Concomitant Retrograde Coronary Venous Infusion of I Enhances Engraftment and Differentiation of Bone Mar Cardiac Repair after Myocardial Infarction

Theranostics 5, 995-1006 DOI: 10.7150/thno.11607

Citation Report

#	Article	IF	CITATIONS
1	Deficiency of <i>ATP6V1H</i> Causes Bone Loss by Inhibiting Bone Resorption and Bone Formation through the TGF-β1 Pathway. Theranostics, 2016, 6, 2183-2195.	4.6	43
2	Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6Âyears (2010–2015). Stem Cell Research and Therapy, 2016, 7, 82.	2.4	163
3	Two complementary strategies to improve cell engraftment in mesenchymal stem cell-based therapy: Increasing transplanted cell resistance and increasing tissue receptivity. Cell Adhesion and Migration, 2017, 11, 110-119.	1.1	44
4	<scp>TNF</scp> â€î± promotes survival and migration of <scp>MSC</scp> s under oxidative stress <i>via </i> <scp>NF</scp> â€PB pathway to attenuate intimal hyperplasia in vein grafts. Journal of Cellular and Molecular Medicine, 2017, 21, 2077-2091.	1.6	32
5	A brief review: the therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction. Stem Cell Research and Therapy, 2017, 8, 242.	2.4	135
6	Progress of Stem Cell Transplantation for Treating Myocardial Infarction. Current Stem Cell Research and Therapy, 2017, 12, 624-636.	0.6	8
7	Retrograde Coronary Venous Infusion as a Delivery Strategy in Regenerative Cardiac Therapy: an Overview of Preclinical and Clinical Data. Journal of Cardiovascular Translational Research, 2018, 11, 173-181.	1.1	18
8	Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: new regulators and its implications. Stem Cell Research and Therapy, 2018, 9, 44.	2.4	74
9	Effects of lentiviral transfection containing bFGF gene on the biological characteristics of rabbit BMSCs. Journal of Cellular Biochemistry, 2018, 119, 8389-8397.	1.2	5
10	Mesenchymal Stem Cell Migration and Tissue Repair. Cells, 2019, 8, 784.	1.8	526
11	Asprosin improves the survival of mesenchymal stromal cells in myocardial infarction by inhibiting apoptosis via the activated ERK1/2-SOD2 pathway. Life Sciences, 2019, 231, 116554.	2.0	48
12	The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death and Disease, 2020, 11, 349.	2.7	149
13	Stem Cells in Veterinary Medicine—Current State and Treatment Options. Frontiers in Veterinary Science, 2020, 7, 278.	0.9	64
14	The Effect of Cardiogenic Factors on Cardiac Mesenchymal Cell Anti-Fibrogenic Paracrine Signaling and Therapeutic Performance. Theranostics, 2020, 10, 1514-1530.	4.6	6
15	Cardiac Differentiation of Mesenchymal Stem Cells: Impact of Biological and Chemical Inducers. Stem Cell Reviews and Reports, 2021, 17, 1343-1361.	1.7	9
16	Challenges and Limitations of Strategies to Promote Therapeutic Potential of Human Mesenchymal Stem Cells for Cell-Based Cardiac Repair. Korean Circulation Journal, 2021, 51, 97.	0.7	17
17	Challenges of stem cell therapies in companion animal practice. Journal of Veterinary Science, 2020, 21, e42.	0.5	9
18	Efficacy of Stem Cell Therapy in Large Animal Models of Ischemic Cardiomyopathies: A Systematic Review and Meta-Analysis. Animals, 2022, 12, 749.	1.0	9

#	Article	IF	CITATIONS
19	Mesenchymal Stem Cells for Cardiac Repair. , 2022, , 1-53.		20
20	Mesenchymal Stem Cells Therapeutic Applications in Cardiovascular Disorders. , 2022, , 213-245.		0
21	Intervention effects of traditional Chinese medicine on stem cell therapy of myocardial infarction. Frontiers in Pharmacology, 0, 13, .	1.6	1
22	Mesenchymal Stem Cells for Cardiac Repair. , 2022, , 269-321.		1
23	Regenerative medicine applications: An overview of clinical trials. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	8
24	Fibrin-Enriched Cardiac Extracellular Matrix Hydrogel Promotes <i>In Vitro</i> Angiogenesis. ACS Biomaterials Science and Engineering, 2023, 9, 877-888.	2.6	2
27	Cardiovascular Stem Cell Applications in Experimental Animal Models. , 2023, , 465-490.		0
30	Hypoxia and interleukin-1-primed mesenchymal stem/stromal cells as novel therapy for stroke. Human Cell, 2024, 37, 154-166.	1.2	1

CITATION REPORT