2D Saturable Absorbers for Fibre Lasers

Applied Sciences (Switzerland) 5, 1440-1456 DOI: 10.3390/app5041440

Citation Report

#	Article	IF	CITATIONS
1	Towards â€~̃smart lasers': self-optimisation of an ultrafast pulse source using a genetic algorithm. Scientific Reports, 2016, 6, 37616.	1.6	100
2	Molybdenum Disulphide Tape Saturable Absorber for Mode-Locked Double-Clad Ytterbium-Doped All-Fiber Laser Generation. Chinese Physics Letters, 2016, 33, 114201.	1.3	13
3	Gold nanobipyramid Q-switched Nd:LGGG eye-safe laser operating at 14234  nm. Applied Optics, 2016, 7351.	55. 2.1	9
4	Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS_2, WSe_2, MoS_2 and Mo _05 W_05 S_2. Optics Express, 2016, 24, 20685.	1.7	113
5	Dark solitons in laser radiation build-up dynamics. Physical Review E, 2016, 93, 032221.	0.8	19
6	Fibre amplifying loop mirror with nonlinearity independent of the intensity of intra-cavity radiation. Proceedings of SPIE, 2016, , .	0.8	0
7	152 fs nanotube-mode-locked thulium-doped all-fiber laser. Scientific Reports, 2016, 6, 28885.	1.6	86
8	All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb ₂ Te ₃ saturable absorber. Optical Engineering, 2016, 55, 081316.	0.5	20
9	Mode-locked ytterbium-doped all-fiber lasers based on few-layer black phosphorus saturable absorbers. Optics Communications, 2017, 394, 157-160.	1.0	39
10	A novel polymer composite with a small optical band gap: New approaches for photonics and optoelectronics. Journal of Applied Polymer Science, 2017, 134, .	1.3	67
11	2D Materials for Optical Modulation: Challenges and Opportunities. Advanced Materials, 2017, 29, 1606128.	11.1	364
12	Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Scientific Reports, 2017, 7, 42357.	1.6	143
13	Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale, 2017, 9, 5806-5811.	2.8	204
14	Wavelength-switchable passively mode-locked fiber laser with mechanically exfoliated molybdenum ditelluride on side-polished fiber. Optics and Laser Technology, 2017, 96, 307-312.	2.2	27
16	Large-area tungsten disulfide for ultrafast photonics. Nanoscale, 2017, 9, 1871-1877.	2.8	126
17	MoS ₂ /Carbon Nanotube Core–Shell Nanocomposites for Enhanced Nonlinear Optical Performance. Chemistry - A European Journal, 2017, 23, 3321-3327.	1.7	57
18	Doubly Q-switched Nd:GGG laser with a few-layer MoS2 saturable absorber and an acousto-optic modulator. Optical Materials, 2017, 72, 464-469.	1.7	6
19	Titanium Dioxide (TiO 2) film as a new saturable absorber for generating mode-locked Thulium-Holmium doped all-fiber laser. Optics and Laser Technology, 2017, 89, 16-20.	2.2	72

			2
#	ARTICLE	IF	CITATIONS
20	Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites. APL Photonics, 2017, 2, .	3.0	40
21	Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. Optics Express, 2017, 25, 2950.	1.7	214
22	Fundamental and harmonic mode-locking at 21 μm with black phosphorus saturable absorber. Optics Express, 2017, 25, 16916.	1.7	114
23	All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe_2 saturable absorber. Optical Materials Express, 2017, 7, 2968.	1.6	77
24	g-C_3N_4 as a saturable absorber for the passively Q-switched Nd:LLF laser at 13  μm. Photonics Rese 2017, 5, 33.	arch. 3.4	19
25	Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers. Optics Letters, 2017, 42, 2952.	1.7	37
26	Long term stable black phosphorus saturable absorber for mode-locked fiber laser. , 2017, , .		1
27	Bismuth (III) Telluride (Bi2Te3) Based Topological Insulator Embedded in PVA as Passive Saturable Absorber in Erbium-Doped Fiber Laser. IOP Conference Series: Materials Science and Engineering, 2017, 210, 012032.	0.3	3
28	Magnetron-sputtering deposited WTe_2for an ultrafast thulium-doped fiber laser. Optics Letters, 2017, 42, 5010.	1.7	81
29	Black phosphorus flakes covered microfiber for Q-switched ytterbium-doped fiber laser. Applied Optics, 2017, 56, 6427.	0.9	37
30	Q-switched double-clad Ytterbium-doped fiber laser using MoS2flakes saturable absorber. IOP Conference Series: Materials Science and Engineering, 2017, 210, 012054.	0.3	0
31	Optical modulation of microfibers and application to ultrafast fiber lasers. RSC Advances, 2018, 8, 9120-9124.	1.7	4
32	Tunable passively Q-switched erbium-doped fiber laser with Chitosan/MoS2 saturable absorber. Optics and Laser Technology, 2018, 103, 199-205.	2.2	21
33	Mechanically Exfoliated Graphite Onto D-Shaped Optical Fiber for Femtosecond Mode-Locked Erbium-Doped Fiber Laser. Journal of Lightwave Technology, 2018, 36, 1868-1874.	2.7	47
34	Molybdenum disulfide saturable absorber for eye-safe mode-locked fiber laser generation. Journal of Nonlinear Optical Physics and Materials, 2018, 27, 1850010.	1.1	15
35	Q-switched and mode-locked thulium-doped fiber laser with pure Antimony film Saturable absorber. Optics Communications, 2018, 421, 99-104.	1.0	34
36	Liquid phase exfoliated black phosphorus and reduced graphene oxide polymer-based saturable absorbers fabrication using the droplet method for mode-locking applications. Optics and Laser Technology, 2018, 106, 107-112.	2.2	16
37	Mixed Transition Metal Dichalcogenide as Saturable Absorber in Ytterbium, Praseodymium, and Erbium Fiber Laser. IEEE Journal of Quantum Electronics, 2018, 54, 1-9.	1.0	15

#	Article	IF	CITATIONS
38	Titanium dioxide doped fiber as a new saturable absorber for generating mode-locked erbium doped fiber laser. Optik, 2018, 158, 1327-1333.	1.4	28
39	Dispersion engineering of mode-locked fibre lasers. Journal of Optics (United Kingdom), 2018, 20, 033002.	1.0	65
40	A stable dual-wavelength Q-switch using a compact passive device containing photonics crystal fiber embedded with carbon platinum. Laser Physics, 2018, 28, 016201.	0.6	4
41	Passively Q-switched wavelength-tunable 1-μm fiber lasers with tapered-fiber-based black phosphorus saturable absorbers. Results in Physics, 2018, 8, 276-280.	2.0	14
42	Ultrafast third-order optical nonlinearity in SnS 2 layered compound for photonic applications. Optical Materials, 2018, 76, 69-74.	1.7	9
43	Mo _{0.5} W _{0.5} S ₂ for Q-switched pulse generation in ytterbium-doped fiber laser. Nanotechnology, 2018, 29, 224002.	1.3	12
44	Bidirectional Red-Light Passively Q-Switched All-Fiber Ring Lasers With Carbon Nanotube Saturable Absorber. Journal of Lightwave Technology, 2018, 36, 2694-2701.	2.7	23
45	Conductive graphene as passive saturable absorber with high instantaneous peak power and pulse energy in Q-switched regime. Results in Physics, 2018, 9, 371-375.	2.0	16
46	Dynamic evolution of the dissipative soliton in passively mode-locked fiber laser based on black phosphorus as a new saturable absorber. Optics Communications, 2018, 406, 177-182.	1.0	14
47	Numerical simulations on influence of the saturable absorber in Er-doped fiber laser. Optics Communications, 2018, 410, 941-946.	1.0	15
48	Ultrafast Thulium-Doped Fiber Laser Mode Locked by Monolayer WSe2. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-6.	1.9	35
49	Influence of gain fiber on dissipative soliton pairs in passively mode-locked fiber laser based on BP as a saturable absorber. Optics Communications, 2018, 410, 191-196.	1.0	16
50	Passively erbium-doped mode-locked fiber laser based on SnSe <inf>2</inf> nanosheets. , 2018, , .		0
51	Diode-Pumped Solid-State Q-Switched Laser with Rhenium Diselenide as Saturable Absorber. Applied Sciences (Switzerland), 2018, 8, 1753.	1.3	11
52	70†nm, broadly tunable passively Q-switched thulium-doped fiber laser with few-layer Mo0.8W0.2S2 saturable absorber. Optical Fiber Technology, 2018, 46, 230-237.	1.4	7
53	TiS ₂ -based saturable absorber for ultrafast fiber lasers. Photonics Research, 2018, 6, C44.	3.4	58
54	α-ln ₂ Se ₃ wideband optical modulator for pulsed fiber lasers. Optics Letters, 2018, 43, 4417.	1.7	44
55	Deposition of silver nanoparticles on polyvinyl alcohol film using electron beam evaporation and its application as a passive saturable absorber. Results in Physics, 2018, 11, 232-236.	2.0	18

ARTICLE IF CITATIONS # Ultrashort Pulse Soliton Fiber Laser Generation With Integration of Antimony Film Saturable 2.7 26 56 Absorber. Journal of Lightwave Technology, 2018, 36, 3522-3527. Passively Q-switched all-fiber lasers generating cylindrical vector beams with 2-dimensional material saturable absorbers. Optical Fiber Technology, 2018, 45, 71-76. 1.4 Graphene oxide and reduced graphene oxide as saturable absorbers onto D-shaped fibers for sub 58 1.6 48 200-fs EDFL mode-locking. Optical Materials Express, 2018, 8, 144. Optical properties and applications for MoS₂-Sb₂Te₃-MoS₂heterostructure materials. 59 141 Photonics Research, 2018, 6, 220. Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator. Optical Materials 60 1.6 38 Express, 2018, 8, 926. High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe₂ saturable absorber. Photonics Research, 2018, 6, 535. 3.4 128 Soliton mode-locked thulium-doped fiber laser with cobalt oxide saturable absorber. Optical Fiber 62 1.4 23 Technology, 2018, 45, 122-127. Sb₂Te₃ mode-locked ultrafast fiber laser at 1.93 μm. Chinese Physics B, 2018, 27, 084214. Nonlinear optical properties of WSe₂ and MoSe₂ films and their applications 64 3.4 71 in passively Q-switched erbium doped fiber lasers. Photonics Research, 2018, 6, C15. Ultrathin Ruddlesden $\hat{a} \in Popper Perovskite Heterojunction for Sensitive Photodetection. Small, 2019, 15,$ 5.2 e1902890. Saturable absorption of Bi2-XSbXTe3-YSeY quaternary solid solutions. Journal of Physics: Conference 0 66 0.3 Series, 2019, 1199, 012003. Broadband Nonlinear Optical Response of Single-Crystalline Bismuth Thin Film. ACS Applied Materials 4.0 & Interfaces, 2019, 11, 35863-35870. Switchable and tunable multi-wavelength emissions in pulsed ytterbium fiber lasers with black phosphorus saturable absorbers and polarization-maintaining fiber Bragg gratings. Optics 68 1.0 26 Communications, 2019, 452, 373-379. Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics. APL Photonics, 2019, 4, 090801. 69 2D optical materials and the implications for photonics. APL Photonics, 2019, 4, . 71 3.0 21 Holmium based nanoseconds pulsed fibre laser generation in the 2-micron region. Optik, 2019, 195, 163157. Improved Laser Damage Threshold of In2Se3 Saturable Absorber by PVD for High-Power Mode-Locked 73 1.9 28 Er-Doped Fiber Laser. Nanomaterials, 2019, 9, 1216. Second harmonic generation in Janus MoSSe a monolayer and stacked bulk with vertical asymmetry. 74 1.3 Physical Chemistry Chemical Physics, 2019, 21, 21022-21029.

#	Article	IF	CITATIONS
75	Utilizing polarization-selective mode shaping by chalcogenide thin film to enhance the performance of graphene-based integrated optical devices. Scientific Reports, 2019, 9, 12446.	1.6	3
76	Tunable passively Q-switched Dy ³⁺ -doped fiber laser from 271 to 308  î¼m using PbS nanoparticles. Optics Letters, 2019, 44, 2322.	1.7	37
77	High stable polarization-insensitive Er-doped Q-switched fiber laser with iron oxide nanoparticles as saturable absorber. Optics and Laser Technology, 2019, 113, 379-383.	2.2	13
78	MoTe ₂ Saturable Absorber With High Modulation Depth for Erbium-Doped Fiber Laser. Journal of Lightwave Technology, 2019, 37, 3100-3105.	2.7	74
79	Tuning Electronic Properties of the SiC-GeC Bilayer by External Electric Field: A First-Principles Study. Micromachines, 2019, 10, 309.	1.4	3
80	Liquid-Phase Exfoliated Silicon Nanosheets: Saturable Absorber for Solid-State Lasers. Materials, 2019, 12, 201.	1.3	12
81	Passively Q-switched ytterbium-doped fiber laser with ReSe2 saturable absorber. Optics and Laser Technology, 2019, 116, 300-304.	2.2	23
82	Q-switched all-fiber laser based on MoSe ₂ films with chemical vapor deposition method. Journal of Nonlinear Optical Physics and Materials, 2019, 28, 1950019.	1.1	3
83	Q-switched erbium-doped fiber lasers based on copper nanoparticles saturable absorber. Journal of Physics: Conference Series, 2019, 1371, 012028.	0.3	4
84	2D Black Phosphorus Saturable Absorbers for Ultrafast Photonics. Advanced Optical Materials, 2019, 7, 1800224.	3.6	235
85	MZIâ€Based Allâ€Optical Modulator Using MXene Ti ₃ C ₂ T <i>_x</i> (T =) T	j EŢQq0 0	0 rgBT /Over
86	Transmission spectrum alteration of a silica fiber taper while covering lateral surface with heterostructure of ZnTe/Bi ₂ Te ₃ thin film. Physica Scripta, 2019, 94, 025802.	1.2	11
87	Emerging Applications of Elemental 2D Materials. Advanced Materials, 2020, 32, e1904302.	11.1	336
88	Poly(3-hexylthiophene-2,5-diyl) regioregular (P3HT) thin film as saturable absorber for passively Q-switched and mode-locked Erbium-doped fiber laser. Optical Fiber Technology, 2020, 54, 102073.	1.4	17
89	Copper nanowires based mode-locker for soliton nanosecond pulse generation in erbium-doped fiber laser. Results in Physics, 2020, 18, 103228.	2.0	13
90	High-Quality, InN-Based, Saturable Absorbers for Ultrafast Laser Development. Applied Sciences (Switzerland), 2020, 10, 7832.	1.3	4
91	Enhanced nonlinear optical absorption of WS2 by Ag nanoparticles. Ferroelectrics, 2020, 563, 177-186.	0.3	5
92	Inducing Q-switching operation at 1-micron all-fiber laser via lutetium oxide film saturable absorber. Optik, 2020, 219, 165267.	1.4	5

#	Article	IF	CITATIONS
93	Ultrafast Fiber Lasers: An Expanding Versatile Toolbox. IScience, 2020, 23, 101101.	1.9	71
94	MEH-PPV organic material as saturable absorber for Q-switching and mode-locking applications. Journal of Modern Optics, 2020, 67, 746-753.	0.6	5
95	Tunable S+/S band Q-switched thulium-doped fluoride fiber laser using tungsten ditelluride (WTe2). Results in Physics, 2020, 17, 103124.	2.0	6
96	56 nm Wide-Band Tunable Q-Switched Erbium Doped Fiber Laser with Tungsten Ditelluride (WTe2) Saturable Absorber. Scientific Reports, 2020, 10, 9860.	1.6	16
97	High-Power Femtosecond Pulse Generation From an All-Fiber Er-Doped Chirped Pulse Amplification System. IEEE Photonics Journal, 2020, 12, 1-8.	1.0	3
98	Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3â^'xP nanocrystals. Frontiers of Optoelectronics, 2020, 13, 139-148.	1.9	13
99	Saturable absorption properties and femtosecond mode-locking application of titanium trisulfide. Applied Physics Letters, 2020, 116, .	1.5	49
100	Low-dimensional saturable absorbers for ultrafast photonics in solid-state bulk lasers: status and prospects. Nanophotonics, 2020, 9, 2603-2639.	2.9	24
101	Wideband saturable absorption in metal–organic frameworks (MOFs) for mode-locking Er- and Tm-doped fiber lasers. Nanoscale, 2020, 12, 4586-4590.	2.8	36
102	Q-Switched 2ÂMicron Solid-State Lasers and Their Applications. , 0, , .		0
103	Reductionâ€controlled graphene oxide saturable absorbers and its effect on ultrashort Erâ€doped fibre laser. IET Optoelectronics, 2021, 15, 61-68.	1.8	0
104	Generation of four-wave mixing in molybdenum ditelluride (MoTe ₂)-deposited side-polished fibre. Journal of Modern Optics, 2021, 68, 425-432.	0.6	7
105	Passively Q-switched fiber laser with various phases of Ni-S as a saturable absorber. Journal of Physics: Conference Series, 2021, 1851, 012018.	0.3	0
106	All-fiber integrated saturable absorber-tunable wavelength filter for Q-switching laser in both C- and L-bands. Optics Express, 2021, 29, 13183.	1.7	8
107	Study of Pulse Formation in an EDFL Under a Large Dispersion Variation Hybridly Mode-Locked by Graphene and Nonlinear Polarization Rotation. IEEE Photonics Journal, 2021, 13, 1-14.	1.0	13
108	Fiber optic Lossy Mode Resonance based sensor for aggressive liquids. Sensors and Actuators A: Physical, 2021, 321, 112576.	2.0	16
109	Rotation Active Sensors Based on Ultrafast Fibre Lasers. Sensors, 2021, 21, 3530.	2.1	10
110	Sub-250Âfs passively mode-locked ultralong ring fibre oscillators. Optics and Laser Technology, 2021, 138, 106848.	2.2	7

		CITATION REPORT		
#	Article		IF	CITATIONS
111	Narrow-bandgap materials for optoelectronics applications. Frontiers of Physics, 2022	, 17, 1.	2.4	28
112	Recent Progress of Two-Dimensional Materials for Ultrafast Photonics. Nanomaterials,	2021, 11, 1778.	1.9	31
113	Nanosecond Q-switched pulse generation using poly(3,4 ethylenedioxythiophene): Poly(4-styrenesulfonate) thin film as saturable absorber. Infrared Physics and Technolo 103788.	gy, 2021, 116,	1.3	8
114	Graphene saturable absorbers applications in fiber lasers. Journal of the European Opti Society-Rapid Publications, 2021, 17, .	cal	0.9	26
115	A Review on Rhenium Disulfide: Synthesis Approaches, Optical Properties, and Applica Lasers. Nanomaterials, 2021, 11, 2367.	tions in Pulsed	1.9	18
116	MoTe2-PVA as saturable absorber for passively Q-switched thulium-doped fluoride and fiber laser. Optik, 2021, 243, 167157.	erbium-doped	1.4	8
117	Mode-locked thulium/holmium co-doped fiber laser using WTe2-covered tapered fiber. 167723.	Optik, 2021, 245,	1.4	6
118	Generation of Q-switched fiber laser at 1.0-, 1.55- and 2.0-µm employing a spent coff saturable absorber. Optical Fiber Technology, 2021, 61, 102434.	ee ground based	1.4	7
119	Passively mode-locked Er ³⁺ and Tm ³⁺ -doped fiber lasers by gold nanorods/D-shaped fiber as saturable absorber. Laser Physics Letters, 2020, 17, 1	using a common 15104.	0.6	8
120	Fiber-based all-optical modulation based on two-dimensional materials. 2D Materials, 2	.021, 8, 012003.	2.0	8
121	High-power supercontinuum generation by noise-like pulse amplification in Yb-doped f operating in a nonlinear regime. Applied Optics, 2019, 58, 4020.	iber amplifier	0.9	12
122	Mode-locked Er-doped fiber laser with TiS2 saturable absorber. , 2016, , .			1
123	Mechanically exfoliated Rhenium disulfide onto D-shaped optical fiber for sub-300 fs E mode-locking. , 2018, , .	DFL		4
124	MXene-based saturable absorber for femtosecond mode-locked fiber lasers. Optics Exp 10159.	oress, 2019, 27,	1.7	120
125	Q-switched Dy:ZBLAN fiber lasers beyond 3 μm: comparison of pulse generation usin modulation and inkjet-printed black phosphorus. Optics Express, 2019, 27, 15032.	g acousto-optic	1.7	54
126	Two-dimensional Î ³ -graphyne for ultrafast nonlinear optical applications. Optical Mater 2020, 10, 293.	ials Express,	1.6	11
127	MoO _{3-x} as a wideband optical saturable absorber for passively Q-switchir erbium-, and thulium-doped fiber lasers. Optical Materials Express, 2020, 10, 2480.	ıg ytterbium-,	1.6	6
128	Passively Q-switched pulses from ytterbium-doped fiber laser (YDFL) using copper oxid nanoparticles as a saturable absorber. Optical Materials Express, 2020, 10, 2896.	e (CuO)	1.6	9

#	Article	IF	CITATIONS
129	Effect of the residual doping on the performance of InN epilayers as saturable absorbers for ultrafast lasers at 155Âμm. Optical Materials Express, 2019, 9, 2785.	1.6	2
130	Passively Q-switched thulium-doped fiber laser based on oxygen vacancy MoO _{3-x} saturable absorber. Optical Materials Express, 2019, 9, 4429.	1.6	20
131	Investigation of nonlinear optical properties of rhenium diselenide and its application as a femtosecond mode-locker. Photonics Research, 2019, 7, 984.	3.4	28
132	Fe ₃ O ₄ nanoparticles as a saturable absorber for a tunable Q-switched dysprosium laser around 3  î¼m. Photonics Research, 2020, 8, 70.	3.4	31
133	Recent progress of pulsed fiber lasers based on transition-metal dichalcogenides and black phosphorus saturable absorbers. Nanophotonics, 2020, 9, 2215-2231.	2.9	58
134	Generation of ultra-fast pulse based on bismuth saturable absorber. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 094203.	0.2	2
135	Near‣urface Buried Plasmonic Nanoparticles in Glass as Novel Nonlinear Saturable Absorbers for Ultrafast Lasers. Advanced Optical Materials, 2022, 10, 2101664.	3.6	12
136	Large-energy mode-locked Er-doped fiber laser based Cr2Si2Te6 as a modulator. Infrared Physics and Technology, 2021, 119, 103941.	1.3	7
137	Mode-locked Fiber Lasers using 2D Nanomaterials as Saturable Absorbers. , 2016, , .		0
138	Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber. , 2016, ,		1
139	Mechanically Exfoliated MoS2 onto D-shaped Optical Fiber for Erbium Doped Fiber Laser Mode-locking. , 2017, , .		0
140	Continuously Tunable Dispersion in an All Polarization-maintaining Er-doped Fiber Laser Mode-locked by a Graphene Saturable Absorber. , 2017, , .		Ο
141	Stable, inkjet printed temperature- and humidity-resistant black phosphorus for ultrafast lasers. , 2018, , .		1
142	Synthesis of Bi2-xSbxTe3-ySey thin film saturable absorbers on silica optical fibers by MOCVD. , 2018, , .		Ο
143	Graded index multimode fibre as saturable absorber induced by nonlinear multimodal interference for ultrafast photonics. JPhys Photonics, 2021, 3, 012005.	2.2	5
144	Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 188102.	0.2	5
145	Two-dimensional material as a saturable absorber for mid-infrared ultrafast fiber laser. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 188101.	0.2	4
146	Passively mode-locked in Er-doped fiber laser based on semi-metallic InBi saturable absorber. Journal Physics D: Applied Physics, 0, , .	1.3	0

#	Article	IF	CITATIONS
147	Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) spin-coated onto polyvinyl alcohol film as saturable absorber for generating Q-switched laser at 1.5µm region. Optical Fiber Technology, 2022, 68, 102763.	1.4	3
148	Silver Nanoparticles Embedded in Polyvinyl Alcohol Based Passive Saturable Absorber. Journal of Physics: Conference Series, 2021, 2075, 012004.	0.3	0
149	Mode-locked mid-infrared fiber systems. , 2022, , 647-684.		0
150	Four-wave mixing in graphdiyne-microfiber based on synchronized dual-wavelength pulses. Photonics Research, 2022, 10, 503.	3.4	4
151	Mode-locked erbium-doped fiber laser based on a mechanically exfoliated ReS ₂ saturable absorber onto D-shaped optical fiber. Optical Materials Express, 2022, 12, 1657.	1.6	11
152	Ultrafast photonics applications of emerging 2D-Xenes beyond graphene. Nanophotonics, 2022, 11, 1261-1284.	2.9	65
153	Ultrashort pulse thulium-doped fiber laser with molybdenum trioxide on tapered fiber. Optik, 2022, 257, 168736.	1.4	5
154	MoS ₂ /MXene pillared nanocomposite for ultrafast photonics applications. Nanotechnology, 2022, 33, 315701.	1.3	5
155	Recent Advances and Challenges in Ultrafast Photonics Enabled by Metal Nanomaterials. Advanced Optical Materials, 2022, 10, .	3.6	7
156	Silicon Oxynitride Thin Film Coating to Lossy Mode Resonance Fiber-Optic Refractometer. Sensors, 2022, 22, 3665.	2.1	6
157	Impact of pauli-blocking effect on optical limiting properties of WSe2 thin films. Optical Materials, 2022, 129, 112479.	1.7	3
158	Low cost novel PEO based nano-composite for semiconductor and He–Ne lasers beam attenuation: Structural and optical properties. Optical Materials, 2022, 129, 112502.	1.7	9
159	Femtosecond Pulsed Fiber Laser Based on Graphdiyne-Modified Tapered Fiber. Nanomaterials, 2022, 12, 2050.	1.9	7
160	Dual-loss-modulated Q-switched YVO4/Nd:YVO4 laser based on both Bi2Se3 and Cr4+:YAG. Optik, 2022, 265, 169493.	1.4	3
161	Heterostructure MoS2@ZnO nanowires: Preparation, ultrafast nonlinear optical behavior and photoelectric functional application. Applied Surface Science, 2022, 599, 153920.	3.1	10
162	Yttrium Oxide (Y2O3) as a Pulse Initiator in a Mode-Locking Erbium-Doped Fiber Laser. Photonics, 2022, 9, 486.	0.9	5
163	Broadband 1T-polytype tantalum disulfide saturable absorber for solid-state bulk lasers. Photonics Research, 2022, 10, 2122.	3.4	2
164	TMOâ€Derived γâ€MnO ₂ Nanosheets for Harmonic Soliton Molecule Pulses Generation. Annalen Der Physik, 2022, 534, .	0.9	1

#	Article	IF	CITATIONS
165	Femtosecond Pulsed Fiber Laser by an Optical Device Based on NaOH-LPE Prepared WSe2 Saturable Absorber. Nanomaterials, 2022, 12, 2747.	1.9	2
166	Pb(Zrx,Ti1-x)O3 perovskite material for passively ultrafast pulse generation in a Tm:YAP laser. Optics and Laser Technology, 2023, 157, 108707.	2.2	3
167	Integration and Applications of Nanomaterials for Ultrafast Photonics. Laser and Photonics Reviews, 2022, 16, .	4.4	24
168	All-Fiber High-Energy Mode-Locked Ytterbium-Doped Fiber Laser with Bismuth Telluride Nanosheet Saturable Absorber. Crystals, 2022, 12, 1507.	1.0	3
169	Crystalline Phase Effects on the Nonlinear Optical Response of MoS ₂ and WS ₂ Nanosheets: Implications for Photonic and Optoelectronic Applications. ACS Applied Nano Materials, 2022, 5, 16674-16686.	2.4	11
170	Demonstration of conventional soliton, bound-state soliton, and noise-like pulse based on chromium sulfide as saturable absorber. Nanophotonics, 2022, 11, 4937-4945.	2.9	7
171	Large energy mode-locked phenomenon based on ZrS2 in Er-doped fiber laser. Optics and Laser Technology, 2023, 157, 108725.	2.2	9
172	Pulsed Erbium-doped Fiber Laser for Quantum Optics Applications. , 2022, , .		0
173	TiO ₂ -SiO ₂ Nanocomposite Saturable Absorber for Ultrafast Photonics. IEEE Photonics Journal, 2023, 15, 1-10.	1.0	1
174	The role of saturable absorbers thickness in the Q-switching of the erbium-doped fiber laser. Laser Physics Letters, 2023, 20, 035101.	0.6	4
175	The influence of Au-NP thickness coated on side-polished fiber on the properties of mode-locked erbium-doped fiber laser. Infrared Physics and Technology, 2023, 130, 104616.	1.3	3
176	Skin-Inspired Tactile Sensor on Cellulose Fiber Substrates with Interfacial Microstructure for Health Monitoring and Guitar Posture Feedback. Biosensors, 2023, 13, 174.	2.3	2
177	High-efficiency mode-locked erbium-doped ZBLAN fiber laser around 2.8  µm by directly depositing Bi ₂ S ₃ particles onto a cavity mirror. Applied Optics, 2023, 62, 2055.	0.9	0
178	Nonlinear optics in 2D materials: focus on the contributions from Latin America. Journal of the Optical Society of America B: Optical Physics, 2023, 40, C111.	0.9	2
179	Ultrashort pulse generation in erbium-doped fiber lasers in South America: a historical review. Journal of the Optical Society of America B: Optical Physics, 2023, 40, C148.	0.9	1
180	Recent advances in thulium-doped fiber lasers based on saturable absorber materials at 2000 nm. Optical Fiber Technology, 2023, 78, 103310.	1.4	0
182	Numerical Analysis on the Effects of Spectral Ripple for Saturable Absorber Based Mode-Locking. , 2022, , .		1
194	Numerical Analysis on the Effects of Spectral Ripple for Saturable Absorber Based Mode-Locking. , 2022, , .		0

ARTICLE

IF CITATIONS