Atherosclerosis and the role of immune cells

World Journal of Clinical Cases 3, 345

DOI: 10.12998/wjcc.v3.i4.345

Citation Report

#	Article	IF	CITATIONS
1	Characterization of Peripheral Immune Cell Subsets in Patients with Acute and Chronic Cerebrovascular Disease: A Case-Control Study. International Journal of Molecular Sciences, 2015, 16, 25433-25449.	1.8	10
2	Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nature Medicine, 2015, 21, 1424-1435.	15.2	1,547
3	Higher circulating levels of chemokines CXCL10, CCL20 and CCL22 in patients with ischemic heart disease. Cytokine, 2016, 83, 147-157.	1.4	46
4	Monocyte exosomes induce adhesion molecules and cytokines <i>via</i> activation of NFâ€₽B in endothelial cells. FASEB Journal, 2016, 30, 3097-3106.	0.2	140
5	CD40 in coronary artery disease: a matter of macrophages?. Basic Research in Cardiology, 2016, 111, 38.	2.5	37
6	Heterogeneity of BÂCell Functions in Stroke-Related Risk, Prevention, Injury, and Repair. Neurotherapeutics, 2016, 13, 729-747.	2.1	44
7	Long-Term Immunomodulatory Effects of a Mediterranean Diet in Adults at High Risk of Cardiovascular Disease in the PREvenci $\tilde{\rm A}^3$ n con DIeta MEDiterr $\tilde{\rm A}_1$ nea (PREDIMED) Randomized Controlled Trial. Journal of Nutrition, 2016, 146, 1684-1693.	1.3	133
8	Simulated Night Shift Disrupts Circadian Rhythms of Immune Functions in Humans. Journal of Immunology, 2016, 196, 2466-2475.	0.4	103
9	IL-27R signaling controls myeloid cells accumulation and antigen-presentation in atherosclerosis. Scientific Reports, 2017, 7, 2255.	1.6	22
10	Live endothelial cells imaged by Scanning Nearâ€field Optical Microscopy (SNOM): capabilities and challenges. Journal of Biophotonics, 2017, 10, 928-938.	1.1	15
11	Relationship of acid–base status with arterial stiffness in community-living elders: the Health ABC Study. Nephrology Dialysis Transplantation, 2017, 33, 1572-1579.	0.4	2
12	DFMG attenuates the activation of macrophages induced by co‑culture with LPC‑injured HUVE‑12 cells via the TLR4/MyD88/NF‴κB signaling pathway. International Journal of Molecular Medicine, 2018, 41, 2619-2628.	1.8	10
13	Inflammation in human carotid atheroma plaques. Cytokine and Growth Factor Reviews, 2018, 39, 62-70.	3.2	18
14	Characteristics of peripheral immune cell subsets in patients with carotid atherosclerosis undergoing carotid endarterectomy. Archives of Medical Sciences Atherosclerotic Diseases, 2018, 3, 129-136.	0.5	O
15	Activation of Bone Marrow-Derived Cells Angiotensin (Ang) II Type 1 Receptor by Ang II Promotes Atherosclerotic Plaque Vulnerability. International Journal of Molecular Sciences, 2018, 19, 2621.	1.8	7
16	Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cellular Signalling, 2018, 52, 48-64.	1.7	231
17	The Impact of theÂMediterranean Diet on Aging, Frailty, and Longevity. Practical Issues in Geriatrics, 2018, , 417-439.	0.3	0
18	Knockdown of LSD1 meliorates Ox-LDL-stimulated NLRP3 activation and inflammation by promoting autophagy via SESN2-mesiated PI3K/Akt/mTOR signaling pathway. Life Sciences, 2019, 233, 116696.	2.0	30

#	Article	IF	CITATIONS
19	Immune-Inflammatory Responses in Atherosclerosis: The Role of Myeloid Cells. Journal of Clinical Medicine, 2019, 8, 1798.	1.0	45
20	Protective Effects of Angong Niuhuang Pill on Early Atherosclerosis in ApoE ^{-/-} Mice by Reducing the Inflammatory Response. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-13.	0.5	17
21	Macrophages and T cells in atherosclerosis: a translational perspective. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H375-H386.	1.5	39
22	Reduced Levels of Testosterone Induce LDL Oxidation and Atherosclerotic Lesions Involving Inflammatory Imbalance and Reduced Macrophage Apoptosis. OnLine Journal of Biological Sciences, 2019, 19, 260-271.	0.2	0
23	PD-1+ and TIGIT+ CD4 T Cells Are Associated With Coronary Artery Calcium Progression in HIV-Infected Treated Adults. Journal of Acquired Immune Deficiency Syndromes (1999), 2019, 81, e21-e23.	0.9	5
24	CTRP13 inhibits atherosclerosis <i>via</i> autophagyâ€lysosomeâ€dependent degradation of CD36. FASEB Journal, 2019, 33, 2290-2300.	0.2	36
25	Immunometabolism features of metabolic deregulation andÂcancer. Journal of Cellular and Molecular Medicine, 2019, 23, 694-701.	1.6	17
26	Interleukin 17A in atherosclerosis – Regulation and pathophysiologic effector function. Cytokine, 2019, 122, 154089.	1.4	32
27	Ginsenoside Rb1 Alleviates Oxidative Low-Density Lipoprotein–Induced Vascular Endothelium Senescence via the SIRT1/Beclin-1/Autophagy Axis. Journal of Cardiovascular Pharmacology, 2020, 75, 155-167.	0.8	25
28	Dyslipidemia and Intraperitoneal Inflammation Axis in Peritoneal Dialysis Patients: A Cross-Sectional Pilot Study. Kidney Diseases (Basel, Switzerland), 2020, 6, 35-42.	1.2	7
29	Single-Cell Analyses Identify Dysfunctional CD16+ CD8ÂT Cells in Smokers. Cell Reports Medicine, 2020, 1, 100054.	3.3	21
30	Employment of targeted nanoparticles for imaging of cellular processes in cardiovascular disease. Current Opinion in Biotechnology, 2020, 66, 59-68.	3.3	11
31	Single garlic oil modulates T cells activation and proinflammatory cytokine in mice with high fat diet. Journal of Ayurveda and Integrative Medicine, 2020, 11, 414-420.	0.9	13
32	Role of Vascular Smooth Muscle Cell Plasticity and Interactions in Vessel Wall Inflammation. Frontiers in Immunology, 2020, 11, 599415.	2.2	153
33	Reverse Signaling by MHC-I Molecules in Immune and Non-Immune Cell Types. Frontiers in Immunology, 2020, 11, 605958.	2.2	23
34	Mechanisms of the Osteogenic Switch of Smooth Muscle Cells in Vascular Calcification: WNT Signaling, BMPs, Mechanotransduction, and EndMT. Bioengineering, 2020, 7, 88.	1.6	28
35	Atherosclerosis Linked to Aberrant Amino Acid Metabolism and Immunosuppressive Amino Acid Catabolizing Enzymes. Frontiers in Immunology, 2020, 11, 551758.	2.2	44
36	Natural Killer Cell Dysfunction and Its Role in COVID-19. International Journal of Molecular Sciences, 2020, 21, 6351.	1.8	129

#	Article	IF	Citations
37	Retinal Physiology and Circulation: Effect of Diabetes. , 2020, 10, 933-974.		11
38	Ectopic Lymphoid Organs and Immune-Mediated Diseases: Molecular Basis for Pharmacological Approaches. Trends in Molecular Medicine, 2020, 26, 1021-1033.	3.5	16
39	Fibrinogen and Low-Density Lipoprotein (LDL) Cholesterol Levels with the Occurrence of Acute Myocardial Infarction: Is it Correlated?. IOP Conference Series: Earth and Environmental Science, 2020, 441, 012183.	0.2	0
40	Anthocyanins reduce inflammation and improve glucose and lipid metabolism associated with inhibiting nuclear factor-kappaB activation and increasing PPAR- $\hat{\mathbf{I}}^3$ gene expression in metabolic syndrome subjects. Free Radical Biology and Medicine, 2020, 150, 30-39.	1.3	57
41	Immune-Inflammation in Atherosclerosis: A New Twist in an Old Tale. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2020, 20, 525-545.	0.6	12
42	Natural flavone tricetin suppresses oxidized LDL-induced endothelial inflammation mediated by Egr-1. International Immunopharmacology, 2020, 80, 106224.	1.7	16
43	Inflammation and cardiovascular disease: are marine phospholipids the answer? Food and Function, 2020, 11, 2861-2885.	2.1	65
44	Harnessing hyperuricemia to atherosclerosis and understanding its mechanistic dependence. Medicinal Research Reviews, 2021, 41, 616-629.	5.0	39
45	Structural, functional, and mechanistic insights uncover the fundamental role of orphan connexin-62 in platelets. Blood, 2021, 137, 830-843.	0.6	9
46	Anti-Atherosclerotic and Anti-Inflammatory Effects of Curcumin on Hypercholesterolemic Male Rabbits. Indian Journal of Clinical Biochemistry, 2021, 36, 74-80.	0.9	2
47	Altered Vascular Extracellular Matrix in the Pathogenesis of Atherosclerosis. Journal of Cardiovascular Translational Research, 2021, 14, 647-660.	1.1	24
48	Establishing a Risk Prediction Model for Atherosclerosis in Systemic Lupus Erythematosus. Frontiers in Immunology, 2021, 12, 622216.	2.2	11
49	Single-Cell Transcriptomic Atlas of Different Human Cardiac Arteries Identifies Cell Types Associated With Vascular Physiology. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1408-1427.	1,1	48
50	TRAM-Related TLR4 Pathway Antagonized by IRAK-M Mediates the Expression of Adhesion/Coactivating Molecules on Low-Grade Inflammatory Monocytes. Journal of Immunology, 2021, 206, 2980-2988.	0.4	9
51	The Contribution of Endothelial-Mesenchymal Transition to Atherosclerosis. International Journal of Translational Medicine, 2021, 1, 39-54.	0.1	2
52	EndMT Regulation by Small RNAs in Diabetes-Associated Fibrotic Conditions: Potential Link With Oxidative Stress. Frontiers in Cell and Developmental Biology, 2021, 9, 683594.	1.8	31
53	Micro- and nanoscale biophysical cues for cardiovascular disease therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 34, 102365.	1.7	10
54	The impacts of C1q/TNF-related protein-15 and adiponectin on Interleukin-6 and tumor necrosis factor- \hat{l}_{\pm} in primary macrophages of patients with coronary artery diseases. Cytokine, 2021, 142, 155470.	1.4	5

#	Article	IF	CITATIONS
55	Plasma oxalic acid and cardiovascular risk in end-stage renal disease patients: a prospective, observational cohort pilot study. Korean Journal of Internal Medicine, 2022, 37, 167-178.	0.7	10
56	Pharmacological Effects of Methotrexate and Infliximab in a Rats Model of Diet-Induced Dyslipidemia and Beta-3 Overexpression on Endothelial Cells. Journal of Clinical Medicine, 2021, 10, 3143.	1.0	3
57	Immunity in Atherosclerosis: Focusing on T and B Cells. International Journal of Molecular Sciences, 2021, 22, 8379.	1.8	20
58	Association of Rosacea With Cardiovascular Disease: A Retrospective Cohort Study. Journal of the American Heart Association, 2021, 10, e020671.	1.6	7
59	Atherosclerosis: immunopathogenesis and strategies for immunotherapy. Immunotherapy, 2021, 13, 1231-1244.	1.0	16
60	Keeping zombies alive: The ER-mitochondria Ca2+ transfer in cellular senescence. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119099.	1.9	18
61	Kaempferol alleviates ox-LDL-induced apoptosis by up-regulation of autophagy via inhibiting PI3K/Akt/mTOR pathway in human endothelial cells. Cardiovascular Pathology, 2017, 31, 57-62.	0.7	84
63	Immune cell phenotyping in low blood volumes for assessment of cardiovascular disease risk, development, and progression: a pilot study. Journal of Translational Medicine, 2020, 18, 29.	1.8	14
64	Cardiorespiratory fitness and the metabolic syndrome: Roles of inflammation and abdominal obesity. PLoS ONE, 2018, 13, e0194991.	1.1	77
65	Atherosclerosis as autoimmune disease. Annals of Translational Medicine, 2018, 6, 116-116.	0.7	52
66	The Effects of High Mobility Group Box-1 Protein on Peripheral Treg/Th17 Balance in Patients with Atherosclerosis. Acta Cardiologica Sinica, 2018, 34, 399-408.	0.1	13
67	Atheromatosis of arterial intima. Klinicheskaia Meditsina, 2016, 94, 582-590.	0.2	0
68	HEAL for Heart Diseases. , 2016, , 115-140.		0
69	The Aortic Pathologies: How Far We Understand It and Its Implications on Thoracic Aortic Surgery. Brazilian Journal of Cardiovascular Surgery, 2021, 36, 535-549.	0.2	3
70	Glucagon-like peptide-1 receptor agonist reduces di(2-ethylhexyl) phthalate-induced atherosclerotic processes in vascular smooth muscle cells. Physiological Research, 2020, 69, 1095-1102.	0.4	5
71	Increased Th9 cells and IL-9 levels accelerate disease progression in experimental atherosclerosis. American Journal of Translational Research (discontinued), 2017, 9, 1335-1343.	0.0	5
72	Estimation of interferon gamma and some inflammatory atherogenic biomarkers levels in obese coronary atherosclerotic patients. Zanco Journal of Medical Sciences, 2020, 24, 205-212.	0.0	1
73	Inflammatory Cells in Atherosclerosis. Antioxidants, 2022, 11, 233.	2.2	33

#	Article	IF	Citations
74	Annexinâ€A1: The culprit or the solution?. Immunology, 2022, 166, 2-16.	2.0	18
75	Acute thoracic aorta dissection: unraveling the pathophysiology of a silent killer. Revista Da Associação Médica Brasileira, 2022, 68, 268-272.	0.3	0
76	Targeting the Microenvironment of Vulnerable Atherosclerotic Plaques: An Emerging Diagnosis and Therapy Strategy for Atherosclerosis. Advanced Materials, 2022, 34, e2110660.	11.1	51
77	Therapeutic Strategies and Chemoprevention of Atherosclerosis: What Do We Know and Where Do We Go?. Pharmaceutics, 2022, 14, 722.	2.0	5
78	Anti-hyperglycemic, anti-hyperlipidemic, and anti-inflammatory effect of the drug Guggulutiktaka ghrita on high-fat diet-induced obese rats. Journal of Ayurveda and Integrative Medicine, 2022, 13, 100583.	0.9	3
79	Identification of hub genes and their correlation with immune infiltration in coronary artery disease through bioinformatics and machine learning methods. Journal of Thoracic Disease, 2022, 14, 2621-2634.	0.6	4
80	Overview of the cardiovascular effects of environmental metals: New preclinical and clinical insights. Toxicology and Applied Pharmacology, 2022, 454, 116247.	1.3	4
81	Heparanase: A Novel Therapeutic Target for the Treatment of Atherosclerosis. Cells, 2022, 11, 3198.	1.8	10
82	Targeting Immune Senescence in Atherosclerosis. International Journal of Molecular Sciences, 2022, 23, 13059.	1.8	13
83	Circulating Soluble CD163, Associations With Cardiovascular Outcomes and Mortality, and Identification of Genetic Variants in Older Individuals: The Cardiovascular Health Study. Journal of the American Heart Association, 2022, 11, .	1.6	10
84	Introducing Circulating Vasculature-Related Transcripts as Biomarkers in Coronary Artery Disease. Molecular Diagnosis and Therapy, 2023, 27, 243-259.	1.6	1
85	White blood cells and coronary heart disease: A mendelian randomization study. Frontiers in Genetics, 0, 14 , .	1.1	3
86	Natural Killer T cells and the invariant subset promote atherosclerosis: A meta-analysis. Life Sciences, 2023, 321, 121620.	2.0	0
87	The emerging crosstalk between atherosclerosis-related microRNAs and Bermuda triangle of foam cells: Cholesterol influx, trafficking, and efflux. Cellular Signalling, 2023, 106, 110632.	1.7	4
88	The Role of Macrophages in the Pathogenesis of Atherosclerosis. Cells, 2023, 12, 522.	1.8	25
89	Galectin functions in cancer-associated inflammation and thrombosis. Frontiers in Cardiovascular Medicine, $0,10,.$	1.1	3
90	Role of oncostatin-M in ECM remodeling and plaque vulnerability. Molecular and Cellular Biochemistry, 2023, 478, 2451-2460.	1.4	4
91	Melatonin and TGF-Î ² -Mediated Release of Extracellular Vesicles. Metabolites, 2023, 13, 575.	1.3	2

#	Article	lF	CITATION
94	Host immune responses in COVID-19. , 2023, , 121-150.		0
97	Engineering biomaterials to tailor the microenvironment for macrophage–endothelium interactions. Nature Reviews Materials, 2023, 8, 688-699.	23.3	2