebec, Canada: a Disease Hot Spot without Known Epidemic Isolates. Journal of Clinical Microbiology, 2019, 57, .	1.8	2
49	Comparative Genomic Analyses Reveal Core-Genome-Wide Genes Under Positive Selection and Major Regulatory Hubs in Outlier Strains of Pseudomonas aeruginosa. Frontiers in Microbiology, 2019, 10, 53.	1.5	36
50	High-Risk International Clones of Carbapenem-Nonsusceptible Pseudomonas aeruginosa Endemic to Indonesian Intensive Care Units: Impact of a Multifaceted Infection Control Intervention Analyzed at the Genomic Level. MBio, 2019, 10, .	1.8	21
51	Antibiotic-resistant clones in Gram-negative pathogens: presence of global clones in Korea. Journal of Microbiology, 2019, 57, 195-202.	1.3	8
52	The <i>Pseudomonas aeruginosa</i> Pan-Genome Provides New Insights on Its Population Structure, Horizontal Gene Transfer, and Pathogenicity. Genome Biology and Evolution, 2019, 11, 109-120.	1.1	223
53	BACTOME—a reference database to explore the sequence- and gene expression-variation landscape of <i>Pseudomonas aeruginosa</i> clinical isolates. Nucleic Acids Research, 2019, 47, D716-D720.	6.5	38
54	Genomics of antibioticâ€resistance prediction in <i>Pseudomonas aeruginosa</i> . Annals of the New York Academy of Sciences, 2019, 1435, 5-17.	1.8	51
55	Comparative Genomic and Metabolomic Analyses of Two Pseudomonas aeruginosa Strains With Different Antifungal Activities. Frontiers in Microbiology, 2020, 11, 1841.	1.5	15

#	Article	IF	Citations
56	The outlier Pseudomonas aeruginosa strain ATCC 9027 harbors a defective LasR quorum-sensing transcriptional regulator. FEMS Microbiology Letters, 2020, 367, .	0.7	12
57	Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species-Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis. Diversity, 2020, 12, 289.	0.7	37
58	Antibiotic Resistance Characteristics of Pseudomonas aeruginosa Isolated from Keratitis in Australia and India. Antibiotics, 2020, 9, 600.	1.5	26
59	Acquired fluoroquinolone resistance genes in corneal isolates of Pseudomonas aeruginosa. Infection, Genetics and Evolution, 2020, 85, 104574.	1.0	19
60	Hit Identification of New Potent PqsR Antagonists as Inhibitors of Quorum Sensing in Planktonic and Biofilm Grown Pseudomonas aeruginosa. Frontiers in Chemistry, 2020, 8, 204.	1.8	29
61	Single-Nucleotide Polymorphism-Based Genetic Diversity Analysis of Clinical Pseudomonas aeruginosa Isolates. Genome Biology and Evolution, 2020, 12, 396-406.	1.1	10
62	Pseudomonas aeruginosa Modulates the Antiviral Response of Bronchial Epithelial Cells. Frontiers in Immunology, 2020, 11, 96.	2.2	16
63	Complete Genome Sequence of Pseudomonas aeruginosa Strain AA2 (LMG 27630), an Early Isolate Recovered from the Airway of a German Cystic Fibrosis Patient. Microbiology Resource Announcements, 2020, 9, .	0.3	1
64	Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides—A Review. Pathogens, 2020, 9, 522.	1.2	39
65	Social Cooperativity of Bacteria during Reversible Surface Attachment in Young Biofilms: a Quantitative Comparison of Pseudomonas aeruginosa PA14 and PAO1. MBio, 2020, 11, .	1.8	47
66	Integrated Comparative Genomic Analysis and Phenotypic Profiling of Pseudomonas aeruginosa Isolates From Crude Oil. Frontiers in Microbiology, 2020, 11, 519.	1.5	9
67	Evolutionary Genomics of Niche-Specific Adaptation to the Cystic Fibrosis Lung in <i>Pseudomonas aeruginosa</i> . Molecular Biology and Evolution, 2021, 38, 663-675.	3.5	18
68	Oxford nanopore sequencing in clinical microbiology and infection diagnostics. Briefings in Bioinformatics, 2021, 22, .	3.2	28
69	Determination of the two-component systems regulatory network reveals core and accessory regulations across <i>Pseudomonas aeruginosa</i> lineages. Nucleic Acids Research, 2021, 49, 11476-11490.	6.5	28
70	Whole Genome Analysis of Environmental Pseudomonas mendocina Strains: Virulence Mechanisms and Phylogeny. Genes, 2021, 12, 115.	1.0	3
71	Complete Genome Sequence of a Pseudomonas Species Isolated from Tailings Pond Water in Alberta, Canada. Microbiology Resource Announcements, 2021, 10, .	0.3	0
72	Transmission, adaptation and geographical spread of the Pseudomonas aeruginosa Liverpool epidemic strain. Microbial Genomics, 2021, 7, .	1.0	12
73	Pseudomonas aeruginosa PA80 is a cystic fibrosis isolate deficient in RhlRl quorum sensing. Scientific	1.6	10

#	Article	IF	CITATIONS
76	Development of antibiotic resistance in the ocular Pseudomonas aeruginosa clone ST308 over twenty years. Experimental Eye Research, 2021, 205, 108504.	1.2	8
77	Phosphorus stress induces the synthesis of novel glycolipids in <i>Pseudomonas aeruginosa</i> that confer protection against a last-resort antibiotic. ISME Journal, 2021, 15, 3303-3314.	4.4	20
78	Heterogenous Susceptibility to R-Pyocins in Populations of Pseudomonas aeruginosa Sourced from Cystic Fibrosis Lungs. MBio, 2021, 12, .	1.8	16
79	Applications of Machine Learning to the Problem of Antimicrobial Resistance: an Emerging Model for Translational Research. Journal of Clinical Microbiology, 2021, 59, e0126020.	1.8	70
80	Genomic surveillance of Pseudomonas aeruginosa in the Philippines, 2013–2014. Western Pacific Surveillance and Response Journal: WPSAR, 2021, 12, 4-18.	0.3	3
81	Gene-Gene Interactions Dictate Ciprofloxacin Resistance in Pseudomonas aeruginosa and Facilitate Prediction of Resistance Phenotype from Genome Sequence Data. Antimicrobial Agents and Chemotherapy, 2021, 65, e0269620.	1.4	16
84	PqsRâ€independent quorumâ€sensing response of <i>Pseudomonas aeruginosa</i> ATCC 9027 outlierâ€strain reveals new insights on the PqsE effect on RhlR activity. Molecular Microbiology, 2021, 116, 1113-1123.	1.2	15
86	Design and Evaluation of New Quinazolin-4(3 <i>H</i>)-one Derived PqsR Antagonists as Quorum Sensing Quenchers in <i>Pseudomonas aeruginosa</i> . ACS Infectious Diseases, 2021, 7, 2666-2685.	1.8	22
87	<scp><i>Pseudomonas aeruginosa</i></scp> isolates defective in function of the <scp>LasR</scp> quorum sensing regulator are frequent in diverse environmental niches. Environmental Microbiology, 2022, 24, 1062-1075.	1.8	24
88	Tracking the genome of four Pseudomonas aeruginosa isolates that have a defective Las quorum-sensing system, but are still virulent. Access Microbiology, 2020, 2, acmi000132.	0.2	9
89	Not all Pseudomonas aeruginosa are equal: strains from industrial sources possess uniquely large multireplicon genomes. Microbial Genomics, 2019, 5, .	1.0	26
91	Exogenous and Endogenous Phosphoethanolamine Transferases Differently Affect Colistin Resistance and Fitness in Pseudomonas aeruginosa. Frontiers in Microbiology, 2021, 12, 778968.	1.5	10
92	Adaptation and genomic erosion in fragmented Pseudomonas aeruginosa populations in the sinuses of people with cystic fibrosis. Cell Reports, 2021, 37, 109829.	2.9	19
97	Genome evolution drives transcriptomic and phenotypic adaptation in Pseudomonas aeruginosa during 20 years of infection. Microbial Genomics, 2021, 7, .	1.0	14
98	Antimicrobial Resistance and Genomic Characterization of Six New Sequence Types in Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates from Pakistan. Antibiotics, 2021, 10, 1386.	1.5	5
99	The Pseudomonas aeruginosa whole genome sequence: A 20th anniversary celebration. Advances in Microbial Physiology, 2021, 79, 25-88.	1.0	7
101	Force-Induced Changes of PilY1 Drive Surface Sensing by Pseudomonas aeruginosa. MBio, 2022, 13, e0375421.	1.8	15
103	The Effects of Sub-inhibitory Antibiotic Concentrations on Pseudomonas aeruginosa: Reduced Susceptibility Due to Mutations. Frontiers in Microbiology, 2021, 12, 789550.	1.5	8

#	Article	IF	CITATIONS
121	Tracking the Origins of Pseudomonas aeruginosa Phylogroups by Diversity and Evolutionary Analysis of Important Pathogenic Marker Genes. Diversity, 2022, 14, 345.	0.7	3
122	Aminoglycoside-Modifying Enzymes Are Sufficient to Make Pseudomonas aeruginosa Clinically Resistant to Key Antibiotics. Antibiotics, 2022, 11, 884.	1.5	7
124	Genomic diversity and molecular epidemiology of a multidrug-resistant Pseudomonas aeruginosa DMC30b isolated from a hospitalized burn patient in Bangladesh. Journal of Global Antimicrobial Resistance, 2022, 31, 110-118.	0.9	7
125	Using genome-wide expression compendia to study microorganisms. Computational and Structural Biotechnology Journal, 2022, 20, 4315-4324.	1.9	0
126	What Makes Pseudomonas aeruginosa a Pathogen?. Advances in Experimental Medicine and Biology, 2022, , 283-301.	0.8	4
127	Pseudomonas aeruginosa Pangenome: Core and Accessory Genes of a Highly Resourceful Opportunistic Pathogen. Advances in Experimental Medicine and Biology, 2022, , 3-28.	0.8	5
128	Rapid fluoroquinolone resistance detection in Pseudomonas aeruginosa using mismatch amplification mutation assay-based real-time PCR. Journal of Medical Microbiology, 2022, 71, .	0.7	1
129	Genome-Based Analysis of Virulence Factors and Biofilm Formation in Novel P. aeruginosa Strains Isolated from Household Appliances. Microorganisms, 2022, 10, 2508.	1.6	1
130	Compendium-Wide Analysis of Pseudomonas aeruginosa Core and Accessory Genes Reveals Transcriptional Patterns across Strains PAO1 and PA14. MSystems, 2023, 8, .	1.7	5
131	Computationally Efficient Assembly of Pseudomonas aeruginosa Gene Expression Compendia. MSystems, 2023, 8, .	1.7	2
132	Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells, 2023, 12, 199.	1.8	35
133	Gene–Gene Interactions Reduce Aminoglycoside Susceptibility of Pseudomonas aeruginosa through Efflux Pump-Dependent and -Independent Mechanisms. Antibiotics, 2023, 12, 152.	1.5	3
134	Artificial Intelligence for Antimicrobial Resistance Prediction: Challenges and Opportunities towards Practical Implementation. Antibiotics, 2023, 12, 523.	1.5	13
136	Genomic surveillance of bacterial pathogens. , 2023, , 71-117.		1
141	The Pseudomonas aeruginosa Resistome: Permanent and Transient Antibiotic Resistance, an Overview.	0.4	0

141 Methods in Molecular Biology, 2024, , 85-102.