From STEM to STEAM: Strategies for Enhancing Engine

International Journal of Engineering Pedagogy

5,37

DOI: 10.3991/ijep.v5i2.4458

Citation Report

#	Article	IF	CITATIONS
1	Effective Intelligent Control teaching environment using Challenge Based Learning. , 2016, , .		5
2	"Finding the Joy in the Unknown†Implementation of STEAM Teaching Practices in Middle School Science and Math Classrooms. Journal of Science Education and Technology, 2016, 25, 410-426.	2.4	115
3	Developing a Conceptual Model of STEAM Teaching Practices. School Science and Mathematics, 2017, 117, 1-12.	0.5	89
4	STEAM WORKS: Student coders experiment more and experimenters gain higher grades. , 2017, , .		4
5	Analyzing the Effects of One-to-One Learning on Inquiry-Based Instruction. Computers in the Schools, 2017, 34, 107-123.	0.4	2
6	For female leaders of tomorrow: Cultivate an interdisciplinary mindset. , 2017, , .		1
7	Mind and Machine: Interdisciplinarity. NeuroQuantology, 2017, 15, .	0.1	0
8	Teaching Strategies Employed by Academics in STEM Education: A Qualitative Inquiry. E3S Web of Conferences, 2018, 65, 04002.	0.2	1
9	From STEM to STEAM: LED Light-Adjusting and Paper-Curved Pop Up Card Hands-On Curriculum Module Design. , 2018, , .		2
10	Another Thinking on the Current Aesthetic Education in Taiwan. , 2018, , .		0
11	A prototyping tool for kinetic mechanism design and fabrication: Developing and deploying M.Sketch for science, technology, engineering, the arts, and mathematics education. Advances in Mechanical Engineering, 2018, 10, 168781401880410.	0.8	7
12	Engagement in a mixed-method course: The case of project management. , 2018, , .		0
13	Toward a More Humanistic American Medical Profession: An Analysis of Premedical Web Sites From Ohio's Undergraduate Institutions. Journal of Medical Education and Curricular Development, 2018, 5, 238212051875633.	0.7	3
14	A Qualitative Study of Teaching Requirements Engineering in Universities. , 2019, , .		3
15	STEAM Education. , 2019, , .		38
16	Escaping the subjectâ€based class: A Finnish case study of developing transversal competencies in a transdisciplinary course. Curriculum Journal, 2019, 30, 264-278.	1.0	10
17	Design Thinking Gives STEAM to Teaching: A Framework That Breaks Disciplinary Boundaries. , 2019, , 57-78.		13
18	Development of Tasks with Art Elements for Teaching Engineers in English for Specific Purposes Classroom. International Journal of Emerging Technologies in Learning, 2019, 14, 4.	0.8	9

TION RE

CITATION REPORT

#	Article	IF	CITATIONS
19	Spreading Remote Laboratory Scope Through a Federation of Nodes: VISIR Case. Revista Iberoamericana De Tecnologias Del Aprendizaje, 2019, 14, 107-116.	0.7	15
20	Experiences of using a game for improving learning in software requirements elicitation. Computer Applications in Engineering Education, 2019, 27, 249-265.	2.2	18
21	ICT in STEM Education in Bulgaria. Advances in Intelligent Systems and Computing, 2020, , 801-812.	0.5	6
22	The Impact of Questioning Techniques on STEAM Instruction. Action in Teacher Education, 2020, 42, 290-308.	0.4	7
23	STEAM in Oulu: Scaffolding the development of a Community of Practice for local educators around STEAM and digital fabrication. International Journal of Child-Computer Interaction, 2020, 26, 100197.	2.5	23
24	Analysis of Peril and Mitigation in Engineering Education for Viable Augmentation. Procedia Computer Science, 2020, 172, 523-527.	1.2	0
25	Active Learning Augmented Reality for STEAM Education—A Case Study. Education Sciences, 2020, 10, 198.	1.4	67
26	The Importance of Higher Education in the EU Countries in Achieving the Objectives of the Circular Economy in the Energy Sector. Energies, 2020, 13, 4407.	1.6	35
27	Of Metaphors and Molecules: Figurative Language Bridging STEM and the Arts in Education. Leonardo, 2020, 53, 316-320.	0.2	2
28	Enumeration of Potential Teaching Methods in Higher Education: A Cross-Disciplinary Study. Education Research International, 2020, 2020, 1-17.	0.6	4
29	A Framework for Epistemological Discussion on Integrated STEM Education. Science and Education, 2020, 29, 857-880.	1.7	49
30	Inquiring into the Nature of STEM Problems. Science and Education, 2020, 29, 831-855.	1.7	19
31	Development of elementary teachers' science, technology, engineering, arts, and mathematics planning practices. School Science and Mathematics, 2020, 120, 197-208.	0.5	8
32	Comparing Design Thinking Traits between National Samples of Civil Engineering and Architecture Students. Journal of Civil Engineering Education, 2021, 147, .	0.8	5
33	Youth and Interculturality in Vienna: Gaming Intervention in Intercultural Contexts—Two Project Cases. , 2021, , 207-224.		0
34	Pre-service teachers' perception in integrating STEAM in chemistry learning. AIP Conference Proceedings, 2021, , .	0.3	0
35	A Study on the Impact of STEAM Education for Sustainable Development Courses and Its Effects on Student Motivation and Learning. Sustainability, 2021, 13, 3772.	1.6	34
36	Development of STEAM activity on nanotechnology to determine basic science process skills and engineering design process for high school students. Thinking Skills and Creativity, 2021, 39, 100796.	1.9	16

IF

CITATIONS

ALAN UZMANLARININ STEAM EĞİTİMİ Ä°LE İLGİLİ GÖRÜÅžLERİ. Atatürk Üniversitesi Kazım Karabekir EÄŸitim FakÂ 37 Dergisi, 2021, , 122-147. At the dawn of science, technology, engineering, arts, and mathematics (STEAM) education: prospects, priorities, processes, and problems. International Journal of Mathematical Education in Science and 0.8 44 Technology, 2022, 53, 2919-2955. Effects of an integrated STEAM approach on the development of competence in primary education students (<i>Efectos de una propuesta STEAM integrada en el desarrollo competencial del alumnado) Tj ETQq0 0 00 gBT /Overlock 10 Ti 39 STEAM in education: a bibliometric analysis of performance and co-words in Web of Science. International Journal of STEM Education, 2021, 8, 41. STEAM views from a need: the case of the chewing gum and pH sensopill (<i>Miradas STEAM desde la) Tj ETQq0 0 Q rgBT /Overlock 10 T 41 Structural Equation Modeling Multi-group of Science Process Skills and Cognitive in PjBL Integrated STEAM Learning. Jurnal Pendidikan Sains Indonesia, 2021, 9, 512-527. 0.2 Major and recent trends in creativity research: An overview of the field with the aid of 43 1.9 13 computational methods. Creativity and Innovation Management, 2021, 30, 475-497. A Theoretical Framework for Integrated STEM Education. Science and Education, 2022, 31, 383-404. 1.7 44 19 Moving Toward Transdisciplinary Instruction: A Longitudinal Examination of STEAM Teaching 45 12 Practices., 2019, , 143-164. INNOVATIVE COMPETENCE OF A TEACHER: BEST EUROPEAN PRACTICES. Journal of Vasyl Stefanyk 0.1 Precarpathian National University, 2020, 6, 76-89. ART AND ESP INTEGRATION IN TEACHING UKRAINIAN ENGINEERS. NovÃ-tnâ OsvÃ-ta, 2019, 6, 68-75. 47 2 0.4 Problem Solving at the Edge of Disciplines. Advances in Higher Education and Professional 48 0.1 Development Book Series, 0, , 212-234. Engaging undergraduates with research to promote cumulative learning. International Journal of 50 0.1 2 Research Studies in Education, 2016, 6, . A Preliminary Analysis of the Competency and Skills of Japanese IT Engineers in Managerial Positions. 0.1 International Journal of Learning and Teaching, 2021, , 214-218. Elementary pre-service teachers' conscious lack of knowledge about technical artefacts. 52 2 1.7 International Journal of Technology and Design Education, 2022, 32, 2093-2110. A Historical Review of Creative Technologies. Advances in Media, Entertainment and the Arts, 2016, , 54 Using ICT in STEM Education. Advances in Educational Technologies and Instructional Design Book 55 0.2 2 Series, 2017, , 197-220.

ARTICLE

#

#	Article	IF	CITATIONS
57	Embracing Creativity in K-12 Engineering Pedagogy. , 2019, , 141-149.		1
58	Innovation in B.Tech. Curriculum as B.Tech. (Hons) by integrating STEAM, ESEP & IPR features. SSRN Electronic Journal, 0, , .	0.4	6
59	THE USAGE OF STEAM PROGRAM IN DEVELOPING AND IMPROVING OF STUDENTS' EXPERIMENTAL SKILLS. , 2019, , .		0
60	Innovation in B.Tech. Curriculum as B.Tech. (Hons) by integrating STEAM, ESEP & IPR features. International Journal of Case Studies in Business, IT, and Education, 0, , 56-71.	0.0	25
61	STEAM Education Initiatives in Nepal. Steam, 2019, 4, 1-8.	0.1	5
62	Uma proposta de Ciências, Tecnologia, Engenharia, Artes e MatemÃįtica (STEAM) – o â€~carrinho de luz'. Research, Society and Development, 2020, 9, e730974673.	0.0	2
63	DEVELOPMENT AND IMPROVING STUDENTS' EXPERIMENTAL SKILLS THROUGH STEM ACTIVITIES. Gamtamokslinis Ugdymas / Natural Science Education, 2020, 17, 61-73.	0.1	2
64	Designing STEAM Learning Environments. Advances in Educational Technologies and Instructional Design Book Series, 2020, , 1-23.	0.2	1
65	The Case Study of Learning Effectiveness of STEAM Education-Take "Variety Origami―as an Example. Communications in Computer and Information Science, 2020, , 712-722.	0.4	0
66	Unlocking the potential of STEAM education: How exemplary teachers navigate assessment challenges. Journal of Educational Research, 2021, 114, 513-525.	0.8	6
67	STEAM AS A FACTOR OF INDIVIDUAL SYSTEMS THINKING DEVELOPMENT FOR STUDENTS OF ELECTRONICS SPECIALITY. Novìtnâ Osvìta, 2020, 7, 4-11.	0.4	3
68	STEAM education for preschool students: Patterns, activity designs and effects. Journal for the Education of Gifted Young Scientists, 2020, 8, 1201-1212.	0.1	3
69	Stimulating the development of soft skills in Software Engineering Education through Design Thinking. , 2020, , .		1
70	Una mirada crÃtica a los modelos teóricos sobre educación STEAM integrada. Revista Iberoamericana De Educación, 2021, 87, 13-33.	0.2	7
71	MODEL OF THE STEAM-ORIENTED EDUCATIONAL ENVIRONMENT FOR GENERAL SCHOOL TEACHERS' INFORMATION AND DIGITAL COMPETENCE DEVELOPMENT. Scientific Bulletin of Uzhhorod University Series «Pedagogy Social Work», 2020, .	0.0	0
72	Design My Music Instrument: A Project-Based Science, Technology, Engineering, Arts, and Mathematics Program on The Development of Creativity. Frontiers in Psychology, 2021, 12, 763948.	1.1	4
73	Thai undergraduate science, technology, engineering, arts, and math (STEAM) creative thinking and innovation skill development: a conceptual model using a digital virtual classroom learning environment. Education and Information Technologies, 2022, 27, 5689-5716.	3.5	21
74	A coâ€creation experiment for virtual laboratories of mechanics in engineering education. Computer Applications in Engineering Education, 2022, 30, 991-1008.	2.2	3

CITATION REPORT

#	ARTICLE	IF	CITATIONS
75	Understanding Science Teachers' Implementations of Integrated STEM: Teacher Perceptions and Practice. Sustainability, 2022, 14, 3594.	1.6	20
76	From STEM to PAVAM: A unified arts strategy for innovation, industrial and regional policy. Industry and Higher Education, 2022, 36, 525-538.	1.4	2
77	An Assessment of Junior High School Students' Knowledge, Creativity, and Hands-On Performance Using PBL via Cognitive–Affective Interaction Model to Achieve STEAM. Sustainability, 2022, 14, 5582.	1.6	1
78	Roadshow Presentations for Developing Presentation and Feedback Skills in Studio Based Learning. , 2021, , .		0
79	Science Technology Engineering Arts Mathematics (STEAM) Approach for Learning Science in Junior High School. Studies in Learning and Teaching, 2022, 3, 55-61.	0.2	0
80	Development of a Climate Change SSIBL-STEAM Program Aligned to the National Curriculum for SSI Elementary School in Korea. Asia-Pacific Science Education, 2022, 8, 109-148.	0.7	1
81	A Sound Design and Electronic Music Production STEAM Course for Secondary Education. Advances in Educational Technologies and Instructional Design Book Series, 2022, , 265-295.	0.2	0
82	Designing and developing an electronic module based science, technology, engineering, arts and mathematic on biology learning. AIP Conference Proceedings, 2022, , .	0.3	0
83	Exploring the Implications of STEAM Education on the Cultivation of Engineering Talents in an Interdisciplinary Context. Advances in Education, 2022, 12, 4041-4048.	0.0	0
84	Capacity Building for Engineering Training and Technology via STEAM Education. Education Sciences, 2022, 12, 737.	1.4	0
85	Open-Topic Project-Based Learning and Its Gender-Related Effect on Students' Exam Performance in Engineering Mechanics. Journal of Civil Engineering Education, 2023, 149, .	0.8	0
86	3D Transformations for Architectural Models as a Tool for Mathematical Learning. MINTUS – BeitrÃ g e Zur Mathematisch-naturwissenschaftlichen Bildung, 2022, , 17-49.	0.2	2
87	El enfoque STEAM como proyecto educativo en un entorno rural: análisis comparativo en República Dominicana. Revista Iberoamericana De Educación, 2023, 91, 145-161.	0.2	2
88	Toward a Praxis-Oriented Understanding of Student Self-Assessment in STEAM Education: How Exemplary Educators Leverage Self-Assessment. Cambridge Journal of Education, 2023, 53, 605-625.	1.6	0
89	AutomataStage: an AR-mediated Creativity Support Tool for Hands-on Multidisciplinary Learning. , 2023, , .		1
90	The implementation of design thinking in STEAM learning to improve students critical thinking skills and biology learning outcomes. AIP Conference Proceedings, 2023, , .	0.3	0
91	"Science―and "art―as ways of knowing in school education in Nepal for an inclusive learning environment. , 2023, 2, .		2
92	Academic Integrity in Creative Arts and Media. , 2023, , 1-16.		0

#	Article	IF	CITATIONS
95	Implementing STEAM Projects in Schools in Nepal Through Participatory Action Research Approach. Advances in Educational Marketing, Administration, and Leadership Book Series, 2023, , 1-13.	0.1	0
100	A Survey of Evaluation Approaches in STE(A)M Education. Communications in Computer and Information Science, 2024, , 289-298.	0.4	0
101	Academic Integrity in Creative Arts and Media. , 2023, , 523-538.		0
102	Soft and Hard Skills of Software Testing Professionals: A Comprehensive Survey. , 2023, , .		0
107	Engineering Faculty Professional Development: Scholarship of Teaching and Learning (SOTL) Dissemination for Curriculum Integrating Entrepreneurial Mindset, STEAM, and Bio-Inspired Design. , 0, , .		0
109	Academic Integrity in Creative Arts and Media. Springer International Handbooks of Education, 2024, , 523-538.	0.1	0

CITATION REPORT