Penetapan Kadar Fenolik dan Flavonoid Total Ekstrak M (Etlingera elatior (Jack) R.M.SM)

Pharmaceutical Sciences and Research

2, 1-10

DOI: 10.7454/psr.v2i1.3481

Citation Report

#	Article	IF	CITATIONS
1	Using carbohydrate-based biomaterials as scaffolds to control human stem cell fate. Organic and Biomolecular Chemistry, 2016, 14, 8648-8658.	1.5	13
2	Chitosanâ€based hydrogels: recent design concepts to tailor properties and functions. Polymer International, 2017, 66, 981-998.	1.6	86
3	Emerging Technologies of Hydrogels in Bioactive Compounds Delivery., 2017,, 227-263.		0
4	Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings. Biomacromolecules, 2017, 18, 1983-1992.	2.6	61
5	Cellularizing hydrogel-based scaffolds to repair bone tissue: How to create a physiologically relevant micro-environment?. Journal of Tissue Engineering, 2017, 8, 204173141771207.	2.3	90
6	Preparation and evaluation of visible-light cured glycol chitosan hydrogel dressing containing dual growth factors for accelerated wound healing. Journal of Industrial and Engineering Chemistry, 2017, 53, 360-370.	2.9	71
7	Chitosan–Sodium Tetradecyl Sulfate Hydrogel: Characterization and Preclinical Evaluation of a Novel Sclerosing Embolizing Agent for the Treatment of Endoleaks. CardioVascular and Interventional Radiology, 2017, 40, 576-584.	0.9	16
8	Oxaliplatinâ€loaded crosslinked polymeric network of chondroitin sulfateâ€ <i>co</i> â€poly(methacrylic) Tj ETQc	1 1 0.78 1.3	4314 rgBT / 🕠 45
9	Chitosan delaying human fibroblast senescence through downregulation of TGF- \hat{l}^2 signaling pathway. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-12.	1.9	9
10	Effects of an injectable functionalized self-assembling nanopeptide hydrogel on angiogenesis and neurogenesis for regeneration of the central nervous system. Nanoscale, 2017, 9, 16281-16292.	2.8	66
12	Growth of MCF-7 breast cancer cells and efficacy of anti-angiogenic agents in a hydroxyethyl chitosan/glycidyl methacrylate hydrogel. Cancer Cell International, 2017, 17, 55.	1.8	17
13	Biomaterials-Based Vaccination Strategies for the Induction of CD8 ⁺ T Cell Responses. ACS Biomaterials Science and Engineering, 2017, 3, 126-143.	2.6	20
14	Controlled local drug delivery strategies from chitosan hydrogels for wound healing. Expert Opinion on Drug Delivery, 2017, 14, 897-908.	2.4	56
15	Bioinks for 3D bioprinting: an overview. Biomaterials Science, 2018, 6, 915-946.	2.6	828
16	Effective removal of a cobaltâ€tetrasulfonated phthalocyanine dye from an aqueous solution with a novel modified chitosanâ€based superabsorbent hydrogel. Journal of Applied Polymer Science, 2018, 135, 46167.	1.3	16
17	Drug delivery systems based on biocompatible imino-chitosan hydrogels for local anticancer therapy. Drug Delivery, 2018, 25, 1080-1090.	2.5	49
18	Design, Synthesis, Characterization, Swelling and in Vitro Drug Release Behavior of Composite Hydrogel Beads Based on Methotrexate and Chitosan Incorporating Antipyrine Moiety. Polymer-Plastics Technology and Engineering, 2018, 57, 1906-1914.	1.9	19
19	Selfâ€assembling chitosan hydrogel: A drugâ€delivery device enabling the sustained release of proteins. Journal of Applied Polymer Science, 2018, 135, 45638.	1.3	33

#	Article	IF	CITATIONS
20	Chemical Functionalization of Polysaccharidesâ€"Towards Biocompatible Hydrogels for Biomedical Applications. Chemistry - A European Journal, 2018, 24, 1231-1240.	1.7	85
21	A review on environmental applications of chitosan biopolymeric hydrogel based composites. Journal of Macromolecular Science - Pure and Applied Chemistry, 2018, 55, 747-763.	1.2	37
22	Wearable Bioelectronics: Enzyme-Based Body-Worn Electronic Devices. Accounts of Chemical Research, 2018, 51, 2820-2828.	7.6	214
23	Chitosan for Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1077, 475-485.	0.8	51
24	Hydrogels in adipose tissue engineeringâ€"Potential application in postâ€mastectomy breast regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 2234-2247.	1.3	27
25	Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Progress in Biomaterials, 2018, 7, 153-174.	1.8	339
26	Harnessing the Noncovalent Interactions of DNA Backbone with 2D Silicate Nanodisks To Fabricate Injectable Therapeutic Hydrogels. ACS Nano, 2018, 12, 9866-9880.	7.3	96
27	Gelatin-Based Hydrogels. Polymers and Polymeric Composites, 2018, , 1-41.	0.6	3
28	Chitosan-Based Polyelectrolyte Complex Hydrogels for Biomedical Applications. Polymers and Polymeric Composites, 2018, , 1-31.	0.6	0
29	Chitosan-Based Hydrogels: Preparation, Properties, and Applications. Polymers and Polymeric Composites, 2018, , 1-29.	0.6	1
30	Techno-Economic Analysis of Chitosan-Based Hydrogels Production. Polymers and Polymeric Composites, 2018, , 1-22.	0.6	2
31	Compressive and swelling behavior of cuttlebone derived hydroxyapatite loaded PVA hydrogel implants for articular cartilage. AIP Conference Proceedings, 2018, , .	0.3	9
32	Semi-IPN- and IPN-Based Hydrogels. Advances in Experimental Medicine and Biology, 2018, 1059, 155-188.	0.8	30
33	Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers. Journal of Agricultural and Food Chemistry, 2018, 66, 6940-6967.	2.4	208
34	Polymeric, injectable, intravitreal hydrogel devices for posterior segment applications and interventions. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1074-1081.	1.9	13
35	Antibiofilm Potential of Silver Sulfadiazine-Loaded Nanoparticle Formulations: A Study on the Effect of DNase-I on Microbial Biofilm and Wound Healing Activity. Molecular Pharmaceutics, 2019, 16, 3916-3925.	2.3	72
36	Dye removal by biosorption using cross-linked chitosan-based hydrogels. Environmental Chemistry Letters, 2019, 17, 1645-1666.	8.3	94
37	Chitosan-Based Biocomposite Scaffolds and Hydrogels for Bone Tissue Regeneration. Springer Series in Biomaterials Science and Engineering, 2019, , 413-442.	0.7	4

#	Article	IF	CITATIONS
38	Oxime Cross-Linked Alginate Hydrogels with Tunable Stress Relaxation. Biomacromolecules, 2019, 20, 4419-4429.	2.6	42
40	Impact of Counter lons of Cationic Monomers on the Production and Characteristics of Chitosan-Based Hydrogel. ACS Omega, 2019, 4, 15087-15096.	1.6	11
41	Advances in crosslinking strategies of biomedical hydrogels. Biomaterials Science, 2019, 7, 843-855.	2.6	516
42	Hybrid crossâ€linked hydrogels as a technology platform for <i>in</i> vitrorelease of cephradine. Polymers for Advanced Technologies, 2019, 30, 2414-2424.	1.6	59
43	Polysaccharide-based Scaffolds for Bone Marrow Regeneration: Recent Work and Commercial Utility (Patent). Current Smart Materials, 2019, 4, 29-35.	0.5	6
44	Fundamentals and Applications of Chitosan. Sustainable Agriculture Reviews, 2019, , 49-123.	0.6	60
45	Cross-Linked Chitosan-Based Hydrogels for Dye Removal. Sustainable Agriculture Reviews, 2019, , 381-425.	0.6	12
46	Synthesis and characterization of swelling properties superabsorbent Hydrogel Carboxymethylcellulose-g-Poly (Acrylic Acid)/Natrium Alginate cross-linked by gamma-ray irradiation technique. Journal of Physics: Conference Series, 2019, 1171, 012011.	0.3	3
47	Polymeric Lids for Microcontainers for Oral Protein Delivery. Macromolecular Bioscience, 2019, 19, e1900004.	2.1	17
48	Controlling methacryloyl substitution of chondroitin sulfate: injectable hydrogels with tunable long-term drug release profiles. Journal of Materials Chemistry B, 2019, 7, 2151-2161.	2.9	45
49	Comparative antioxidant activity of Brucea javanica (L) Merr seed extract derived from maceration and soxhletation method. AIP Conference Proceedings, 2019, , .	0.3	1
50	Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Therapeutic Delivery, 2019, 10, 527-550.	1.2	40
51	Calcium sustained release, pH changes and cell viability induced by chitosan-based pastes for apexification. Odontology / the Society of the Nippon Dental University, 2019, 107, 223-230.	0.9	6
52	Gelatin-Based Hydrogels. Polymers and Polymeric Composites, 2019, , 1601-1641.	0.6	12
53	Chitosan-Based Hydrogels: Preparation, Properties, and Applications. Polymers and Polymeric Composites, 2019, , 1665-1693.	0.6	13
54	Chitosan-Based Polyelectrolyte Complex Hydrogels for Biomedical Applications. Polymers and Polymeric Composites, 2019, , 1695-1725.	0.6	4
55	Techno–Economic Analysis of Chitosan-Based Hydrogels Production. Polymers and Polymeric Composites, 2019, , 1769-1790.	0.6	2
56	Cell and tissue responses at the interface with a chitosan hydrogel intended for vascular applications: <i>in vitro</i> and <i>in vivo</i> exploration. Biomedical Materials (Bristol), 2019, 14, 025009.	1.7	9

#	ARTICLE	IF	CITATIONS
57	SEMI-empirical PM6 method applied in the analysis of thermodynamics properties and molecular orbitals at different temperatures of adsorption drugs on chitosan hydrogels for type 2 diabetes. Polymer Bulletin, 2019, 76, 3423-3435.	1.7	1
58	Synthesis, characterization, and in vitro cytotoxicity of chitosan hydrogels containing nanogold. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 175-182.	1.8	3
59	Synthesis and characterizations of biocompatible polymers and carbon nanotubes-based hybrids for biomedical applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 786-797.	1.8	5
60	Polyamide fabric coated with a dihydroxyacetone-loaded chitosan hydrogel for a cosmeto-textile application. Journal of Industrial Textiles, 2020, 50, 526-542.	1.1	3
61	Chitosan-g-oligo(L,L-lactide) copolymer hydrogel for nervous tissue regeneration in glutamate excitotoxicity: <i>in vitro</i> feasibility evaluation. Biomedical Materials (Bristol), 2020, 15, 015011.	1.7	18
62	Hydrogels from xylan/chitosan complexes for the controlled release of diclofenac sodium. Cellulose, 2020, 27, 1465-1481.	2.4	18
63	Improving sciatic nerve regeneration by using alginate/chitosan hydrogel containing berberine. Drug Delivery and Translational Research, 2021, 11, 1983-1993.	3.0	21
64	Edible hydrocolloids as sustainable substitute for non-biodegradable materials. Critical Reviews in Food Science and Nutrition, 2022, 62, 693-725.	5.4	23
65	Evaluating effect of alginate/chitosan hydrogel containing 4-Methylcatechol on peripheral nerve regeneration in rat model. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 1248-1257.	1.8	13
66	Fluorinated Chitosan Microgels to Overcome Internal Oxygen Transport Deficiencies in Microtissue Culture Systems. Advanced Biology, 2020, 4, e1900250.	3.0	6
67	Novel enzymatically crosslinked chitosan hydrogels with free-radical-scavenging property and promoted cellular behaviors under hyperglycemia. Progress in Natural Science: Materials International, 2020, 30, 661-668.	1.8	25
68	A theoretical mathematical model for assessing diclofenac release from chitosan-based formulations. Drug Delivery, 2020, 27, 1125-1133.	2.5	19
69	Structure and Rheology of Hydrogels: Applications in Drug Delivery. , 2020, , 75-99.		2
70	Cultured Meat: Meat Industry Hand in Hand with Biomedical Production Methods. Food Engineering Reviews, 2020, 12, 498-519.	3.1	13
72	Development of polymeric nanoparticle gel prepared with the combination of ionic pre-gelation and polyelectrolyte complexation as a novel drug delivery of timolol maleate. Drug Development and Industrial Pharmacy, 2020, 46, 1844-1852.	0.9	7
73	Reinforcing antibacterial hydrogels through electrospun nanofiber layers for soft tissue engineering. Journal of Polymer Research, 2020, 27, 1.	1.2	2
74	Dexamethasone- loaded polymeric porous sponge as a direct pulp capping agent. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1689-1705.	1.9	7
75	Recent Advances in Formulating and Processing Biomaterial Inks for Vat Polymerizationâ€Based 3D Printing. Advanced Healthcare Materials, 2020, 9, e2000156.	3.9	128

#	ARTICLE	IF	CITATIONS
76	Synthesis of Nano-Polymer Supported on Nano-Hydrogel Chitosan Base and Its Application for DOX Delivery. Journal of Polymers and the Environment, 2020, 28, 2457-2468.	2.4	6
77	Fabrication and Application of Levan–PVA Hydrogel for Effective Influenza Virus Capture. ACS Applied Materials & Capture. ACS Applied & Capture. ACS Applied Materials & Capture. ACS Applied	4.0	4
78	Preliminary investigation on a new natural based poly(gammaâ€glutamic acid)/Chitosan bioink. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2718-2732.	1.6	23
79	Effect of crosslinking agents on drug distribution in chitosan hydrogel for targeted drug delivery to treat cancer. Journal of Polymer Research, 2020, 27, 1.	1.2	13
80	Biomedical Applications of Interpenetrating Polymer Network Gels. , 2020, , 289-312.		1
81	Chitosan versus plant growth regulators: a comparative analysis of their effects on in vitro development of Serapias vomeracea (Burm.f.) Briq Plant Cell, Tissue and Organ Culture, 2020, 141, 327-338.	1.2	24
82	Tuning Barrier Properties of Biological Hydrogels. ACS Applied Bio Materials, 2020, 3, 2875-2890.	2.3	13
83	Formation of three-dimensional polymer structures through radical and ionic reactions of peroxychitosan. Studies in Natural Products Chemistry, 2020, , 365-390.	0.8	7
84	Microcontainer Delivery of Antibiotic Improves Treatment of <i>Pseudomonas aeruginosa</i> Biofilms. Advanced Healthcare Materials, 2020, 9, e1901779.	3.9	17
85	The modifying effect of supramolecular gel fibres on the diffusion of paracetamol and ibuprofen sodium on the picosecond timescale. Physical Chemistry Chemical Physics, 2020, 22, 10838-10844.	1.3	1
86	Effect of polymer and ion concentration on mechanical and drug release behavior of gellan hydrogels using factorial design. Journal of Polymer Science, 2020, 58, 1365-1379.	2.0	10
87	Synthesis of biopolymer coated functionalized superparamagnetic iron oxide nanoparticles for the pH-sensitive delivery of anti-cancer drugs epirubicin and temozolomide. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 1039-1052.	1.8	10
88	Biomaterial strategies to replicate gynecological tissue. Biomaterials Science, 2021, 9, 1117-1134.	2.6	14
89	Preparation and optimization of silibinin-loaded chitosan–fucoidan hydrogel: an <i>inÂvivo</i> evaluation of skin protection against UVB. Pharmaceutical Development and Technology, 2021, 26, 209-219.	1.1	10
91	Powder preparation of sugar apple (Annona squamosa L.) and analyzing its potencies as anti-gout and anti-COVID-19. AIP Conference Proceedings, 2021, , .	0.3	2
92	New horizons for carbon dots: quantum nano-photoinitiating catalysts for cationic photopolymerization and three-dimensional (3D) printing under visible light. Polymer Chemistry, 2021, 12, 3661-3676.	1.9	19
93	Thermodynamics, Kinetics and Desorption Studies of Heavy Metal Ions by Grafted Cross-Linked Chitosan Beads Composites. Engineering Materials, 2021, , 25-45.	0.3	0
94	Semi-interpenetrating polymeric networks based on poly(dimethylsiloxane)-chitosan-poly(vinyl) Tj ETQq1 1 0.78- Science, 2021, 56, 1-20.	4314 rgBT 1.7	/Overlock 10 5

#	Article	IF	CITATIONS
95	UJI TOKSISITAS EKSTRAK ETANOL DAUN JAMBU BIJI AUSTRALIA (Psidium guajava L) DENGAN METODE BSLT (Brine Shrimp Lethality Test). JFL Jurnal Farmasi Lampung, 2021, 9, 10-17.	0.0	0
96	Spectrophotometric Determination of Total Flavonoid Content in Biancaea Sappan (Caesalpinia sappan) Tj ETQq1	1.0.78431	l 4 rgBT /Ove
97	Optimization and evaluation of ciprofloxacin-loaded collagen/chitosan scaffolds for skin tissue engineering. 3 Biotech, $2021, 11, 160$.	1.1	12
98	Hydrogels as Emerging Materials for Cornea Wound Healing. Small, 2021, 17, e2006335.	5.2	52
99	Penetapan Kandungan Total Fenolik-Flavonoid pada Fraksi Etil Asetat Kulit Batang Kasturi (Mangifera) Tj ETQq0 0 0	ეკgBT /Ov	erlock 10 Tf
100	Comparison of phenolic, flavonoid, and tannin contents from ethanol extract of Kratom stem (Mitragyna speciosa Korth.) and senggani flower (Melastoma malabathrium L.). Journal of Physics: Conference Series, 2021, 1869, 012002.	0.3	1
101	Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chemical Reviews, 2021, 121, 4309-4372.	23.0	472
102	GC–MS and FTIR Analysis of Chemical Compounds in Ocimum Gratissimum Plant. Biophysics (Russian) Tj ETQq1	1.0.7843	 14 rgBT /○v 13
103	Recent Advances of DNA Hydrogels in Biomedical Applications. Journal of Analysis and Testing, 2021, 5, 155-164.	2.5	9
104	Drugâ€Eluting Medical Textiles: From Fiber Production and Textile Fabrication to Drug Loading and Delivery. Macromolecular Bioscience, 2021, 21, e2100021.	2.1	25
105	Antioxidant activity of methanolic extract of Eucheuma spinosum extracted using a microwave. IOP Conference Series: Earth and Environmental Science, 2021, 763, 012028.	0.2	1
106	Longâ€√erm Controlled Release of Simvastatin from Photoprinted Tripleâ€Networked Hydrogels Composed of Modified Chitosan and PLA–PEG Micelles. Macromolecular Bioscience, 2021, 21, e2100123.	2.1	11
107	Current Status of Mucoadhesive Gel Systems for Buccal Drug Delivery. Current Pharmaceutical Design, 2021, 27, 2015-2025.	0.9	10
108	Enhanced Eradication of Mucinâ€Embedded Bacterial Biofilm by Locally Delivered Antibiotics in Functionalized Microcontainers. Macromolecular Bioscience, 2021, 21, 2100150.	2.1	3
109	Recent Advancement of Biopolymers and Their Potential Biomedical Applications. Journal of Polymers and the Environment, 2022, 30, 51-74.	2.4	53
110	Toward Stimuli-Responsive Soft Robots with 3D Printed Self-Healing Konjac Glucomannan Gels. 3D Printing and Additive Manufacturing, 2022, 9, 425-434.	1.4	6
111	Synthesis of Amphotericin B Conjugated Chitosan Nanomaterial From Fish Scales and Evaluation of its Antifungal Activity. Journal of Cluster Science, 2022, 33, 2573-2587.	1.7	1
112	A COMPARATIVE PHARMACOGNOSTIC STUDY OF THE TWO Orthoshipon aristatus (BLUME) MIQ. VARIETIES. Journal of Experimental Biology and Agricultural Sciences, 2021, 9, S228-S233.	0.1	1

#	Article	IF	Citations
113	In vitro efficacy of polymer coated miltefosine drug against leishmania tropica. Journal of Parasitic Diseases, 2022, 46, 366-376.	0.4	5
114	Chitosan Nanoparticles: An Overview on Preparation, Characterization and Biomedical Applications. Environmental and Microbial Biotechnology, 2021, , 393-427.	0.4	1
115	Structural Applications of Graphene Based Biopolymer Nanocomposites. Composites Science and Technology, 2021, , 61-81.	0.4	2
116	Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels. Polymer Chemistry, 2020, 11, 1410-1423.	1.9	157
117	Hydrogels as artificial matrices for cell seeding in microfluidic devices. RSC Advances, 2020, 10, 43682-43703.	1.7	62
118	Natural-based Hydrogels: A Journey from Simple to Smart Networks for Medical Examination. Current Medicinal Chemistry, 2020, 27, 2704-2733.	1.2	13
119	Chitosan-Based Hydrogels for Tissue Engineering. , 2021, , 519-571.		2
120	Photo-crosslinkable chitosan and gelatin-based nanohybrid bioinks for extrusion-based 3D-bioprinting. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 1-12.	1.8	9
121	Genipin-crosslinked chitosan/alginate/alumina nanocomposite gels for 3D bioprinting. Bioprocess and Biosystems Engineering, 2022, 45, 171-185.	1.7	10
122	Carbohydrate based Hydrogels for Controlled Release of Cancer Therapeutics. , 2017, , 113-153.		0
123	Carbohydrate based Hydrogels for Controlled Release of Cancer Therapeutics., 2017,, 113-153.		0
124	Total phenolic content and antioxidant activity of ginger extract and SNEDDS with eel fish bone oil (Anguilla spp.). Nusantara Bioscience, 2018, 10, 164-169.	0.2	6
125	Biocompatible and Biodegradable Chitosan Composites in Wound Healing Application: In Situ Novel Photo-Induced Skin Regeneration Approach. , 2019, , 143-183.		1
126	Analysis of Flavonoid Levels in Extract of Gambas Fruit (Luffa acutangula L) Originating from the Village of Posona District Parigi Moutong. Jurnal Akademika Kimia, 2020, 9, 102-106.	0.1	1
127	The Analysis of Total Flavonoid Levels In Young Leaves and Old Soursop Leaves (Annona muricata L.) Using UV-Vis Sepctrofotometry Methods. Journal of Applied Science Engineering Technology and Education, 2020, 2, 11-17.	0.2	2
128	Water Adsorption Thermodynamical Analysis and Mechanical Characterization of Chitosan and Polyvinyl Alcohol-Based Films. Journal of Polymers and the Environment, 2022, 30, 1880.	2.4	4
129	Amniotic stromal stem cellâ€loaded hydrogel repairs cardiac tissue in infarcted rat hearts via paracrine mediators. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 110-127.	1.3	6
130	Synthesis and Applications of Hydrogels in Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 1431-1446.	0.9	4

#	Article	IF	Citations
131	Electrospun Porous Biobased Polymer Mats for Biomedical Applications. Engineering Materials, 2022, , 539-586.	0.3	3
132	A mini-review of bio-scrubber derived from bacterial cellulose impregnated by flavonoid of moringa leaves. IOP Conference Series: Earth and Environmental Science, 2022, 963, 012022.	0.2	5
134	A rheological study of cationic micro- and nanofibrillated cellulose: quaternization reaction optimization and fibril characteristic effects. Cellulose, 2022, 29, 1435-1450.	2.4	4
135	Azelaic acid loaded chitosan and HPMC based hydrogels for treatment of acne: formulation, characterization, <i>inÂvitro</i> > <i>ex vivo</i> > evaluation. Pharmaceutical Development and Technology, 2022, 27, 268-281.	1.1	9
136	A Review: Uses of Chitosan in Pharmaceutical Forms. Reviews of Physiology, Biochemistry and Pharmacology, 2021, , 121-157.	0.9	5
137	Investigation of the 3D Printability of Covalently Cross-Linked Polypeptide-Based Hydrogels. ACS Omega, 2022, 7, 7556-7571.	1.6	3
138	Peripheral nerve regeneration by thiolated chitosan hydrogel containing Taurine: In vitro and in vivo study. Journal of Bioactive and Compatible Polymers, 2022, 37, 85-97.	0.8	4
139	Hydrogels Responsive Towards Important Biological-Based Stimuli. Polymer Science - Series B, 0, , .	0.3	1
140	Polymeric Membranes Nanocomposites as Effective Strategy for Dye Removal. Sustainable Textiles, 2022, , 23-52.	0.4	2
141	EKSPLORASI POTENSI EKSTRAK CAIR DAUN KECOMBRANG YANG MENGANDUNG ANTIOKSIDAN SEBAGAI PENETRALISIR RADIKAL BEBAS DALAM DARAH PETUGAS SPBU. , 0, 15, .		0
143	Evaluation of Modified Organic Cotton Fibers Based Absorbent Article Applicable to Feminine Hygiene. Journal of Natural Fibers, 2022, 19, 12814-12828.	1.7	2
144	Hydrogels as functional components in artificial cell systems. Nature Reviews Chemistry, 2022, 6, 562-578.	13.8	47
145	Role of Biomaterials in Cardiac Repair and Regeneration: Therapeutic Intervention for Myocardial Infarction. ACS Biomaterials Science and Engineering, 2022, 8, 3271-3298.	2.6	18
146	Optimization of the extraction process of phenolic compounds from Strobilanthes crispus L. with the ultrasound-assisted enzymaticâ 'Aqueous two-phase extraction method. AIP Conference Proceedings, 2022, , .	0.3	0
147	Preparation and Application of Chitosan Derivatives. Engineering Materials and Processes, 2022, , 103-155.	0.2	2
148	Newly designed acrylamide derivative-based pH-responsive hydrogel-urease bioconjugates: synthesis and catalytic urea hydrolysis. Soft Matter, 2022, 18, 8647-8655.	1.2	3
149	Hydrogel interfaces for merging humans and machines. Nature Reviews Materials, 2022, 7, 935-952.	23.3	153
150	The current status of nanotechnological approaches to therapy and drug delivery in otolaryngology: A contemporary review. Laryngoscope Investigative Otolaryngology, 0, , .	0.6	1

#	ARTICLE	IF	CITATIONS
151	Hydrogels and biohydrogels: investigation of origin of production, production methods, and application. Polymer Bulletin, 2023, 80, 10593-10632.	1.7	4
152	AKTIVITAS ANTIBAKTERI EKSTRAK ETANOL BUAH SAWO KECIK (Manilkara kauki) DALAM MENGHAMBAT PERTUMBUHAN BAKTERI Staphylococcus aureus. , 2022, 4, 66-72.		0
153	High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. Nano Research, 2023, 16, 3475-3515.	5.8	54
154	Hydrogel-based Treatment Strategies to Accelerate Diabetic Foot Ulcer Healing. Current Diabetes Reviews, 2023, 19, .	0.6	0
155	Impact of formulation design and lyophilisation on the physicochemical characteristics of finasteride nanosystems. Journal of Microencapsulation, 2023, 40, 106-123.	1.2	0
156	Toxicity Test of Karamunitng Leaf (Rhodomyrtus tomentosa (Aiton) Hassk.) Ekstratc with Finder Liquid Variation Using the Brine Shrimp Lethality Test (BSLT) Method., 2023,, 103-109.		0
157	Development of a three-dimensional in vitro blood-brain barrier using the chitosan-alginate polyelectrolyte complex as the extracellular matrix. Journal of Bioactive and Compatible Polymers, 0, , 088391152311570.	0.8	0
158	Plasmaâ€Activated Hydrogels for Microbial Disinfection. Advanced Science, 2023, 10, .	5.6	4
159	Fabrication of 3D Hierarchically Porous Chitosan Monoliths by Thermally Induced Phase Separation of Chemically Modified Chitin. ACS Sustainable Chemistry and Engineering, 2023, 11, 5473-5484.	3.2	6
160	Iontophoresis-driven microneedle patch for the active transdermal delivery of vaccine macromolecules. Microsystems and Nanoengineering, 2023, 9, .	3.4	11
161	A novel hydrogel containing 4-methylcatechol for skin regeneration: in vitro and in vivo study. Biomedical Engineering Letters, 2023, 13, 429-439.	2.1	0
163	The identify of antioxidants constituents of Cemba leaves (Acacia rugata (Lam.) Fawc. Rendle). AIP Conference Proceedings, 2023, , .	0.3	0
166	Application of response surface methodology in optimizing condition of phenolic compounds extraction from cocoa POD husk waste (T. cacao L.) using ultrasonic assisted extraction (UAE) method. AIP Conference Proceedings, 2023, , .	0.3	0
167	Carboxymethyl Chitosan-Based Materials in Packaging, Food, Pharmaceutical, and Cosmetics. Advances in Polymer Science, 2023, , 139-203.	0.4	1
174	Role of Natural Polysaccharides in the Management of Lifestyle Diseases. , 2023, , 415-441.		0
175	Developing High-Fidelity In Vitro Models of Traumatic Brain Injury to Test Therapeutic Biomaterials. Pancreatic Islet Biology, 2024, , 271-315.	0.1	0