Automated tumor analysis for molecular profiling in lu

Oncotarget 6, 27938-27952 DOI: 10.18632/oncotarget.4391

Citation Report

#	Article	IF	CITATIONS
1	The Challenges Faced in Developing Novel Drug Radiation Combinations in Non-small Cell Lung Cancer. Clinical Oncology, 2016, 28, 720-725.	0.6	6
2	Delivering a researchâ€enabled multistakeholder partnership for enhanced patient care at a population level: The Northern Ireland Comprehensive Cancer Program. Cancer, 2016, 122, 664-673.	2.0	5
3	A robust nonlinear tissue-component discrimination method for computational pathology. Laboratory Investigation, 2016, 96, 450-458.	1.7	9
4	Quantitative assessment of cell block cellularity and correlation with molecular testing adequacy in lung cancer. Journal of the American Society of Cytopathology, 2016, 5, 196-202.	0.2	6
5	Construction and analysis of tissue microarrays in the era of digital pathology: a pilot study targeting CDX1 and CDX2 in a colon cancer cohort of 612 patients. Journal of Pathology: Clinical Research, 2017, 3, 58-70.	1.3	35
6	The role of informatics in patientâ€centered care and personalized medicine. Cancer Cytopathology, 2017, 125, 494-501.	1.4	6
7	Standardising RNA profiling based biomarker application in cancer—The need for robust control of technical variables. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 258-272.	3.3	16
8	Digital pathology in clinical use: where are we now and what is holding us back?. Histopathology, 2017, 70, 134-145.	1.6	196
9	An update on the validation of whole slide imaging systems following FDA approval of a system for a routine pathology diagnostic service in the United States. Biotechnic and Histochemistry, 2017, 92, 381-389.	0.7	24
10	Development and validation of a protocol for optimizing the use of paraffin blocks in molecular epidemiological studies: The example from the HPV-AHEAD study. PLoS ONE, 2017, 12, e0184520.	1.1	15
11	Circumvent the uncertainty in the applications of transcriptional signatures to tumor tissues sampled from different tumor sites. Oncotarget, 2017, 8, 30265-30275.	0.8	72
12	External Quality Assessment Identifies Training Needs to Determine the Neoplastic Cell Content for Biomarker Testing. Journal of Molecular Diagnostics, 2018, 20, 455-464.	1.2	16
13	Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images. EBioMedicine, 2018, 27, 317-328.	2.7	240
14	Tumor Heterogeneity: Will It Change What Pathologists Do. Pathobiology, 2018, 85, 18-22.	1.9	10
15	Integrative Molecular Tumor Classification: A Pathologist's View. , 2018, , 279-279.		0
16	Translational AI and Deep Learning in Diagnostic Pathology. Frontiers in Medicine, 2019, 6, 185.	1.2	165
17	Artificial intelligence in cytopathology: a review of the literature and overview of commercial landscape. Journal of the American Society of Cytopathology, 2019, 8, 230-241.	0.2	83
18	The use of digital pathology and image analysis in clinical trials. Journal of Pathology: Clinical Research, 2019, 5, 81-90.	1.3	71

	CITATION	N REPORT	
#	Article	IF	Citations
19	Digital and Computational Pathology for Biomarker Discovery. , 2019, , 87-105.		3
20	Artificial intelligence—the third revolution in pathology. Histopathology, 2019, 74, 372-376.	1.6	107
21	A Review of Urine Ancillary Tests in the Era of the Paris System. Acta Cytologica, 2020, 64, 182-192.	0.7	18
23	A Means of Assessing Deep Learning-Based Detection of ICOS Protein Expression in Colon Cancer. Cancers, 2021, 13, 3825.	1.7	17
24	The Potential of Digital Image Analysis to Determine Tumor Cell Content in Biobanked Formalin-Fixed, Paraffin-Embedded Tissue Samples. Biopreservation and Biobanking, 2021, 19, 324-331.	0.5	5
26	Phosphatidylethanolamine-binding protein 4 promotes lung cancer cells proliferation and invasion via PI3K/Akt/mTOR axis. Journal of Thoracic Disease, 2015, 7, 1806-16.	0.6	30
28	Morphological control for molecular testing: a practical approach. Journal of Clinical Pathology, 2021, 74, 331-333.	1.0	7
29	Introduction to Digital Pathology from Historical Perspectives to Emerging Pathomics. , 2022, , 1-22.		2
30	Đœethods of Machine Learning in Ophthalmology: Review. Oftalmologiya, 2020, 17, 20-31.	0.2	3
32	Obtaining spatially resolved tumor purity maps using deep multiple instance learning in a pan-cancer study. Patterns, 2022, 3, 100399.	3.1	6
33	Developing image analysis methods for digital pathology. Journal of Pathology, 2022, 257, 391-402.	2.1	26
34	Identification of technology frontiers of artificial intelligence-assisted pathology based on patent citation network. PLoS ONE, 2022, 17, e0273355.	1.1	4
35	Artificial intelligence-augmented histopathologic review using image analysis to optimize DNA yield from formalin-fixed paraffin-embedded slides. Modern Pathology, 2022, 35, 1791-1803.	2.9	0
36	Automation: A revolutionary vision of artificial intelligence in theranostics. Bulletin Du Cancer, 2023, 110, 233-241.	0.6	0
37	Responding to the healthcare workforce shortage: A scoping review exploring anatomical pathologists' professional identities over time. Anatomical Sciences Education, 2024, 17, 351-365.	2.5	1
40	COVID-19 Lung Detection using Keras Deep Learning Models. , 2023, , .		0
42	Data-Driven Cancer Research with Digital Microscopy and Pathomics. , 2023, , 659-682.		0