CITATION REPORT List of articles citing

Estimation and Comparison of Bio-Oil Components from Different Pyrolysis Conditions

DOI: 10.3389/fenrg.2015.00028 Frontiers in Energy Research, 2015, 3, .

Source: https://exaly.com/paper-pdf/61005821/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
90	Mechanistic Understanding of Thermochemical Conversion of Polymers and Lignocellulosic Biomass. <i>Advances in Chemical Engineering</i> , 2016 , 49, 95-198	0.6	49
89	Impacts of Thermal Processing on the Physical and Chemical Properties of Pyrolysis Oil Produced by a Modified Fluid Catalytic Cracking Pyrolysis Process. <i>Energy & Energy & E</i>	4.1	11
88	Syngas production from steam reforming of acetic acid over Ni- and Co-based catalysts supported on La 2 O 3 and AlLaO x. <i>Fuel Processing Technology</i> , 2017 , 158, 247-254	7.2	13
87	Systematic Synthesis and Evaluation of Thermochemical Conversion Processes for Lignocellulosic Biofuels Production: Total Process Evaluation and Integration. <i>Industrial & Discrete Manager Chemistry Research</i> , 2018 , 57, 9925-9942	3.9	7
86	Kinetic Modeling of Cellulose Fractional Pyrolysis. <i>Energy & Fuels</i> , 2018 , 32, 3436-3446	4.1	11
85	Evaluation of Reactivities of Various Compounds in Steam Reforming over RuNi/BaOAl2O3 Catalyst. <i>Energy & Double Street Rundy & Rundy </i>	4.1	11
84	Hydrodeoxygenation of Isoeugenol over Alumina-Supported Ir, Pt, and Re Catalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 16205-16218	8.3	16
83	Increasing Efficiency of Charcoal Production with Bio-Oil Recycling. Energy & Damp; Fuels, 2018, 32, 9650	-9 .6.5 .8	12
82	A review of recent research and developments in fast pyrolysis and bio-oil upgrading. <i>Biomass Conversion and Biorefinery</i> , 2018 , 8, 739-773	2.3	68
81	Production of Glucose from the Acid Hydrolysis of Anhydrosugars. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 12872-12883	8.3	7
80	Effect of polymeric diisocyanate addition on bonding performance of a demethylated-pyrolysis-oil-based adhesive. <i>Wood Science and Technology</i> , 2019 , 53, 1311-1337	2.5	1
79	Effect of Dewatering Wood-Derived Fast Pyrolysis Oil on Its Fuel Properties for Power Generation. <i>Energy & Description</i> , 33, 12403-12420	4.1	2
78	The thermochemical conversion of biomass into biofuels. 2019 , 327-368		16
77	Influence of Oxygen-Containing Compounds on Conversion and Selectivity of Dibenzotiophene and Naphthaline on Bulk and Supplied Co(Ni)MoS2 Catalysts. <i>Russian Journal of Applied Chemistry</i> , 2019 , 92, 1761-1771	0.8	1
76	The role of catalyst acidity and shape selectivity on products from the catalytic fast pyrolysis of beech wood. <i>Journal of Analytical and Applied Pyrolysis</i> , 2019 , 162, 104710	6	8
75	Investigation on pyrolysis and incineration of chrome-tanned solid waste from tanneries for effective treatment and disposal: an experimental study. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 29778-29790	5.1	14
74	Kinetic Analysis of Bio-Oil Aging by Using Pattern Search Method. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2020 , 59, 1487-1494	3.9	5

(2021-2020)

73	Generating Energy and Greenhouse Gas Inventory Data of Activated Carbon Production Using Machine Learning and Kinetic Based Process Simulation. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 1252-1261	8.3	16
72	Alternative approach for safe disposal of dry olive pomace: pyrolysis with/without physical preprocessing. <i>International Journal of Environmental Science and Technology</i> , 2020 , 17, 2215-2232	3.3	2
71	Potential of stepwise pyrolysis for on-site treatment of agro-residues and enrichment of value-added chemicals. <i>Waste Management</i> , 2020 , 118, 667-676	8.6	6
70	Comparative Performance of Catalytic and Non-Catalytic Pyrolysis of Sugarcane Bagasse in Catatest Reactor System. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 778, 012069	0.4	1
69	Influence of Temperature on The Yield and Characteristic of Bio Oil from Pyrolysis of Pine Sap. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 807, 012043	0.4	
68	Vapor Pressures of Phenolic Compounds Found in Pyrolysis Oil. <i>Journal of Chemical &</i> Engineering Data, 2020 , 65, 5559-5566	2.8	3
67	Application of Hydroprocessing, Fermentation, and Anaerobic Digestion in a Carbon-Negative Pyrolysis Refinery. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 16413-16421	8.3	4
66	Recent Progress in Quantum Chemistry Modeling on the Pyrolysis Mechanisms of Lignocellulosic Biomass. <i>Energy & Discourt Sensor Biomass. Energy & Discourt Sensor Biomass. Energy & Discourt Biomass. Energy & Dis</i>	4.1	37
65	Feasibility study on the utilization of mahogany (Swietenia macrophylla King) wood as a raw material in the bio-oil production. <i>Journal of Physics: Conference Series</i> , 2020 , 1567, 022029	0.3	2
64	Optimizing Yield and Quality of Bio-Oil: A Comparative Study of Acacia tortilis and Pine Dust. <i>Processes</i> , 2020 , 8, 551	2.9	5
63	Minireview on Bio-Oil Upgrading via Electrocatalytic Hydrogenation: Connecting Biofuel Production with Renewable Power. <i>Energy & Energy & 2020</i> , 34, 7915-7928	4.1	24
62	Effect of Ni Dopant on Furan Activation over Mo2C Surface: Insights from First-Principles-Based Microkinetic Modeling. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 5636-5646	3.8	3
61	Pilot-Scaled Fast-Pyrolysis Conversion of Eucalyptus Wood Fines into Products: Discussion Toward Possible Applications in Biofuels, Materials, and Precursors. <i>Bioenergy Research</i> , 2020 , 13, 411-422	3.1	7
60	Thermochemical conversion of agricultural wastes applying different reforming temperatures. <i>Fuel Processing Technology</i> , 2020 , 203, 106402	7.2	16
59	Fuel properties and compositional analysis of Areca catechu sawdust over MgO and ZSM-5 catalysts. <i>Journal of the Energy Institute</i> , 2021 , 94, 252-262	5.7	3
58	Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 135, 110189	16.2	32
57	Advanced mono- and multi-dimensional gas chromatography-mass spectrometry techniques for oxygen-containing compound characterization in biomass and biofuel samples. <i>Journal of Separation Science</i> , 2021 , 44, 115-134	3.4	5
56	Volatile-char interactions during biomass pyrolysis: Effect of char preparation temperature. <i>Energy</i> , 2021 , 215, 119189	7.9	10

55	Upgrading of bio-oil from thermochemical conversion of various biomass [Mechanism, challenges and opportunities. <i>Fuel</i> , 2021 , 287, 119329	7.1	25
54	High Quality Bio-Oil Obtained from Catalyzed Pyrolysis of Olive Mill Solid Wastes in a Bi-Functional Reactor. <i>Materials Sciences and Applications</i> , 2021 , 12, 52-77	0.3	1
53	Upgrading of Light Bio-oil from Solvothermolysis Liquefaction of an Oil Palm Empty Fruit Bunch in Glycerol by Catalytic Hydrodeoxygenation Using NiMo/AlO or CoMo/AlO Catalysts. <i>ACS Omega</i> , 2021 , 6, 2999-3016	3.9	12
52	Rheological, thermophysical, and morphological features of original and hydrogenated bio-oils. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 4425-4433	5.8	3
51	A review on catalytic pyrolysis for high-quality bio-oil production from biomass. <i>Biomass Conversion and Biorefinery</i> , 1	2.3	10
50	A review on sources and extraction of phenolic compounds as precursors for bio-based phenolic resins. <i>Biomass Conversion and Biorefinery</i> , 1	2.3	4
49	Lignin waste processing into solid, liquid, and gaseous fuels: a comprehensive review. <i>Biomass Conversion and Biorefinery</i> , 1	2.3	2
48	Review on Aging of Bio-Oil from Biomass Pyrolysis and Strategy to Slowing Aging. <i>Energy & Energy & En</i>	4.1	5
47	Effect of CTAB Ratio to the Characters of Mesoporous Silica Prepared from Rice Husk Ash in the Pyrolysis of adellulose. <i>Bulletin of Chemical Reaction Engineering and Catalysis</i> , 2021 , 16, 632-640	1.7	O
46	ANALYSIS AND COMPARISON OF THE FUEL PROPERTIES OF BIO-OILS PRODUCED BY CATALYTIC FAST PYROLYSIS OF Tectona grandis. <i>Uluda</i> [<i>University Journal of the Faculty of Engineering</i> , 693-706	0.1	1
45	Effect of temperature and feed rate on pyrolysis oil produced via helical screw fluidized bed reactor. <i>Korean Journal of Chemical Engineering</i> , 2021 , 38, 1797-1809	2.8	4
44	An overview of biofuel power generation on policies and finance environment, applied biofuels, device and performance. <i>Journal of Traffic and Transportation Engineering (English Edition)</i> , 2021 , 8, 534-	· 3 53	4
43	Production and separation of acetic acid from pyrolysis oil of lignocellulosic biomass: a review. <i>Biofuels, Bioproducts and Biorefining</i> ,	5.3	6
42	Techno-Economic Analysis of Fast Pyrolysis of Date Palm Waste for Adoption in Saudi Arabia. <i>Energies</i> , 2021 , 14, 6048	3.1	3
41	NaOH-Catalyzed Methanolysis Optimization of Biodiesel Synthesis from Desert Date Seed Kernel Oil. <i>ACS Omega</i> , 2021 , 6, 24082-24091	3.9	1
40	Effects of Pyrolysis Conditions on Organic Fractions and Heat Values of Olive Mill Wastes Pyrolysis Liquid. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2020 , 142,	2.6	3
39	Understanding the effect of co-reactants on ketonization of carboxylic acids in the aqueous-phase pyrolysis oil of wood. <i>Wood Science and Technology</i> , 2021 , 55, 1745-1764	2.5	1
38	Co-pyrolysis of torrefied biomass and coal: Effect of pressure on synergistic reactions. <i>Journal of Analytical and Applied Pyrolysis</i> , 2021 , 161, 105363	6	3

37	One-pot upgrading of coconut coir lignin over high-efficiency Ni2P catalysts. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 106702	6.8	О
36	Assessment of electricity generation potential from biochar in Northern India. <i>Energy and Climate Change</i> , 2022 , 3, 100068	1.2	
35	Thermochemical Liquefaction as a Cleaner and Efficient Route for Valuing Pinewood Residues from Forest Fires. <i>Molecules</i> , 2021 , 26,	4.8	1
34	Conversion of refuse derived fuel from municipal solid waste into valuable chemicals using advanced thermo-chemical process. <i>Journal of Cleaner Production</i> , 2021 , 329, 129653	10.3	2
33	Microalgae-based wastewater treatment and utilization of microalgae biomass. 2021, 6, 165-165		О
32	A holistic overview on corn cob biochar: A mini-review Waste Management and Research, 2022, 73424	2X2110	069741
31	Slaughterhouse and poultry wastes: management practices, feedstocks for renewable energy production, and recovery of value added products <i>Biomass Conversion and Biorefinery</i> , 2022 , 1-24	2.3	4
30	Thermochemical Conversion of Untreated and Pretreated Biomass for Efficient Production of Levoglucosenone and 5-Chloromethylfurfural in the Presence of an Acid Catalyst. <i>Catalysts</i> , 2022 , 12, 206	4	
29	Compatibility and rheology of bio-oil blends with light and heavy crude oils. Fuel, 2022, 314, 122761	7.1	5
28	Studies of physicochemical properties, kinetic behaviour, and thermal degradation profile of waste bio-crude derived from slow pyrolysis in a nitrogen atmosphere. <i>Bioresource Technology Reports</i> , 2022 , 17, 100984	4.1	Ο
27	Detailed biomass fast pyrolysis kinetics integrated to computational fluid dynamic (CFD) and discrete element modeling framework: predicting product yields at the bench-scale. <i>Chemical Engineering Journal</i> , 2022 , 136419	14.7	О
26	CHAPTER 6. Catalytic Upgrading of Bio-oils. <i>RSC Green Chemistry</i> , 181-205	0.9	
25	Pyrolysis of low-value waste miscanthus grass: Physicochemical characterization, pyrolysis kinetics, and characterization of pyrolytic end products. <i>Chemical Engineering Research and Design</i> , 2022 ,	5.5	1
24	A deterministic approach in waste management: delineation of potential territories in Turkey for industrial symbiosis of olive pomace, marble wastes and plastics by integrating Fuzzy AHP to GIS. <i>Environment, Development and Sustainability</i> ,	4.5	1
23	An overview on the analytical methods for characterization of biocrudes and their blends with petroleum. <i>Fuel</i> , 2022 , 324, 124608	7.1	1
22	Bifunctional Pt R e Catalysts in Hydrodeoxygenation of Isoeugenol as a Model Compound for Renewable Jet Fuel Production. <i>ACS Engineering Au</i> ,		O
21	Industrial hemp by-product valorization. 2022 , 301-340		
20	Impact of Bentonite Clay on In Situ Pyrolysis vs. Hydrothermal Carbonization of Avocado Pit Biomass. <i>Catalysts</i> , 2022 , 12, 655	4	О

19	Pyrolysis of Waste Biomass Using Solar Energy for Clean Energy Production. <i>Clean Energy Production Technologies</i> , 2022 , 133-150	0.8	
18	Study on the Effect of Electrolyte pH during Kolbe Electrolysis of Acetic Acid on Pt Anodes. <i>ChemCatChem</i> ,	5.2	
17	Effect of Feedstocks and Free-Fall Pyrolysis on Bio-oil and Biochar Attributes. <i>Journal of Analytical and Applied Pyrolysis</i> , 2022 , 105616	6	1
16	Optimisation of process parameters using response surface methodology to improve the liquid fraction yield from pyrolysis of water hyacinth.		2
15	Production and separation of value-added compounds from pine wood using pyrolysis and biorefinery techniques. 2022 , 238, 107509		1
14	Recent Advances in Hydrothermal Liquefaction of Microalgae. 2022 , 97-127		O
13	Effect of Carboxylic Acids on Corrosion of Type 410 Stainless Steel in Pyrolysis Bio-Oil. 2022 , 14, 11743		O
12	Conversion of sugar diacetyls to bio-hydrocarbons by the catalytic cracking in a fixed bed with fresh and deactivated Beta zeolite. 2022 , 171, 106519		O
11	Catalyst Deactivation and Its Mitigation during Catalytic Conversions of Biomass. 13555-13599		O
10	Physicochemical analysis and intermediate pyrolysis of Bambara Groundnut Shell (BGS), Sweet Sorghum Stalk (SSS), and Shea Nutshell (SNS). 1-14		O
9	Production and characterization of bio-oil from fluidized bed pyrolysis of olive stones and torrefied biomass. 2022 , 105841		1
8	Elucidation of the Roles of Water on the Reactivity of Surface Intermediates in Carboxylic Acid Ketonization on TiO2.		O
7	Selecting Catalysts for Pyrolysis of Lignocellulosic Biomass. 2023 , 3, 31-63		1
6	Bioconversion of Agricultural and Food Wastes to Vinegar.		O
5	Autocatalytic properties of biochar during lignocellulose pyrolysis probed using a continuous reaction system. 2023 , 418, 114065		O
4	Oxidative fast pyrolysis of biomass in a quartz tube fluidized bed reactor: Effect of oxygen equivalence ratio. 2023 , 270, 126987		1
3	Use of raw sugarcane molasses as a partial replacement of asphalt binder: An experimental investigation. 2023 , 369, 130541		0
2	Carbon based adsorbents for the removal of U(VI) from aqueous medium: A state of the art review. 2023 , 52, 103458		O

The Contribution of Pyrolysis of Water Hyacinth to South Africal Low-carbon and Climate Resilient Economy Transition: A Mini Review. **2023**, 27, 103-116

О