MicroRNA-93 activates c-Met/PI3K/Akt pathway activit directly inhibiting PTEN and CDKN1A

Oncotarget

6, 3211-3224

DOI: 10.18632/oncotarget.3085

Citation Report

#	Article	IF	CITATIONS
1	MicroRNAs: New players in intervertebral disc degeneration. Clinica Chimica Acta, 2015, 450, 333-341.	1.1	75
2	Stem cell protein Piwil1 endowed endometrial cancer cells with stem-like properties via inducing epithelial-mesenchymal transition. BMC Cancer, 2015, 15, 811.	2.6	41
3	Targeting câ€∢scp>Met in Cancer by Micro <scp>RNA</scp> s: Potential Therapeutic Applications in Hepatocellular Carcinoma. Drug Development Research, 2015, 76, 357-367.	2.9	21
4	MicroRNA-223 Expression Is Upregulated in Insulin Resistant Human Adipose Tissue. Journal of Diabetes Research, 2015, 2015, 1-8.	2.3	81
5	The PTEN tumor suppressor gene and its role in lymphoma pathogenesis. Aging, 2015, 7, 1032-1049.	3.1	52
6	microRNA-93 promotes cell proliferation via targeting of PTEN in Osteosarcoma cells. Journal of Experimental and Clinical Cancer Research, 2015, 34, 76.	8.6	68
7	miR-494 promotes cell proliferation, migration and invasion, and increased sorafenib resistance in hepatocellular carcinoma by targeting PTEN. Oncology Reports, 2015, 34, 1003-1010.	2.6	111
8	Inhibition of cell proliferation and metastasis of human hepatocellular carcinoma by miR-137 is regulated by CDC42. Oncology Reports, 2015, 34, 2523-2532.	2.6	17
9	MicroRNA Expression Profile of Neural Progenitor-Like Cells Derived from Rat Bone Marrow Mesenchymal Stem Cells under the Influence of IGF-1, bFGF and EGF. International Journal of Molecular Sciences, 2015, 16, 9693-9718.	4.1	33
10	Identification of a Novel lincRNA-p21-miR-181b-PTEN Signaling Cascade in Liver Fibrosis. Mediators of Inflammation, 2016, 2016, 1-10.	3.0	46
11	MiR-206 inhibits HGF-induced epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via c-Met /PI3k/Akt/mTOR pathway. Oncotarget, 2016, 7, 18247-18261.	1.8	102
12	Effect of overexpression of PTEN on apoptosis of liver cancer cells. Genetics and Molecular Research, 2016, 15, .	0.2	11
13	Repression of the miR-93-enhanced sensitivity of bladder carcinoma to chemotherapy involves the regulation of LASS2. OncoTargets and Therapy, 2016, 9, 1813.	2.0	21
14	Elevated serum miRâ€93, miRâ€191, and miRâ€499 are noninvasive biomarkers for the presence and progression of traumatic brain injury. Journal of Neurochemistry, 2016, 137, 122-129.	3.9	76
15	Role of Beclin-1-Mediated Autophagy in the Survival of Pediatric Leukemia Cells. Cellular Physiology and Biochemistry, 2016, 39, 1827-1836.	1.6	21
16	The roles of microRNAs related with progression and metastasis in human cancers. Tumor Biology, 2016, 37, 15383-15397.	1.8	25
17	miR-93 functions as an oncomiR for the downregulation of PDCD4 in gastric carcinoma. Scientific Reports, 2016, 6, 23772.	3.3	49
18	MicroRNA-93 promotes the malignant phenotypes of human glioma cells and induces their chemoresistance to temozolomide. Biology Open, 2016, 5, 669-677.	1.2	24

#	ARTICLE	IF	Citations
19	MicroRNA expression analysis in high fat diet-induced NAFLD-NASH-HCC progression: study on C57BL/6J mice. BMC Cancer, 2016, 16, 3.	2.6	77
20	MicroRNA-93 Downregulation Ameliorates Cerebral Ischemic Injury Through the Nrf2/HO-1 Defense Pathway. Neurochemical Research, 2016, 41, 2627-2635.	3.3	76
21	Trends in the development of MET inhibitors for hepatocellular carcinoma. Future Oncology, 2016, 12, 1275-1286.	2.4	24
22	Upregulation of PREX2 promotes the proliferation and migration of hepatocellular carcinoma cells via PTEN-AKT signaling. Oncology Letters, 2016, 11, 2223-2228.	1.8	25
23	Cancer Drug Resistance: A Brief Overview from a Genetic Viewpoint. Methods in Molecular Biology, 2016, 1395, 1-18.	0.9	84
24	Epigenetic mechanisms in atrial fibrillation: New insights and future directions. Trends in Cardiovascular Medicine, 2016, 26, 306-318.	4.9	30
25	Identification of personalized dysregulated pathways in hepatocellular carcinoma. Pathology Research and Practice, 2017, 213, 327-332.	2.3	17
26	Emerging Role of MicroRNAs in mTOR Signaling. Cellular and Molecular Life Sciences, 2017, 74, 2613-2625.	5.4	74
27	Dual inhibition of Akt and câ€Met as a secondâ€line therapy following acquired resistance to sorafenib in hepatocellular carcinoma cells. Molecular Oncology, 2017, 11, 320-334.	4.6	62
28	Lipid Nanoparticle–Mediated Delivery of Anti-miR-17 Family Oligonucleotide Suppresses Hepatocellular Carcinoma Growth. Molecular Cancer Therapeutics, 2017, 16, 905-913.	4.1	19
29	Epigenetic Regulation of KPC1 Ubiquitin Ligase Affects the NF-κB Pathway in Melanoma. Clinical Cancer Research, 2017, 23, 4831-4842.	7.0	33
30	MicroRNA-93 promotes cell proliferation by directly targeting P21 in osteosarcoma cells. Experimental and Therapeutic Medicine, 2017, 13, 2003-2011.	1.8	27
31	Long non-coding RNA MEG3 inhibits cell growth of gliomas by targeting miR-93 and inactivating PI3K/AKT pathway. Oncology Reports, 2017, 38, 2408-2416.	2.6	67
32	Regulation of the tumor suppressor PTEN by natural anticancer compounds. Annals of the New York Academy of Sciences, 2017, 1401, 136-149.	3.8	38
33	Circulating microRNAs panel as a diagnostic tool for discrimination of HCV-associated hepatocellular carcinoma. Clinics and Research in Hepatology and Gastroenterology, 2017, 41, e51-e62.	1.5	39
34	miR-93 enhances hepatocellular carcinoma invasion and metastasis by EMT via targeting PDCD4. Biotechnology Letters, 2017, 39, 1621-1629.	2.2	37
35	Expression and prognostic significance of cyclinâ€'dependent kinase inhibitor 1A in patients with resected gastric adenocarcinoma. Oncology Letters, 2017, 14, 7473-7482.	1.8	2
36	miRNA Signature of Hepatocellular Carcinoma Vascularization: How the Controls Can Influence the Signature. Digestive Diseases and Sciences, 2017, 62, 2397-2407.	2.3	13

#	Article	IF	Citations
37	MiR-93 Promotes Tumorigenesis and Metastasis of Non-Small Cell Lung Cancer Cells by Activating the PI3K/Akt Pathway via Inhibition of $\langle i\rangle$ LKB1 $\langle i\rangle$ / $\langle i\rangle$ PTEN $\langle i\rangle$ /CDKN1A $\langle i\rangle$. Journal of Cancer, 2017, 8, 870-879.	2.5	63
38	Upregulation of RASAL2 promotes proliferation and metastasis, and is targeted by miR-203 in hepatocellular carcinoma. Molecular Medicine Reports, 2017, 15, 2720-2726.	2.4	19
39	MicroRNA-93 promotes proliferation and metastasis of gastric cancer via targeting TIMP2. PLoS ONE, 2017, 12, e0189490.	2.5	48
40	miR-93 and PTEN: Key regulators of doxorubicin-resistance and EMT in breast cancer. Oncology Reports, 2017, 38, 2401-2407.	2.6	33
41	Downregulation of miRâ€186 is associated with metastatic recurrence of gastrointestinal stromal tumors. Oncology Letters, 2017, 14, 5703-5710.	1.8	16
42	The miR-93 promotes proliferation by directly targeting PDCD4 in hepatocellular carcinoma. Neoplasma, 2017, 64, 770-777.	1.6	17
43	MicroRNA-374 Exerts Protective Effects by Inhibiting SP1 Through Activating the PI3K/Akt Pathway in Rat Models of Myocardial Ischemia-Reperfusion After Sevoflurane Preconditioning. Cellular Physiology and Biochemistry, 2018, 46, 1455-1470.	1.6	25
44	Inhibition of hepatocellular carcinoma tumorigenesis by curcumin may be associated with CDKN1A and CTGF. Gene, 2018, 651, 183-193.	2.2	20
45	miRNAs as potential regulators of mTOR pathway in renal cell carcinoma. Pharmacogenomics, 2018, 19, 249-260.	1.3	9
46	Aberrant expression of microRNAs and the miRâ€1/MET pathway in canine hepatocellular carcinoma. Veterinary and Comparative Oncology, 2018, 16, 288-296.	1.8	18
47	Synergistic anticancer activity of 20(S)-Ginsenoside Rg3 and Sorafenib in hepatocellular carcinoma by modulating PTEN/Akt signaling pathway. Biomedicine and Pharmacotherapy, 2018, 97, 1282-1288.	5.6	34
48	MiR-93-5p up-regulation is involved in non-small cell lung cancer cells proliferation and migration and poor prognosis. Gene, 2018, 647, 13-20.	2.2	50
49	miR-148a suppresses cell invasion and migration in gastric cancer by targeting DNA methyltransferase 1. Oncology Letters, 2018, 15, 4944-4950.	1.8	14
50	Sorafenib response in hepatocellular carcinoma: MicroRNAs as tuning forks. Hepatology Research, 2018, 48, 5-14.	3.4	26
51	SOX2 knockdown inhibits the migration and invasion of basal cell carcinoma cells by targeting the SRPK1†mediated PI3K/AKT signaling pathway. Oncology Letters, 2018, 17, 1617-1625.	1.8	14
52	miRNA‴195 suppresses cell proliferation of ovarian cancer cell by regulating VEGFR2 and AKT signaling pathways. Molecular Medicine Reports, 2018, 18, 1666-1673.	2.4	9
53	Overexpressing lncRNA SNHG16 inhibited HCC proliferation and chemoresistance by functionally sponging hsa-miR-93. OncoTargets and Therapy, 2018, Volume 11, 8855-8863.	2.0	71
54	Emerging paradigms in the treatment of liver metastases in colorectal cancer. Critical Reviews in Oncology/Hematology, 2018, 132, 39-50.	4.4	22

#	Article	IF	CITATIONS
55	Updates on the hepatocyte growth factor/c-Met axis in hepatocellular carcinoma and its therapeutic implications. World Journal of Gastroenterology, 2018, 24, 3695-3708.	3.3	52
56	HGF/c-MET: A Promising Therapeutic Target in the Digestive System Cancers. International Journal of Molecular Sciences, 2018, 19, 3295.	4.1	37
57	The emerging roles of the polycistronic miR-106bâ^1⁄425 cluster in cancer – A comprehensive review. Biomedicine and Pharmacotherapy, 2018, 107, 1183-1195.	5.6	37
58	Comprehensive analysis of key genes, microRNAs and long nonâ€coding RNAs in hepatocellular carcinoma. FEBS Open Bio, 2018, 8, 1424-1436.	2.3	21
59	Small but Heavy Role: MicroRNAs in Hepatocellular Carcinoma Progression. BioMed Research International, 2018, 2018, 1-9.	1.9	31
60	MicroRNAs as Mediators of Resistance Mechanisms to Small-Molecule Tyrosine Kinase Inhibitors in Solid Tumours. Targeted Oncology, 2018, 13, 423-436.	3.6	5
61	MiR-93-5p Promotes Cell Proliferation through Down-Regulating PPARGC1A in Hepatocellular Carcinoma Cells by Bioinformatics Analysis and Experimental Verification. Genes, 2018, 9, 51.	2.4	31
62	microRNA-19a-3p promotes tumor metastasis and chemoresistance through the PTEN/Akt pathway in hepatocellular carcinoma. Biomedicine and Pharmacotherapy, 2018, 105, 1147-1154.	5.6	82
63	MicroRNA-224 down-regulates Glycine N-methyltransferase gene expression in Hepatocellular Carcinoma. Scientific Reports, 2018, 8, 12284.	3.3	19
64	Clinical significance and functions of microRNA-93/CDKN1A axis in human cervical cancer. Life Sciences, 2018, 209, 242-248.	4.3	20
65	Treatment effect of CDKN1A on rheumatoid arthritis by mediating proliferation and invasion of fibroblast-like synoviocytes cells. Clinical and Experimental Immunology, 2018, 194, 220-230.	2.6	12
66	Nitric Oxide Donor DETA/NO Inhibits the Growth of Endometrial Cancer Cells by Upregulating the Expression of RASSF1 and CDKN1A. Molecules, 2019, 24, 3722.	3.8	15
67	The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Molecular Cancer, 2019, 18, 147.	19.2	249
68	Non-coding RNAs: Emerging Regulators of Sorafenib Resistance in Hepatocellular Carcinoma. Frontiers in Oncology, 2019, 9, 1156.	2.8	18
69	Multiple-Scales Integrative Analysis of MicroRNAs Unveils Biomarkers and Key Regulatory Connections for Hepatocellular Carcinoma. Critical Reviews in Eukaryotic Gene Expression, 2019, 29, 189-241.	0.9	2
70	Etiology-Specific Analysis of Hepatocellular Carcinoma Transcriptome Reveals Genetic Dysregulation in Pathways Implicated in Immunotherapy Efficacy. Cancers, 2019, 11, 1273.	3.7	10
71	Long nonâ€'coding RNA MEG3 suppresses the growth of glioma cells by regulating the miRâ€'96â€'5p/MTSS1 signaling pathway. Molecular Medicine Reports, 2019, 20, 4215-4225.	2.4	32
72	Suppression of miR-93-5p inhibits high-risk HPV-positive cervical cancer progression via targeting of BTG3. Human Cell, 2019, 32, 160-171.	2.7	19

#	Article	IF	Citations
73	A comparative characterization of the circulating miRNome in whole blood and serum of HCC patients. Scientific Reports, 2019, 9, 8265.	3.3	31
74	Emerging roles of microRNAs in regulating the mTOR signaling pathway during tumorigenesis. Journal of Cellular Biochemistry, 2019, 120, 10874-10883.	2.6	11
75	Molecular mechanism and role of microRNAâ€93 in human cancers: A study based on bioinformatics analysis, metaâ€analysis, and quantitative polymerase chain reaction validation. Journal of Cellular Biochemistry, 2019, 120, 6370-6383.	2.6	16
76	MicroRNA-93 promotes bladder cancer proliferation and invasion by targeting PEDF. Urologic Oncology: Seminars and Original Investigations, 2019, 37, 150-157.	1.6	21
77	microRNAs: Key players in virusâ€associated hepatocellular carcinoma. Journal of Cellular Physiology, 2019, 234, 12188-12225.	4.1	52
79	Identification of a 3,3-difluorinated tetrahydropyridinol compound as a novel antitumor agent for hepatocellular carcinoma acting via cell cycle arrest through disturbing CDK7-mediated phosphorylation of Cdc2. Investigational New Drugs, 2020, 38, 287-298.	2.6	5
80	Role of regulatory miRNAs of the PI3K/AKT/mTOR signaling in the pathogenesis of hepatocellular carcinoma. Journal of Cellular Physiology, 2020, 235, 4146-4152.	4.1	64
81	Circular RNA hsa_circRNA_102209 promotes the growth and metastasis of colorectal cancer through miRâ€761â€mediated Ras and Rab interactor 1 signaling. Cancer Medicine, 2020, 9, 6710-6725.	2.8	32
82	microRNA-93-5p promotes hepatocellular carcinoma progression via a microRNA-93-5p/MAP3K2/c-Jun positive feedback circuit. Oncogene, 2020, 39, 5768-5781.	5.9	28
83	Circular RNA SFMBT2 Inhibits the Proliferation and Metastasis of Glioma Cells Through Mir-182-5p/Mtss1 Pathway. Technology in Cancer Research and Treatment, 2020, 19, 153303382094579.	1.9	15
84	Expression patterns of seven key genes, including \hat{l}^2 -catenin, Notch1, GATA6, CDX2, miR-34a, miR-181a and miR-93 in gastric cancer. Scientific Reports, 2020, 10, 12342.	3.3	7
85	Non-Coding RNAs: Regulating Disease Progression and Therapy Resistance in Hepatocellular Carcinoma. Cancers, 2020, 12, 1243.	3.7	11
86	The Underlying Mechanisms of Noncoding RNAs in the Chemoresistance of Hepatocellular Carcinoma. Molecular Therapy - Nucleic Acids, 2020, 21, 13-27.	5.1	29
87	Validation of miR-20a as a Tumor Suppressor Gene in Liver Carcinoma Using Hepatocyte-Specific Hyperactive piggyBac Transposons. Molecular Therapy - Nucleic Acids, 2020, 19, 1309-1329.	5.1	9
88	MicroRNAs and Long Non-coding RNAs in c-Met-Regulated Cancers. Frontiers in Cell and Developmental Biology, 2020, 8, 145.	3.7	19
89	The Function of the HGF/c-Met Axis in Hepatocellular Carcinoma. Frontiers in Cell and Developmental Biology, 2020, 8, 55.	3.7	97
90	Crosstalk Mechanisms Between HGF/c-Met Axis and ncRNAs in Malignancy. Frontiers in Cell and Developmental Biology, 2020, 8, 23.	3.7	10
91	Effect of MicroRNA-210 on the Growth of Ovarian Cancer Cells and the Efficacy of Radiotherapy. Gynecologic and Obstetric Investigation, 2021, 86, 71-80.	1.6	5

#	Article	IF	CITATIONS
92	lncRNA GABPB1 intronic transcript 1 upregulates pigment epitheliumâ€'derived factor via miRâ€'93 to suppress cell proliferation in hepatocellular carcinoma. Oncology Letters, 2021, 21, 260.	1.8	1
93	A Systematic Review of MicroRNAs Involved in Cervical Cancer Progression. Cells, 2021, 10, 668.	4.1	15
94	MicroRNAs as Predictive Biomarkers of Resistance to Targeted Therapies in Gastrointestinal Tumors. Biomedicines, 2021, 9, 318.	3.2	7
95	mir-182-5p Regulates Cell Growth of Liver Cancer via Targeting RCAN1. Gastroenterology Research and Practice, 2021, 2021, 1-13.	1.5	3
96	MicroRNAs' role in the environment-related non-communicable diseases and link to multidrug resistance, regulation, or alteration. Environmental Science and Pollution Research, 2021, 28, 36984-37000.	5. 3	20
97	HCV Proteins Modulate the Host Cell miRNA Expression Contributing to Hepatitis C Pathogenesis and Hepatocellular Carcinoma Development. Cancers, 2021, 13, 2485.	3.7	12
98	Urine miR-93-5p is a promising biomarker for early detection of HBV-related hepatocellular carcinoma. European Journal of Surgical Oncology, 2022, 48, 95-102.	1.0	8
99	Identifying the biomarkers and pathways associated with hepatocellular carcinoma based on an integrated analysis approach. Liver International, 2021, 41, 2485-2498.	3.9	2
100	Insights into an Immunotherapeutic Approach to Combat Multidrug Resistance in Hepatocellular Carcinoma. Pharmaceuticals, 2021, 14, 656.	3.8	14
101	miR-93-5p knockdown repressed hepatocellular carcinoma progression via increasing ERBB4 and TETs-dependent DNA demethylation. Autoimmunity, 2021, 54, 547-560.	2.6	5
102	Mechanisms of Pharmacoresistance in Hepatocellular Carcinoma: New Drugs but Old Problems. Seminars in Liver Disease, 2022, 42, 087-103.	3.6	10
103	Crosstalk between miRNA and PI3K/AKT/mTOR signaling pathway in cancer. Life Sciences, 2021, 285, 119984.	4.3	46
104	MicroRNA-93-5p may participate in the formation of morphine tolerance in bone cancer pain mouse model by targeting Smad5. Oncotarget, 2016, 7, 52104-52114.	1.8	22
105	Differentially expressed miRNAs in triple negative breast cancer between African-American and non-Hispanic white women. Oncotarget, 2016, 7, 79274-79291.	1.8	43
106	MicroRNA deregulation in nonalcoholic steatohepatitis-associated liver carcinogenesis. Oncotarget, 2017, 8, 88517-88528.	1.8	46
107	Prognostic value of microRNAs in hepatocellular carcinoma: a meta-analysis. Oncotarget, 2017, 8, 107237-107257.	1.8	32
108	JARID1B promotes metastasis and epithelial-mesenchymal transition via PTEN/AKT signaling in hepatocellular carcinoma cells. Oncotarget, 2015, 6, 12723-12739.	1.8	62
109	MiR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway. Oncotarget, 2015, 6, 28867-28881.	1.8	174

#	Article	IF	CITATIONS
110	RASSF8 regulates progression of cutaneous melanoma through nuclear factor- $\hat{\mathbb{P}}$ b. Oncotarget, 2015, 6, 30165-30177.	1.8	19
111	miR-382 targeting PTEN-Akt axis promotes liver regeneration. Oncotarget, 2016, 7, 1584-1597.	1.8	38
112	Hepatitis C virus core protein-induced miR-93-5p up-regulation inhibits interferon signaling pathway by targeting IFNAR1. World Journal of Gastroenterology, 2018, 24, 226-236.	3.3	8
113	miR‑106b‑5p promotes cell proliferation and cell cycle progression by directly targeting CDKN1A in osteosarcoma. Experimental and Therapeutic Medicine, 2020, 19, 3203-3210.	1.8	8
114	SIX4 promotes metastasis via activation of the PI3K-AKT pathway in colorectal cancer. PeerJ, 2017, 5, e3394.	2.0	27
115	Small molecules with huge impacts: the role of miRNA-regulated PI3K pathway in human malignancies. Molecular Biology Reports, 2021, 48, 8045-8059.	2.3	2
116	Growth Regulation in Hepatobiliary Cancer: Epigenetic Mechanisms. , 2016, , 1-11.		0
117	Growth Regulation in Hepatobiliary Cancer: Epigenetic Mechanisms. , 2017, , 3203-3213.		0
118	Cancer Genetics at a Glance: The Comprehensive Insights. , 2017, , 79-389.		1
119	The roles of microRNAs related with progression and metastasis in human cancers. Scientia Sinica Vitae, 2018, 48, 1209-1216.	0.3	0
120	Expression of miR-93-5p in patients with esophageal carcinoma and its relationship with the curative effect and prognosis of radiotherapy. Cellular and Molecular Biology, 2020, 66, 41.	0.9	3
121	MicroRNA and liver cancer., 2020, 3, 385-400.		5
122	MiR-195 is a key negative regulator of hepatocellular carcinoma metastasis by targeting FGF2 and VEGFA. International Journal of Clinical and Experimental Pathology, 2015, 8, 14110-20.	0.5	36
123	MicroRNA-93 inhibits apoptosis and promotes proliferation, invasion and migration of renal cell carcinoma ACHN cells via the TGF-1²/Smad signaling pathway by targeting. American Journal of Translational Research (discontinued), 2017, 9, 3499-3513.	0.0	12
124	Silencing of miR-10b-5p alleviates the mechanical stretch-induced proliferation of HASMCs. Tissue and Cell, 2022, 74, 101700.	2.2	3
125	Long non-coding RNA small nucleolar RNA host genes: functions and mechanisms in hepatocellular carcinoma. Molecular Biology Reports, 2022, 49, 2455.	2.3	2
126	Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. Journal of Experimental and Clinical Cancer Research, 2022, 41, 3.	8.6	88
127	microRNA-106b-5p Promotes Cell Growth and Sensitizes Chemosensitivity to Sorafenib by Targeting the BTG3/Bcl-xL/p27 Signaling Pathway in Hepatocellular Carcinoma. Journal of Oncology, 2022, 2022, 1-15.	1.3	5

#	ARTICLE	IF	CITATIONS
128	miR-93-5p suppresses ovarian cancer malignancy and negatively regulate CCND2 by binding to its $3\hat{a} \in 2UTR$ region. Discover Oncology, 2022, 13, 15.	2.1	5
129	Contribution of MicroRNAs in Chemoresistance to Cisplatin in the Top Five Deadliest Cancer: An Updated Review. Frontiers in Pharmacology, 2022, 13, 831099.	3. 5	6
130	miRNAs inspirations in hepatocellular carcinoma: Detrimental and favorable aspects of key performers. Pathology Research and Practice, 2022, 233, 153886.	2.3	53
131	The MYEOV-MYC association promotes oncogenic miR-17/93-5p expression in pancreatic ductal adenocarcinoma. Cell Death and Disease, 2022, 13, 15.	6.3	10
132	Resistance of Lenvatinib in hepatocellular carcinoma. Current Cancer Drug Targets, 2022, 22, .	1.6	5
133	Hepatocellular Carcinoma: The Role of MicroRNAs. Biomolecules, 2022, 12, 645.	4.0	17
134	Adipose Rheb deficiency promotes miR-182-5p expression via the cAMP/PPAR \hat{I}^3 signaling pathway. Journal of Genetics and Genomics, 2022, , .	3.9	0
135	Circular <scp>RNA</scp> circ_0006089 promotes the progression of gastric cancer by regulating the <scp>miR</scp> â€143â€3p/ <scp><i>PTBP3</i></scp> axis and <scp>PI3K</scp> / <scp>AKT</scp> signaling pathway. Journal of Digestive Diseases, 2022, 23, 376-387.	1.5	5
136	Active ingredients and molecular targets of <i>Taraxacum mongolicum</i> against hepatocellular carcinoma: network pharmacology, molecular docking, and molecular dynamics simulation analysis. Peerl, 0, 10, e13737.	2.0	4
137	P-Glycoprotein Activity at Diagnosis Does Not Predict Therapy Outcome and Survival in Canine B-Cell Lymphoma. Cancers, 2022, 14, 3919.	3.7	1
138	The Role of miRNAs, circRNAs and Their Interactions in Development and Progression of Hepatocellular Carcinoma: An Insilico Approach. Genes, 2023, 14, 13.	2.4	3
139	MiRNA-93: a novel signature in human disorders and drug resistance. Cell Communication and Signaling, 2023, 21, .	6.5	9
140	miR-2053 inhibits the growth of ovarian cancer cells by downregulating SOX4. Open Medicine (Poland), 2023, 18 , .	1.3	0
141	A comprehension of signaling pathways and drug resistance; an insight into the correlation between microRNAs and cancer. Pathology Research and Practice, 2023, 251, 154848.	2.3	1
142	Enhancing oral squamous cell carcinoma prediction: the prognostic power of the worst pattern of invasion and the limited impact of molecular resection margins. Frontiers in Oncology, $0,13,13$	2.8	0
143	Non-coding RNAs as therapeutic targets in cancer and its clinical application. Journal of Pharmaceutical Analysis, 2024, , .	5. 3	0
144	Targeting non-coding RNAs and N6-methyladenosine modification in hepatocellular carcinoma. Biochemical Pharmacology, 2024, 223, 116153.	4.4	0
145	The underlying mechanism and targeted therapy strategy of miRNAs cross-regulating EMT process through multiple signaling pathways in hepatocellular carcinoma. Frontiers in Molecular Biosciences, $0,11,.$	3.5	0