Water and climate: Recognize anthropogenic drought

Nature 524, 409-411

DOI: 10.1038/524409a

Citation Report

#	Article	IF	Citations
1	Socio-hydrological modelling: a review asking "why,ÂwhatÂandÂhow?". Hydrology and Earth System Sciences, 2016, 20, 443-478.	1.9	151
4	Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches. Hydrology and Earth System Sciences, 2016, 20, 3631-3650.	1.9	289
5	Water Resource Variability and Climate Change. Water (Switzerland), 2016, 8, 348.	1.2	4
6	Climate change and anthropogenic impacts on the rapid shrinkage of Lake Urmia. International Journal of Climatology, 2016, 36, 4276-4286.	1.5	72
7	Timeâ€varying nonstationary multivariate risk analysis using a dynamic Bayesian copula. Water Resources Research, 2016, 52, 2327-2349.	1.7	94
8	A hybrid statisticalâ€dynamical framework for meteorological drought prediction: Application to the southwestern United States. Water Resources Research, 2016, 52, 5095-5110.	1.7	53
9	Centuryâ€scale causal relationships between global dry/wet conditions and the state of the Pacific and Atlantic Oceans. Geophysical Research Letters, 2016, 43, 6528-6537.	1.5	65
10	Iran's Socio-economic Drought: Challenges of a Water-Bankrupt Nation. Iranian Studies, 2016, 49, 997-1016.	0.2	247
11	Chlorophyll a fluorescence, under half of the adaptive growth-irradiance, for high-throughput sensing of leaf-water deficit in Arabidopsis thaliana accessions. Plant Methods, 2016, 12, 46.	1.9	26
12	Urban adaptation to mega-drought: Anticipatory water modeling, policy, and planning for the urban Southwest. Sustainable Cities and Society, 2016, 27, 497-504.	5.1	38
13	Can Protracted Drought Undermine the Structural Integrity of California's Earthen Levees?. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2016, 142, .	1.5	47
14	Highly selective charge-guided ion transport through a hybrid membrane consisting of anionic graphene oxide and cationic hydroxide nanosheet superlattice units. NPG Asia Materials, 2016, 8, e259-e259.	3.8	56
15	Water, Governance, and Infrastructure for Enhancing Climate Resilience. Water Resources Development and Management, 2016, , 1-13.	0.3	2
16	Evapotranspiration of urban lawns in a semi-arid environment: An in situ evaluation of microclimatic conditions and watering recommendations. Journal of Arid Environments, 2016, 134, 87-96.	1.2	50
17	A New Time-varying Concept of Risk in a Changing Climate. Scientific Reports, 2016, 6, 35755.	1.6	21
18	Quantifying climate change impacts on hydropower generation and implications on electric grid greenhouse gas emissions and operation. Energy, 2016, 111, 295-305.	4.5	99
19	Does El Ni $ ilde{A}\pm o$ intensity matter for California precipitation?. Geophysical Research Letters, 2016, 43, 819-825.	1.5	98
20	Drought in the Anthropocene. Nature Geoscience, 2016, 9, 89-91.	5.4	537

#	Article	IF	CITATIONS
21	How Has Human-Induced Climate Change Affected California Drought Risk?. Journal of Climate, 2016, 29, 111-120.	1.2	84
22	Residential Tourism, Swimming Pools, and Water Demand in the Western Mediterranean. Professional Geographer, 2017, 69, 1-11.	1.0	44
23	Intensification of hydrological drought in California by human water management. Geophysical Research Letters, 2017, 44, 1777-1785.	1.5	99
24	The foodâ€energyâ€water nexus: Transforming science for society. Water Resources Research, 2017, 53, 3550-3556.	1.7	180
25	Evapotranspiration of urban landscapes in <scp>L</scp> os <scp>A</scp> ngeles, <scp>C</scp> alifornia at the municipal scale. Water Resources Research, 2017, 53, 4236-4252.	1.7	56
26	Droughts in India from 1981 to 2013 and Implications to Wheat Production. Scientific Reports, 2017, 7, 44552.	1.6	80
27	Quantifying Anthropogenic Stress on Groundwater Resources. Scientific Reports, 2017, 7, 12910.	1.6	87
28	Finding water scarcity amid abundance using human–natural system models. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11884-11889.	3.3	53
29	Crop yield response to climate change varies with crop spatial distribution pattern. Scientific Reports, 2017, 7, 1463.	1.6	95
30	Predicting CO2 capture of ionic liquids using machine learning. Journal of CO2 Utilization, 2017, 21, 162-168.	3.3	70
31	Can weather generation capture precipitation patterns across different climates, spatial scales and under data scarcity?. Scientific Reports, 2017, 7, 5449.	1.6	33
32	Using radiative signatures to diagnose the cause of warming during the 2013–2014 Californian drought. Journal of Hydrology, 2017, 553, 408-418.	2.3	7
33	Implications of changing spatial dynamics of irrigated pasture, California's third largest agricultural water use. Science of the Total Environment, 2017, 605-606, 445-453.	3.9	6
34	Multivariate assessment and attribution of droughts in Central Asia. Scientific Reports, 2017, 7, 1316.	1.6	122
35	Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability. Scientific Reports, 2017, 7, 6282.	1.6	92
36	Integrated meteorological and hydrological drought model: A management tool for proactive water resources planning of semi-arid regions. Advances in Water Resources, 2017, 107, 336-353.	1.7	48
37	Multi-sensor integrated framework and index for agricultural drought monitoring. Remote Sensing of Environment, 2017, 188, 141-163.	4.6	116
38	Multi-Sensor Remote Sensing of Drought from Space. Springer Remote Sensing/photogrammetry, 2017, , 219-247.	0.4	2

#	Article	IF	CITATIONS
39	California drought increases CO2 footprint of energy. Sustainable Cities and Society, 2017, 28, 450-452.	5.1	34
40	Forms and drivers of annual streamflow variability in the headwaters of Canadian Prairies during the 20th century. Hydrological Processes, 2017, 31, 221-239.	1.1	21
41	Effects of the Structure of Water Rights on Agricultural Production During Drought: A Spatiotemporal Analysis of California's Central Valley. Water Resources Research, 2017, 53, 8293-8309.	1.7	16
42	Drought and flood in the Anthropocene: feedback mechanisms in reservoir operation. Earth System Dynamics, 2017, 8, 225-233.	2.7	122
43	Understanding and seasonal forecasting of hydrological drought in the Anthropocene. Hydrology and Earth System Sciences, 2017, 21, 5477-5492.	1.9	92
44	Sensitivity of Regulated Flow Regimes to Climate Change in the Western United States. Journal of Hydrometeorology, 2018, 19, 499-515.	0.7	22
45	Risk, Robustness and Water Resources Planning Under Uncertainty. Earth's Future, 2018, 6, 468-487.	2.4	77
46	Sociohydrological Impacts of Water Conservation Under Anthropogenic Drought in Austin, TX (USA). Water Resources Research, 2018, 54, 3062-3080.	1.7	33
47	Human Dimensions of Water Security. , 2018, , 13-36.		0
	<u></u>		1
48	Building Resilience for Uncertain Water Futures. , 2018, , .		7
48	Building Resilience for Uncertain Water Futures. , 2018, , . Western US high June 2015 temperatures and their relation to global warming and soil moisture. Climate Dynamics, 2018, 50, 2587-2601.	1.7	9
	Western US high June 2015 temperatures and their relation to global warming and soil moisture.	1.7	
49	Western US high June 2015 temperatures and their relation to global warming and soil moisture. Climate Dynamics, 2018, 50, 2587-2601. Anatomy of an interrupted irrigation season: Micro-drought at the Wind River Indian Reservation.		9
49 50	Western US high June 2015 temperatures and their relation to global warming and soil moisture. Climate Dynamics, 2018, 50, 2587-2601. Anatomy of an interrupted irrigation season: Micro-drought at the Wind River Indian Reservation. Climate Risk Management, 2018, 19, 61-82. Urban water security: Emerging discussion and remaining challenges. Sustainable Cities and Society,	1.6	9
49 50 51	Western US high June 2015 temperatures and their relation to global warming and soil moisture. Climate Dynamics, 2018, 50, 2587-2601. Anatomy of an interrupted irrigation season: Micro-drought at the Wind River Indian Reservation. Climate Risk Management, 2018, 19, 61-82. Urban water security: Emerging discussion and remaining challenges. Sustainable Cities and Society, 2018, 41, 925-928. The City Blueprint Approach: Urban Water Management and Governance in Cities in the U.S	1.6 5.1 1.2	9 8 54
49 50 51 52	Western US high June 2015 temperatures and their relation to global warming and soil moisture. Climate Dynamics, 2018, 50, 2587-2601. Anatomy of an interrupted irrigation season: Micro-drought at the Wind River Indian Reservation. Climate Risk Management, 2018, 19, 61-82. Urban water security: Emerging discussion and remaining challenges. Sustainable Cities and Society, 2018, 41, 925-928. The City Blueprint Approach: Urban Water Management and Governance in Cities in the U.S Environmental Management, 2018, 61, 9-23.	1.6 5.1 1.2	9 8 54
49 50 51 52 53	Western US high June 2015 temperatures and their relation to global warming and soil moisture. Climate Dynamics, 2018, 50, 2587-2601. Anatomy of an interrupted irrigation season: Micro-drought at the Wind River Indian Reservation. Climate Risk Management, 2018, 19, 61-82. Urban water security: Emerging discussion and remaining challenges. Sustainable Cities and Society, 2018, 41, 925-928. The City Blueprint Approach: Urban Water Management and Governance in Cities in the U.S Environmental Management, 2018, 61, 9-23. Massive arrival of desalinated seawater in a regional urban water cycle: A multi-isotope study (B, S, O,) Tj ETQqO Automatic design of basin-specific drought indexes for highly regulated water systems. Hydrology	1.6 5.1 1.2 0 0 3 cg BT /	9 8 54 44 Overlock 10 T

#	ARTICLE	IF	CITATIONS
57	Drought Propagation in Semi-Arid River Basins in Latin America: Lessons from Mexico to the Southern Cone. Water (Switzerland), 2018, 10, 1564.	1.2	23
58	Water shortages worsened by reservoir effects. Nature Sustainability, 2018, 1, 617-622.	11.5	213
59	Developing a non-cooperative optimization model for water and crop area allocation based on leader-follower game. Journal of Hydrology, 2018, 567, 51-59.	2.3	33
60	Modeling the behavior of water reservoir operators via eigenbehavior analysis. Advances in Water Resources, 2018, 122, 228-237.	1.7	16
61	More prolonged droughts by the end of the century in the Middle East. Environmental Research Letters, 2018, 13, 104005.	2.2	50
62	Environmental globalization. Journal of Agribusiness in Developing and Emerging Economies, 2018, 8, 454-460.	1.2	5
63	Impacts of reservoir operations on multi-scale correlations between hydrological drought and meteorological drought. Journal of Hydrology, 2018, 563, 726-736.	2.3	103
64	Quantifying human impacts on hydrological drought using a combined modelling approach in a tropical river basin in central Vietnam. Hydrology and Earth System Sciences, 2018, 22, 547-565.	1.9	30
65	Ignorance Is Bliss? Experimental Evidence on Wine Produced from Grapes Irrigated with Recycled Water. Ecological Economics, 2018, 153, 100-110.	2.9	23
66	Climate Change and Drought: From Past to Future. Current Climate Change Reports, 2018, 4, 164-179.	2.8	304
67	A new interhemispheric teleconnection increases predictability of winter precipitation in southwestern US. Nature Communications, 2018, 9, 2332.	5.8	45
68	A Method for Objectively Integrating Soil Moisture Satellite Observations and Model Simulations Toward a Blended Drought Index. Water Resources Research, 2018, 54, 6772-6791.	1.7	21
69	Hydrophobic nanostructured wood membrane for thermally efficient distillation. Science Advances, 2019, 5, eaaw3203.	4.7	81
70	Can we calculate drought risk… and do we need to?. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1349.	2.8	22
71	Water crisis, drought, and climate change in the southeast United States. Land Use Policy, 2019, 88, 104110.	2.5	32
72	Urban drought challenge to 2030 sustainable development goals. Science of the Total Environment, 2019, 693, 133536.	3.9	147
73	Rethinking hydrocarbons build-up on urban roads: A perspective on volatilisation under global warming scenarios. Environmental Pollution, 2019, 252, 950-959.	3.7	3
74	Agent-based socio-hydrological modeling for restoration of Urmia Lake: Application of theory of planned behavior. Journal of Hydrology, 2019, 576, 736-748.	2.3	57

#	Article	IF	Citations
75	Droughts as a catalyst for water policy change. Analysis of Spain, Australia (MDB), and California. Global Environmental Change, 2019, 58, 101969.	3.6	48
76	How to improve attribution of changes in drought and flood impacts. Hydrological Sciences Journal, 2019, 64, 1-18.	1.2	56
77	Geotechnical Fundamentals for Addressing New World Challenges. Springer Series in Geomechanics and Geoengineering, 2019, , .	0.0	10
78	Emerging Thermal Issues in Geotechnical Engineering. Springer Series in Geomechanics and Geoengineering, 2019, , 275-317.	0.0	15
79	Space–time variability of drought over Vietnam. International Journal of Climatology, 2019, 39, 5437-5451.	1.5	32
80	Coping with Extreme Events: Effect of Different Reservoir Operation Strategies on Flood Inundation Maps. Water (Switzerland), 2019, 11, 982.	1.2	13
81	Untangling global change impacts on hydrological processes: Resisting climatization. Hydrological Processes, 2019, 33, 2148-2155.	1.1	28
82	Integrating human behavior dynamics into drought risk assessmentâ€"A sociohydrologic, agentâ€based approach. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1345.	2.8	42
83	Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environment International, 2019, 128, 125-136.	4.8	202
84	Quantifying Positive and Negative Human-Modified Droughts in the Anthropocene: Illustration with Two Iranian Catchments. Water (Switzerland), 2019, 11, 884.	1.2	7
85	An observation-based method to quantify the human influence on hydrological drought: upstream–downstream comparison. Hydrological Sciences Journal, 2019, 64, 276-287.	1.2	47
86	A Multi-Objective Risk-Based Game Theoretic Approach to Reservoir Operation Policy in Potential Future Drought Condition. Water Resources Management, 2019, 33, 1999-2014.	1.9	33
87	Droughts in East Africa: Causes, impacts and resilience. Earth-Science Reviews, 2019, 193, 146-161.	4.0	210
88	Understanding the Spatiotemporal Links Between Meteorological and Hydrological Droughts From a Threeâ€Dimensional Perspective. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3090-3109.	1.2	68
89	A Case Study of Rainfall and Temperature Trends in San Diego Region, 1985–2017. Hydrology, 2019, 6, 87.	1.3	1
90	Chemicals of Emerging Concern in Treated Wastewater Impact Microbial Growth. Frontiers in Environmental Science, 2019, 7, .	1.5	2
91	Inactivation and Loss of Infectivity of Enterovirus 70 by Solar Irradiation. Water (Switzerland), 2019, 11, 64.	1.2	3
92	Natural factors or environmental neglect? Understanding the dilemma of a water crisis in a scenario of water plenty. Land Use Policy, 2019, 82, 509-517.	2.5	10

#	Article	IF	CITATIONS
93	A water-energy balance approach for multi-category drought assessment across globally diverse hydrological basins. Agricultural and Forest Meteorology, 2019, 264, 247-265.	1.9	69
94	Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. Journal of Hydrology, 2019, 569, 203-217.	2.3	171
95	Compounding effects of human activities and climatic changes on surface water availability in Iran. Climatic Change, 2019, 152, 379-391.	1.7	84
96	Using an integrated hydrological model to estimate the impacts of droughts in a semiarid transboundary river basin: the case of study of the Tijuana River Basin. International Journal of River Basin Management, 2020, 18, 445-460.	1.5	3
97	Methods for integrating high-resolution land, climate, and infrastructure scenarios in a hydrologic simulation model. MethodsX, 2020, 7, 100699.	0.7	4
98	Global social and environmental change drives the management and delivery of ecosystem services from urban gardens: A case study from Central Coast, California. Global Environmental Change, 2020, 60, 102006.	3.6	42
99	Drought: Progress in broadening its understanding. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1407.	2.8	79
100	Analysing model disparity in diagnosing the climatic and human stresses on runoff variability over India. Journal of Hydrology, 2020, 581, 124407.	2.3	21
101	Predicting thermal conductivity of carbon dioxide using group of data-driven models. Journal of the Taiwan Institute of Chemical Engineers, 2020, 113, 165-177.	2.7	38
102	South-to-North Water Diversion stabilizing Beijing's groundwater levels. Nature Communications, 2020, 11, 3665.	5.8	254
103	In pursuit of a homegrown biofuel: Navigating systems of partnership, stakeholder knowledge, and adoption ofBrassica carinatain the Southeast United States. Energy Research and Social Science, 2020, 70, 101665.	3.0	13
104	Modeling arid/semi-arid irrigated agricultural watersheds with SWAT: Applications, challenges, and solution strategies. Journal of Hydrology, 2020, 590, 125418.	2.3	53
105	Using GRACE satellite observations for separating meteorological variability from anthropogenic impacts on water availability. Scientific Reports, 2020, 10, 15098.	1.6	23
106	Comparison of water resources management between China and the United States. Geography and Sustainability, 2020, 1, 98-108.	1.9	33
107	Droughtâ€Induced Soil Desiccation Cracking Behavior With Consideration of Basal Friction and Layer Thickness. Water Resources Research, 2020, 56, e2019WR026948.	1.7	60
108	Water governance challenges in rural South Africa: exploring institutional coordination in drought management. Water Policy, 2020, 22, 519-540.	0.7	21
109	Projected Impacts of Climate Change on Drought Patterns Over East Africa. Earth's Future, 2020, 8, e2020EF001502.	2.4	164
110	Curbing the Summer Surge: Permanent Outdoor Water Use Restrictions in Humid and Semiarid Cities. Water Resources Research, 2020, 56, e2019WR026466.	1.7	6

#	Article	IF	CITATIONS
111	Analyzing the Lake Urmia restoration progress using ground-based and spaceborne observations. Science of the Total Environment, 2020, 739, 139857.	3.9	51
112	Human dimensions of urban water resilience: Perspectives from Cape Town, Kingston upon Hull, Mexico City and Miami. Water Security, 2020, 9, 100060.	1.2	9
113	Extreme dry and wet spells face changes in their duration and timing. Environmental Research Letters, 2020, 15, 074040.	2.2	45
114	A new copula-based standardized precipitation evapotranspiration streamflow index for drought monitoring. Journal of Hydrology, 2020, 585, 124793.	2.3	50
115	Determination of water required to recover from hydrological drought: Perspective from drought propagation and non-standardized indices. Journal of Hydrology, 2020, 590, 125227.	2.3	34
116	Changes in Potential Evaporation in the Years 1952–2018 in North-Western Poland in Terms of the Impact of Climatic Changes on Hydrological and Hydrochemical Conditions. Water (Switzerland), 2020, 12, 877.	1.2	14
117	Water scarcity and fish imperilment driven by beef production. Nature Sustainability, 2020, 3, 319-328.	11.5	73
118	Climate Extremes and Compound Hazards in a Warming World. Annual Review of Earth and Planetary Sciences, 2020, 48, 519-548.	4.6	330
119	Bulk water extraction charge calculator: a tool for sustainable water management in Ontario. Canadian Water Resources Journal, 2020, 45, 59-76.	0.5	4
120	Contrasting Influences of Human Activities on Hydrological Drought Regimes Over China Based on Highâ€Resolution Simulations. Water Resources Research, 2020, 56, e2019WR025843.	1.7	62
121	Climatological Drought Forecasting Using Bias Corrected CMIP6 Climate Data: A Case Study for India. Forecasting, 2020, 2, 59-84.	1.6	32
122	Comparing Complexity in Watershed Governance: The Case of California. Water (Switzerland), 2020, 12, 766.	1.2	8
123	Assessment of climate change impact over California using dynamical downscaling with a bias correction technique: method validation and analyses of summertime results. Climate Dynamics, 2020, 54, 3705-3728.	1.7	9
124	Utilizing GRACE-based groundwater drought index for drought characterization and teleconnection factors analysis in the North China Plain. Journal of Hydrology, 2020, 585, 124849.	2.3	76
125	Socio-hydrological framework for investigating farmers' activities affecting the shrinkage of Urmia Lake; hybrid data mining and agent-based modelling. Hydrological Sciences Journal, 2020, 65, 1249-1261.	1.2	35
126	Sustainability assessment of water resource systems using a novel hydro-socio-economic index (HSEI). Environment, Development and Sustainability, 2021, 23, 1869-1916.	2.7	10
127	A tributary-comparison method to quantify the human influence on hydrological drought. Journal of Hydrology, 2021, 595, 125652.	2.3	10
128	A linear/non-linear hybrid time-series model to investigate the depletion of inland water bodies. Environment, Development and Sustainability, 2021, 23, 10727-10742.	2.7	2

#	Article	IF	Citations
129	Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiologia Plantarum, 2021, 172, 847-868.	2.6	131
130	Water infiltration in a cracked soil considering effect of drying-wetting cycles. Journal of Hydrology, 2021, 593, 125640.	2.3	53
131	Historical trends of residential water use in California: Effects of droughts and conservation policies. Applied Economic Perspectives and Policy, 2022, 44, 511-530.	3.1	5
132	Impacts of mechanical and chemical factors on the water-holding capacity of polyacrylamide in sand: models and mechanisms. Soil Research, 2021, , .	0.6	2
133	Geoinformation Technologies in Support of Environmental Hazards Monitoring under Climate Change: An Extensive Review. ISPRS International Journal of Geo-Information, 2021, 10, 94.	1.4	27
134	Water management or megadrought: what caused the Chilean Aculeo Lake drying?. Regional Environmental Change, 2021, 21, 1.	1.4	25
135	The legacy of large dams in the United States. Ambio, 2021, 50, 1798-1808.	2.8	11
136	Spatiotemporal variability of agricultural drought and its association with climatic variables in the Upper Awash Basin, Ethiopia. SN Applied Sciences, 2021, 3, 1.	1.5	5
137	Development of hydro-meteorological drought index under climate change – Semi-arid river basin of Peninsular India. Journal of Hydrology, 2021, 594, 125973.	2.3	18
138	Anthropogenic drought dominates groundwater depletion in Iran. Scientific Reports, 2021, 11, 9135.	1.6	104
139	Scenarios of Human Responses to Unprecedented Socialâ€Environmental Extreme Events. Earth's Future, 2021, 9, e2020EF001911.	2.4	15
140	Anthropogenic Drought: Definition, Challenges, and Opportunities. Reviews of Geophysics, 2021, 59, e2019RG000683.	9.0	126
141	A Decade of Hydrological Drought in Central-Western Argentina. Frontiers in Water, 2021, 3, .	1.0	22
142	Watershed science: Linking hydrological science with sustainable management of river basins. Science China Earth Sciences, 2021, 64, 677-690.	2.3	12
143	A 3D Copula Method for the Impact and Risk Assessment of Drought Disaster and an Example Application. Frontiers in Physics, 2021, 9, .	1.0	6
144	Projection of future drought and extreme events occurrence in Goodwater Creek Experimental Watershed, Midwestern US. Hydrological Sciences Journal, 2021, 66, 1045-1058.	1.2	5
145	Signatures of human intervention $\hat{a}\in$ or not? Downstream intensification of hydrological drought along a large Central Asian river: the individual roles of climate variability and land use change. Hydrology and Earth System Sciences, 2021, 25, 1943-1967.	1.9	19
146	Scientists' warning on extreme wildfire risks to water supply. Hydrological Processes, 2021, 35, e14086.	1.1	51

#	Article	IF	CITATIONS
147	Managed aquifer recharge implementation criteria to achieve water sustainability. Science of the Total Environment, 2021, 768, 144992.	3.9	69
148	Drought conditions appraisal using geoinformatics and multi-influencing factors. Environmental Monitoring and Assessment, 2021, 193, 365.	1.3	16
149	The interactions between hydrological drought evolution and precipitation-streamflow relationship. Journal of Hydrology, 2021, 597, 126210.	2.3	33
150	Climatic signatures in regulated flow regimes across the Central and Eastern United States. Journal of Hydrology: Regional Studies, 2021, 35, 100809.	1.0	3
151	Integration of multiple drought indices using a triple collocation approach. Stochastic Environmental Research and Risk Assessment, 2022, 36, 1177-1195.	1.9	5
152	Increasing heat risk in China's urban agglomerations. Environmental Research Letters, 2021, 16, 064073.	2.2	27
153	Losses and damages associated with slow-onset events: urban drought and water insecurity in Asia. Current Opinion in Environmental Sustainability, 2021, 50, 72-86.	3.1	32
154	Process and engineering aspects of carbon capture by ionic liquids. Journal of CO2 Utilization, 2021, 48, 101507.	3.3	14
155	Carbon Dioxide Conversion to Nanomaterials: Methods, Applications, and Challenges. Energy & Energy & Fuels, 2021, 35, 11820-11834.	2.5	19
156	Integrating Multiple Research Methods to Unravel the Complexity of Humanâ€Water Systems. AGU Advances, 2021, 2, e2021AV000473.	2.3	13
157	Development and Application of Water and Land Resources Degradation Index (WLDI). Earth, 2021, 2, 515-531.	0.9	7
158	Investigating seasonal drought severity-area-frequency (SAF) curve over Indian region: incorporating GCM and scenario uncertainties. Stochastic Environmental Research and Risk Assessment, 2022, 36, 1597-1614.	1.9	8
159	Demystifying Drought: Strategies to Enhance the Communication of a Complex Hazard. Bulletin of the American Meteorological Society, 2022, 103, E181-E197.	1.7	3
161	Incorporating Social System into Water-Food-Energy Nexus. Water Resources Management, 2021, 35, 4561-4580.	1.9	46
162	The development of a novel nonstationary meteorological and hydrological drought index using the climatic and anthropogenic indices as covariates. Science of the Total Environment, 2021, 786, 147385.	3.9	33
163	State of the Science in Meteorological/Hydrological Extremes. , 2021, , 19-58.		0
164	Application of Granger-causality to study the climate change impacts on depletion patterns of inland water bodies. Hydrological Sciences Journal, 2021, 66, 1767-1776.	1.2	5
165	Separating the effects of climate change and human activities on drought propagation via a natural and human-impacted catchment comparison method. Journal of Hydrology, 2021, 603, 126913.	2.3	38

#	ARTICLE	IF	CITATIONS
166	Drought assessment using the standardized precipitation index (SPI) in GIS environment in Greece. , $2022, , 619-633.$		7
167	Optimization of Process Conditions in Wastewater Degradation Process., 2021,, 381-392.		7
168	Graph-Guided Regularized Regression of Pacific Ocean Climate Variables to Increase Predictive Skill of Southwestern U.S. Winter Precipitation. Journal of Climate, 2021, 34, 737-754.	1.2	8
169	The changing water cycle: impacts of an evolving supply and demand landscape on urban water reliability in the Bay Area. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1240.	2.8	5
170	The Demography of Water Use: Why the Past Is a Poor Predictor of the Future. New Frontiers in Regional Science: Asian Perspectives, 2019, , 249-260.	0.1	1
171	Impacts of Drought on Social and Agricultural Systems. , 2017, , 27-50.		1
172	Drought Management: Current Challenges and Future Outlook., 2017,, 729-763.		1
174	Groundwater resources in Gangwon Province: Tasks and perspectives responding to droughts. Journal of the Geological Society of Korea, 2015, 51, 585.	0.3	4
175	Evaluation of hydro-meteorological drought indices for characterizing historical and future droughts and their impact on groundwater. Resources Environment and Information Engineering, 2020, 2, 71-83.	0.7	16
176	Asymmetric impact of groundwater use on groundwater droughts. Hydrology and Earth System Sciences, 2020, 24, 4853-4868.	1.9	25
179	The Farmers' Water Management Training in Order to Manage Droughts and Water Crisis in Iran. Biosciences, Biotechnology Research Asia, 2018, 15, 359-367.	0.2	0
180	An Assessment of Groundwater Grab Syndrome in Langata Sub County, Nairobi City-Kenya. Journal of Water Resource and Protection, 2019, 11, 651-673.	0.3	2
181	Lessons from Public Attitudes toward Water Management and Drought in South Korea and California, USA. Journal of Climate Change Research, 2020, 11, 297-309.	0.1	0
182	Green and blue water use for agricultural production. , 2020, , 78-97.		0
183	Meteorological drought analysis in response to climate change conditions, based on combined four-dimensional vine copulas and data mining (VC-DM). Journal of Hydrology, 2021, 603, 127135.	2.3	25
184	Reservoirs regulate the relationship between hydrological drought recovery water and drought characteristics. Journal of Hydrology, 2021, 603, 127127.	2.3	16
185	Representing a dense network of ponds and reservoirs in a semi-distributed dryland catchment model. Journal of Hydrology, 2021, 603, 127103.	2.3	23
186	An upstream–downstream/observation–model approach to quantify the human influence on drought. Hydrological Sciences Journal, 2021, 66, 226-238.	1.2	4

#	Article	IF	CITATIONS
187	An uncertainty-based framework for evaluating and improving the long-term resilience of lakes under anthropogenic droughts. Journal of Environmental Management, 2022, 301, 113900.	3.8	12
188	Drought propagation modification after the construction of the Three Gorges Dam in the Yangtze River Basin. Journal of Hydrology, 2021, 603, 127138.	2.3	39
189	Who, What, Where, When, and How? A Typology of Drought Decision-Making on Public and Tribal Lands in the North-Central United States. Weather, Climate, and Society, 2020, 12, 611-627.	0.5	2
190	Desiccation-induced curling of mud layers: Field observations and experimental insights. Engineering Geology, 2022, 296, 106458.	2.9	4
191	Multi-type assessment of global droughts and teleconnections. Weather and Climate Extremes, 2021, 34, 100402.	1.6	8
192	A Stateâ€ofâ€theâ€Art Review of Optimal Reservoir Control for Managing Conflicting Demands in a Changing World. Water Resources Research, 2021, 57, e2021WR029927.	1.7	49
193	Desiccation of a saline lake as a lock-in phenomenon: A socio-hydrological perspective. Science of the Total Environment, 2022, 811, 152347.	3.9	11
194	A novel information changing rate and conditional mutual information-based input feature selection method for artificial intelligence drought prediction models. Climate Dynamics, 2022, 58, 3405-3425.	1.7	9
195	Drought and society: Scientific progress, blind spots, and future prospects. Wiley Interdisciplinary Reviews: Climate Change, 2022, 13, .	3.6	20
196	Effect of Climate Change and Anthropogenic Activities on Streamflow Indicators in a Tropical River Basin in Southern China. Water (Switzerland), 2022, 14, 304.	1.2	3
197	Systematic Assessment of the Development and Recovery Characteristics of Hydrological Drought in a Semi-Arid Area. SSRN Electronic Journal, 0, , .	0.4	0
198	Evaluation of the impacts of human activities on propagation from meteorological drought to hydrological drought in the Weihe River Basin, China. Science of the Total Environment, 2022, 819, 153030.	3.9	58
199	Climate Change Impacts on Agricultural Water Availability in the Middle Rio Grande Basin. Journal of the American Water Resources Association, 0, , .	1.0	3
200	Spatiotemporal variability of drought/flood and its teleconnection with large-scale climate indices based on standard precipitation index: a case study of Taihu Basin, China. Environmental Science and Pollution Research, 2022, 29, 50117-50134.	2.7	8
201	Impact of Interâ€Utility Agreements on Cooperative Regional Water Infrastructure Investment and Management Pathways. Water Resources Research, 2022, 58, .	1.7	7
203	Spatial Drought Patterns in East Africa. , 2022, , 47-64.		О
204	Influence of forest landscape on birds associated with lowland water bodies. Forest Ecology and Management, 2022, 513, 120199.	1.4	7
205	Impact of the false intensification and recovery on the hydrological drought internal propagation. Weather and Climate Extremes, 2022, 36, 100430.	1.6	1

#	Article	IF	CITATIONS
206	Comparison of Relative and Absolute Heatwaves in Eastern China: Observations, Simulations and Future Projections. Atmosphere, 2022, 13, 649.	1.0	3
212	Investigating the propagation of droughts under the influence of large-scale climate indices in India. Journal of Hydrology, 2022, 610, 127900.	2.3	23
213	Systematic assessment of the development and recovery characteristics of hydrological drought in a semi-arid area. Science of the Total Environment, 2022, 836, 155472.	3.9	11
214	Lagged influence of ENSO regimes on droughts over the Poyang Lake basin, China. Atmospheric Research, 2022, 275, 106218.	1.8	6
215	Hotspots of predictability: Identifying regions of high precipitation predictability at seasonal timescales from limited time series observations. Water Resources Research, 0, , .	1.7	4
216	Indices-based assessment of vulnerability to agricultural drought in the tropical semi-arid ecosystem using time-series satellite and meteorological datasets. Arabian Journal of Geosciences, 2022, 15, .	0.6	1
217	Satellite-Based Assessment of Meteorological and Agricultural Drought in Mainland Southeast Asia. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 6180-6189.	2.3	4
218	Spatiotemporal trend characteristics of rainfall and drought jeopardy over Bundelkhand Region, India. Arabian Journal of Geosciences, 2022, 15, .	0.6	6
219	The timing of unprecedented hydrological drought under climate change. Nature Communications, 2022, 13, .	5.8	77
220	Urbanization-induced drought modification: Example over the Yangtze River Basin, China. Urban Climate, 2022, 44, 101231.	2.4	13
221	A Two-Dimensional Moisture Diffusion Continuous Model for Simulating Dry Shrinkage and Cracking of Soil. International Journal of Geomechanics, 2022, 22, .	1.3	18
222	Changing Trends in Drought Patterns over the Northeastern United States Using Multiple Large Ensemble Datasets. Journal of Climate, 2022, 35, 7413-7433.	1.2	3
223	Constructing high-resolution groundwater drought at spatio-temporal scale using GRACE satellite data based on machine learning in the Indus Basin. Journal of Hydrology, 2022, 612, 128295.	2.3	30
224	Regional differences in the performance of drought mitigation measures in 12 major wheat-growing regions of the world. Agricultural Water Management, 2022, 273, 107888.	2.4	4
225	Improving the Interpretation of Data-Driven Water Consumption Models via the Use of Social Norms. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	1.3	1
226	Evaluation of farmers' participatory behavior and compensation policy for agricultural water-saving. Frontiers in Water, 0, 4, .	1.0	1
227	All dried up: The materiality of drought in Ladismith, South Africa. Environment and Planning E, Nature and Space, 0, , 251484862211266.	1.6	3
228	Rural transformation and differential vulnerability: Exploring adaptation strategies to water scarcity in the Aculeo Lake basin (Chile). Frontiers in Environmental Science, 0, 10, .	1.5	2

#	Article	IF	CITATIONS
229	Developing a Bi-level programming model for water allocation based on Nerlove's supply response theory and water market. Environment, Development and Sustainability, 2023, 25, 5663-5689.	2.7	0
230	Assessing the Drought Variability in Northeast China over Multiple Temporal and Spatial Scales. Atmosphere, 2022, 13, 1506.	1.0	4
231	A new concept of drought feeling against the meteorological drought. Scientific Reports, 2022, 12, .	1.6	4
232	Remote Sensing Applications in Drought Monitoring and Prediction. Disaster Resilience and Green Growth, 2022, , 59-85.	0.2	0
233	Impact of Climate Variability on Streamflow Using Swat Model on Kharun River Basin. Lecture Notes in Civil Engineering, 2023, , 197-211.	0.3	0
234	Drought and coyotes mediate mesopredator response to human disturbance. Ecosphere, 2022, 13, .	1.0	1
235	Propagation Characteristics of Hydrological Drought Based on Variable and Fixed Threshold Methods in Snowmelt and Rainfall Driven Catchments. Water (Switzerland), 2022, 14, 3219.	1.2	2
236	Transcriptional regulation of drought stress stimulus: challenges and potential for crop improvement., 2023,, 313-336.		0
237	Leveraging Unsupervised Learning to Develop a Typology of Residential Water Users' Attitudes Towards Conservation. Water Resources Management, 2023, 37, 37-53.	1.9	3
239	Wetland characteristics affect abundance and diversity of wintering birds: A case study in Southâ€Western Iran. Ecology and Evolution, 2022, 12, .	0.8	0
240	Interrelations of vegetation growth and water scarcity in Iran revealed by satellite time series. Scientific Reports, 2022, 12, .	1.6	3
241	Overcoming data barriers in spatial agriâ€food systems analysis: A flexible imputation framework. Journal of Agricultural Economics, 2023, 74, 686-701.	1.6	0
242	Spatio-Temporal Changes and Influencing Factors of Meteorological Dry-Wet in Northern China during 1960–2019. Sustainability, 2023, 15, 1499.	1.6	1
243	Urban water crises driven by elites' unsustainable consumption. Nature Sustainability, 2023, 6, 929-940.	11.5	21
244	Drought hazards and stakeholder perception: Unraveling the interlinkages between drought severity, perceived impacts, preparedness, and management. Ambio, 0, , .	2.8	0
245	Measurement of water resources carrying capacity in Gugang Town of Central China based on human-water-agriculture framework. Science of the Total Environment, 2023, 881, 163459.	3.9	2
246	Future Changes in Climate and Hydroclimate Extremes in East Africa. Earth's Future, 2023, 11, .	2.4	15
247	Spatiotemporal monitoring of droughts in Iran using remote-sensing indices. Natural Hazards, 2023, 117, 1-24.	1.6	0

CITATION REPORT

#	Article	IF	CITATIONS
248	Date Fruit Production and Consumption: A Perspective on Global Trends and Drivers from a Multidimensional Footprint Assessment. Sustainability, 2023, 15, 4358.	1.6	2
249	Adapting wastewater management systems in California for water conservation and climate change. Sustainable and Resilient Infrastructure, 2023, 8, 437-450.	1.7	1
250	Environmental disasters. , 2024, , 173-181.		0
251	Wetland-based solutions against extreme flood and severe drought: Efficiency evaluation of risk mitigation. Climate Risk Management, 2023, 40, 100505.	1.6	4
252	Multi-scale planning model for robust urban drought response. Environmental Research Letters, 2023, 18, 054014.	2.2	5
259	Toward impact-based monitoring of drought and its cascading hazards. Nature Reviews Earth & Environment, 2023, 4, 582-595.	12.2	3