Configurable Resistive Switching between Memory and Proteinâ€Based Devices

Advanced Functional Materials 25, 3825-3831 DOI: 10.1002/adfm.201501389

Citation Report

#	Article	IF	CITATIONS
1	Bidirectional threshold switching in engineered multilayer (Cu2O/Ag:Cu2O/Cu2O) stack for cross-point selector application. Applied Physics Letters, 2015, 107, .	3.3	41
2	The DNA strand assisted conductive filament mechanism for improved resistive switching memory. Journal of Materials Chemistry C, 2015, 3, 12149-12155.	5.5	82
3	Preparing non-volatile resistive switching memories by tuning the content of Au@air@TiO ₂ -h yolk–shell microspheres in a poly(3-hexylthiophene) layer. Nanoscale, 2015, 7, 19579-19585.	5.6	9
4	Alcoholâ€Mediated Resistance‧witching Behavior in Metal–Organic Frameworkâ€Based Electronic Devices. Angewandte Chemie, 2016, 128, 9030-9034.	2.0	19
5	Silk Fibroin for Flexible Electronic Devices. Advanced Materials, 2016, 28, 4250-4265.	21.0	466
6	Alcoholâ€Mediated Resistanceâ€5witching Behavior in Metal–Organic Frameworkâ€Based Electronic Devices. Angewandte Chemie - International Edition, 2016, 55, 8884-8888.	13.8	72
7	Ultra‣ightweight Resistive Switching Memory Devices Based on Silk Fibroin. Small, 2016, 12, 3360-3365.	10.0	97
8	Bidirectional threshold switching characteristics in Ag/ZrO2/Pt electrochemical metallization cells. AIP Advances, 2016, 6, .	1.3	36
9	Memory behavior of multi-bit resistive switching based on multiwalled carbon nanotubes. Organic Electronics, 2016, 34, 12-17.	2.6	22
10	Programing Performance of Wool Keratin and Silk Fibroin Composite Materials by Mesoscopic Molecular Network Reconstruction. Advanced Functional Materials, 2016, 26, 9032-9043.	14.9	75
11	Resistive switching controlled by the hydration level in thin films of the biopigment eumelanin. Journal of Materials Chemistry C, 2016, 4, 9544-9553.	5.5	23
12	Physically Transient Resistive Switching Memory Based on Silk Protein. Small, 2016, 12, 2715-2719.	10.0	148
13	Dissolvable and biodegradable resistive switching memory based on magnesium oxide. IEEE Electron Device Letters, 2016, , 1-1.	3.9	19
14	Skinâ€Inspired Haptic Memory Arrays with an Electrically Reconfigurable Architecture. Advanced Materials, 2016, 28, 1559-1566.	21.0	173
15	Multilevel resistive switching and nonvolatile memory effects in epoxy methacrylate resin and carbon nanotube composite films. Organic Electronics, 2016, 32, 7-14.	2.6	35
16	Convertible resistive switching characteristics between memory switching and threshold switching in a single ferritin-based memristor. Chemical Communications, 2016, 52, 4828-4831.	4.1	71
17	Nonvolatile bio-memristor fabricated with natural bio-materials from spider silk. Journal of Materials Science: Materials in Electronics, 2016, 27, 3957-3962.	2.2	34
18	Flexible Multistate Data Storage Devices Fabricated Using Natural Lignin at Room Temperature. ACS Applied Materials & amp; Interfaces, 2017, 9, 6207-6212.	8.0	81

#	Article	IF	CITATIONS
19	Bipolar resistive switching memory behaviors of the micro-size composite particles. Composite Structures, 2017, 166, 177-183.	5.8	17
20	Electronic Devices for Humanâ€Machine Interfaces. Advanced Materials Interfaces, 2017, 4, 1600709.	3.7	76
21	Reliable current changes with selectivity ratio above 109 observed in lightly doped zinc oxide films. NPG Asia Materials, 2017, 9, e351-e351.	7.9	36
22	Waterâ€Based Photo―and Electronâ€Beam Lithography Using Egg White as a Resist. Advanced Materials Interfaces, 2017, 4, 1601223.	3.7	23
23	Electric Crosstalk Effect in Valence Change Resistive Random Access Memory. Journal of Electronic Materials, 2017, 46, 5296-5302.	2.2	2
24	Solution processed bilayer junction of silk fibroin and semiconductor quantum dots as multilevel memristor devices. Organic Electronics, 2017, 48, 276-284.	2.6	35
25	Filamentary Conduction in Aloe Vera Film for Memory Application. Procedia Engineering, 2017, 184, 655-662.	1.2	24
26	Silk fibroin films for potential applications in controlled release. Reactive and Functional Polymers, 2017, 116, 57-68.	4.1	37
27	An organic nonvolatile resistive switching memory device fabricated with natural pectin from fruit peel. Organic Electronics, 2017, 42, 181-186.	2.6	119
28	Resistive switching memory using biomaterials. Journal of Electroceramics, 2017, 39, 223-238.	2.0	70
29	Flexible bio-memristive devices based on chicken egg albumen:Au@SiO2 core-shell nanoparticle nanocomposites. Scientific Reports, 2017, 7, 12033.	3.3	30
30	Mesoscopicâ€Functionalization of Silk Fibroin with Gold Nanoclusters Mediated by Keratin and Bioinspired Silk Synapse. Small, 2017, 13, 1702390.	10.0	76
31	Stretchable Motion Memory Devices Based on Mechanical Hybrid Materials. Advanced Materials, 2017, 29, 1701780.	21.0	68
32	Lightâ€Tunable Nonvolatile Memory Characteristics in Photochromic RRAM. Advanced Electronic Materials, 2017, 3, 1600416.	5.1	45
33	Controllable Organic Resistive Switching Achieved by One‣tep Integration of Cone‣haped Contact. Advanced Materials, 2017, 29, 1701333.	21.0	129
34	Waterâ€Soluble Sericin Protein Enabling Stable Solid–Electrolyte Interphase for Fast Charging High Voltage Battery Electrode. Advanced Materials, 2017, 29, 1701828.	21.0	147
35	Poly-4-vinylphenol (PVP) and Poly(melamine- <i>co</i> -formaldehyde) (PMF)-Based Atomic Switching Device and Its Application to Logic Gate Circuits with Low Operating Voltage. ACS Applied Materials & Interfaces, 2017, 9, 27073-27082.	8.0	25
36	Recombinant azurin-CdSe/ZnS hybrid structures for nanoscale resistive random access memory device. Biosensors and Bioelectronics, 2017, 90, 23-30.	10.1	24

#	Article	IF	CITATIONS
37	A larger nonvolatile bipolar resistive switching memory behaviour fabricated using eggshells. Current Applied Physics, 2017, 17, 235-239.	2.4	33
38	Effects of Liner Thickness on the Reliability of AgTe/TiO ₂ -Based Threshold Switching Devices. IEEE Transactions on Electron Devices, 2017, 64, 4763-4767.	3.0	25
39	Control of Gold Nanoparticle–Protein Aggregates in Albumen Matrix for Configurable Switching Devices. Advanced Materials Interfaces, 2018, 5, 1800086.	3.7	8
40	Full imitation of synaptic metaplasticity based on memristor devices. Nanoscale, 2018, 10, 5875-5881.	5.6	99
41	Ultralow Power Consumption Flexible Biomemristors. ACS Applied Materials & Interfaces, 2018, 10, 10280-10286.	8.0	39
42	Solutionâ€Processed Flexible Threshold Switch Devices. Advanced Electronic Materials, 2018, 4, 1700521.	5.1	27
43	Synapseâ€Like Organic Thin Film Memristors. Advanced Functional Materials, 2018, 28, 1800854.	14.9	152
44	Thiadizoloquinoxaline-Based N-Heteroacenes as Active Elements for High-Density Data-Storage Device. ACS Applied Materials & Interfaces, 2018, 10, 15971-15979.	8.0	40
45	Plasticizing Silk Protein for On‣kin Stretchable Electrodes. Advanced Materials, 2018, 30, e1800129.	21.0	230
46	Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing (Invited review). Materials Science and Engineering C, 2018, 86, 151-172.	7.3	99
47	From biomaterial-based data storage to bio-inspired artificial synapse. Materials Today, 2018, 21, 537-552.	14.2	218
48	CdS Nanoribbonâ€Based Resistive Switches with Ultrawidely Tunable Power by Surface Charge Transfer Doping. Advanced Functional Materials, 2018, 28, 1706577.	14.9	16
49	Short-Term Plasticity and Long-Term Potentiation in Artificial Biosynapses with Diffusive Dynamics. ACS Nano, 2018, 12, 1680-1687.	14.6	206
50	Threshold Switching Induced by Controllable Fragmentation in Silver Nanowire Networks. ACS Applied Materials & Interfaces, 2018, 10, 2716-2724.	8.0	22
51	Non-volatile resistive memory devices based on solution-processed natural DNA biomaterial. Organic Electronics, 2018, 54, 216-221.	2.6	31
52	Mediating Shortâ€Term Plasticity in an Artificial Memristive Synapse by the Orientation of Silica Mesopores. Advanced Materials, 2018, 30, e1706395.	21.0	100
53	Transient Resistive Switching Memory of CsPbBr ₃ Thin Films. Advanced Electronic Materials, 2018, 4, 1700596.	5.1	60
54	Lightâ€Responsive Ionâ€Redistributionâ€Induced Resistive Switching in Hybrid Perovskite Schottky Junctions. Advanced Functional Materials, 2018, 28, 1704665.	14.9	169

#	Article	IF	CITATIONS
55	A bio-inspired physically transient/biodegradable synapse for security neuromorphic computing based on memristors. Nanoscale, 2018, 10, 20089-20095.	5.6	82
56	Bioâ€Inspired Plasmonic Photocatalysts. Small Methods, 2019, 3, 1800295.	8.6	13
57	Effective structure regulation of poly(vinylidene fluoride) via soy protein isolate: A morphological study. Journal of Applied Polymer Science, 2018, 135, 46706.	2.6	3
58	3Dâ€Structured Stretchable Strain Sensors for Outâ€ofâ€Plane Force Detection. Advanced Materials, 2018, 30, e1707285.	21.0	86
59	Physically Transient Threshold Switching Device Based on Magnesium Oxide for Security Application. Small, 2018, 14, e1800945.	10.0	44
60	Reset Voltage-Dependent Multilevel Resistive Switching Behavior in CsPb _{1–<i>x</i>} Bi <i>_x</i> l ₃ Perovskite-Based Memory Device. ACS Applied Materials & Interfaces, 2018, 10, 24620-24626.	8.0	78
61	Enhancing the Matrix Addressing of Flexible Sensory Arrays by a Highly Nonlinear Threshold Switch. Advanced Materials, 2018, 30, e1802516.	21.0	70
62	Ternary Resistive Switching Memory Behavior in Graphene Oxide Layer. Nano, 2018, 13, 1850072.	1.0	3
63	Solution-processed resistive switching memory devices based on hybrid organic–inorganic materials and composites. Physical Chemistry Chemical Physics, 2018, 20, 23837-23846.	2.8	68
64	Silk Flexible Electronics: From <i>Bombyx mori</i> Silk Ag Nanoclusters Hybrid Materials to Mesoscopic Memristors and Synaptic Emulators. Advanced Functional Materials, 2019, 29, 1904777.	14.9	71
65	Graphitic carbon nitride nanosheets for solution processed non-volatile memory devices. Journal of Materials Chemistry C, 2019, 7, 10203-10210.	5.5	24
66	Functional Oxides for Photoneuromorphic Engineering: Toward a Solar Brain. Advanced Materials Interfaces, 2019, 6, 1900471.	3.7	31
67	Physically Transient Resistive Switching Memory With Material Implication Operation. IEEE Electron Device Letters, 2019, 40, 1618-1621.	3.9	10
68	Transition from nonvolatile bipolar memory switching to bidirectional threshold switching in layered MoO ₃ nanobelts. Journal of Materials Chemistry C, 2019, 7, 12160-12169.	5.5	19
69	A multi-input light-stimulated synaptic transistor for complex neuromorphic computing. Journal of Materials Chemistry C, 2019, 7, 12523-12531.	5.5	68
70	Silk-Based Advanced Materials for Soft Electronics. Accounts of Chemical Research, 2019, 52, 2916-2927.	15.6	232
71	Flexible artificial nociceptor using a biopolymer-based forming-free memristor. Nanoscale, 2019, 11, 6591-6601.	5.6	84
72	Transient bioelectrical devices inspired by a silkworm moth breaking out of its cocoon. RSC Advances, 2019. 9. 14254-14259.	3.6	6

		CITATION REPORT		
#	Article		IF	CITATIONS
73	A Bio-memristor with Overwhelming Capacitance Effect. Electronic Materials Letters, 2	.019, 15, 547-554.	2.2	11
74	A Robust Nonvolatile Resistive Memory Device Based on a Freestanding Ultrathin 2D Ir Film. Advanced Materials, 2019, 31, e1902264.	nine Polymer	21.0	117
75	A sustainable biomemristive memory device based on natural collagen. Materials Today 2019, 13, 18-24.	y Chemistry,	3.5	25
76	Silk materials for medical, electronic and optical applications. Science China Technolog 2019, 62, 903-918.	jical Sciences,	4.0	43
77	A sustainable resistive switching memory device based on organic keratin extracted fro Advances, 2019, 9, 12436-12440.	om hair. RSC	3.6	32
78	Resistive switching effects in fluorinated graphene films with graphene quantum dots polyvinyl alcohol. Nanotechnology, 2019, 30, 255701.	enhanced by	2.6	14
79	Light Driven Active Transition of Switching Modes in Homogeneous Oxides/Graphene Heterostructure. Advanced Science, 2019, 6, 1900213.		11.2	5
80	Fully Printed Flexible Crossbar Memory Devices with Tipâ€Enhanced Micro/Nanostruct Electronic Materials, 2019, 5, 1900131.	ures. Advanced	5.1	8
81	Sericin protein as a conformal protective layer to enable air-endurable Li metal anodes Li-S batteries. Journal of Power Sources, 2019, 419, 72-81.	and high-rate	7.8	80
82	Human hair keratin for physically transient resistive switching memory devices. Journal Chemistry C, 2019, 7, 3315-3321.	of Materials	5.5	55
83	A silk fibroin and ultra-long silver nanowires based transparent conductive composite f nanosensor devices. , 2019, , .	ilm for		1
84	Biodegradable transient resistive random-access memory based on MoO3/MgO/MoO3 Physics Letters, 2019, 115, .	stack. Applied	3.3	13
85	Three-terminal memtransistors based on two-dimensional layered gallium selenide nan potential low-power electronics applications. Nano Energy, 2019, 57, 566-573.	osheets for	16.0	100
86	Solution-Processed Physically Transient Resistive Memory Based on Magnesium Oxide. Device Letters, 2019, 40, 193-195.	IEEE Electron	3.9	23
87	Controlled Nonvolatile Transition in Polyoxometalatesâ€Graphene Oxide Hybrid Memri Advanced Materials Technologies, 2019, 4, 1800551.	stive Devices.	5.8	19
88	Artificial Sensory Memory. Advanced Materials, 2020, 32, e1902434.		21.0	200
89	Threshold Switching in Single Metalâ€Oxide Nanobelt Devices Emulating an Artificial N Advanced Electronic Materials, 2020, 6, 1900595.	lociceptor.	5.1	35
90	An Artificial Somatic Reflex Arc. Advanced Materials, 2020, 32, e1905399.		21.0	126

#	Article	IF	CITATIONS
91	Nano-engineering and functionalization of hybrid Au–MexOy–TiO2 (Me = W, Ga) hetero-interfaces for optoelectronic receptors and nociceptors. Nanoscale, 2020, 12, 20177-20188.	5.6	20
92	From Memristive Materials to Neural Networks. ACS Applied Materials & Interfaces, 2020, 12, 54243-54265.	8.0	56
93	Flexible CoFeB/Silk Films for Biocompatible RF/Microwave Applications. ACS Applied Materials & Interfaces, 2020, 12, 51654-51661.	8.0	9
94	Multilevel Programming and Light-Assisted Resistive Switching in a Halide-Tunable All-Inorganic Perovskite Cube for Flexible Memory Devices. ACS Applied Electronic Materials, 2020, 2, 3667-3677.	4.3	38
95	Charge transport in pyroprotein-based electronic yarns. Physical Chemistry Chemical Physics, 2020, 22, 26910-26916.	2.8	2
96	Reversible Transformation between Bipolar Memory Switching and Bidirectional Threshold Switching in 2D Layered K-Birnessite Nanosheets. ACS Applied Materials & Interfaces, 2020, 12, 24133-24140.	8.0	25
97	Passive Filters for Nonvolatile Storage Based on Capacitive-Coupled Memristive Effects in Nanolayered Organic–Inorganic Heterojunction Devices. ACS Applied Nano Materials, 2020, 3, 5045-5052.	5.0	18
98	Bipolar resistive switching in HoCrO ₃ thin films. Nanotechnology, 2020, 31, 355202.	2.6	9
99	Biomemristors as the next generation bioelectronics. Nano Energy, 2020, 75, 104938.	16.0	110
100	Reversible transition between bipolar resistive switching and threshold switching in 2D layered III–VI semiconductor GaSe. Applied Physics Letters, 2020, 116, .	3.3	15
101	Threshold switching synaptic device with tactile memory function. Nano Energy, 2020, 76, 105109.	16.0	22
102	Controlled Growth of Fine Multifilaments in Polymer-Based Memristive Devices Via the Conduction Control. ACS Applied Materials & amp; Interfaces, 2020, 12, 34370-34377.	8.0	23
103	Fabrication of Highly Dense Silk Fibroin Biomemristor Array and Its Resistive Switching Characteristics. Advanced Materials Technologies, 2020, 5, 1900991.	5.8	27
104	Natural Biopolymers for Flexible Sensing and Energy Devices. Chinese Journal of Polymer Science (English Edition), 2020, 38, 459-490.	3.8	69
105	The evolution of resistive switching behaviors dependent on interface transition layers in Cu/Al/FTO nanostructure. Journal of Alloys and Compounds, 2020, 827, 154270.	5.5	8
106	Lead-free monocrystalline perovskite resistive switching device for temporal information processing. Nano Energy, 2020, 71, 104616.	16.0	96
107	Optically Modulated Threshold Switching in Core–Shell Quantum Dot Based Memristive Device. Advanced Functional Materials, 2020, 30, 1909114.	14.9	47
108	A comprehensive review on emerging artificial neuromorphic devices. Applied Physics Reviews, 2020, 7,	11.3	417

#	ARTICLE	IF	CITATIONS
109	Multilevel resistive switching memory behaviors arising from ion diffusion and photoelectron transfer in α-Fe2O3 nano-island arrays. Physical Chemistry Chemical Physics, 2020, 22, 2743-2747.	2.8	11
110	Lowâ€Dimensional Leadâ€Free Inorganic Perovskites for Resistive Switching with Ultralow Bias. Advanced Functional Materials, 2020, 30, 2002110.	14.9	78
111	Resistive switching behaviour in a polymannose film for multistate non-volatile memory application. Journal of Materials Chemistry C, 2021, 9, 1437-1450.	5.5	16
112	The Future of Memristors: Materials Engineering and Neural Networks. Advanced Functional Materials, 2021, 31, 2006773.	14.9	187
113	Recent Progress of Proteinâ€Based Data Storage and Neuromorphic Devices. Advanced Intelligent Systems, 2021, 3, 2000180.	6.1	22
114	Fabrication and investigation of quaternary Ag–In–Zn–S quantum dots-based memristors with ultralow power and multiple resistive switching behaviors. Nanotechnology, 2021, 32, 195205.	2.6	3
115	Reversible Transition of Volatile and Nonvolatile Switching in Ag–In–Zn–S Quantum Dot-Based Memristors with Low Power Consumption for Synaptic Applications. ACS Applied Nano Materials, 2021, 4, 2365-2374.	5.0	14
116	Toward Highly Robust Nonvolatile Multilevel Memory by Fine Tuning of the Nanostructural Crystalline Solidâ€ S tate Order. Small, 2021, 17, e2100102.	10.0	24
117	Multistate resistive switching behaviors for neuromorphic computing in memristor. Materials Today Advances, 2021, 9, 100125.	5.2	33
118	Optoelectrical switching behavior based on a composite of a fullerene acceptor and carbazole donor. Journal Physics D: Applied Physics, 2021, 54, 275104.	2.8	Ο
119	New Silk Road: From Mesoscopic Reconstruction/Functionalization to Flexible Mesoâ€Electronics/Photonics Based on Cocoon Silk Materials. Advanced Materials, 2021, 33, e2005910.	21.0	45
120	High on–off current ratio titanium oxynitride write-once-read-many-times memory. Semiconductor Science and Technology, 2021, 36, 06LT01.	2.0	1
121	Recent progress in silk fibroin-based flexible electronics. Microsystems and Nanoengineering, 2021, 7, 35.	7.0	109
122	Low-Power and Tunable-Performance Biomemristor Based on Silk Fibroin. ACS Biomaterials Science and Engineering, 2021, 7, 3459-3468.	5.2	14
123	Sustained complementary resistive switching capability deployed by structure-modulated electric field confinement of core-shell nanowires in a simple polymer composite. Applied Materials Today, 2021, 23, 101038.	4.3	3
124	TSSM: Three-State Switchable Memristor Model Based on Ag/TiOx Nanobelt/Ti Configuration. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2130020.	1.7	15
125	Coexistence of memory and threshold switching behaviors in natural milk-based organic memristor. Materials Research Express, 2021, 8, 066301.	1.6	4
126	Quantum-Dots Optimized Electrode for High-Stability Transient Memristor. IEEE Electron Device Letters, 2021, 42, 824-827.	3.9	15

#	Article	IF	CITATIONS
127	A Stretchable and Transparent Electrode Based on PEGylated Silk Fibroin for In Vivo Dualâ€Modal Neuralâ€Vascular Activity Probing. Advanced Materials, 2021, 33, e2100221.	21.0	43
128	An analogue memristor made of silk fibroin polymer. Journal of Materials Chemistry C, 2021, 9, 14583-14588.	5.5	22
129	Review on resistive switching mechanisms of bio-organic thin film for non-volatile memory application. Nanotechnology Reviews, 2021, 10, 680-709.	5.8	39
130	Bio-memristors based on silk fibroin. Materials Horizons, 2021, 8, 3281-3294.	12.2	25
131	Unconventional Resistive Switching Behavior in Fibroinâ€Based Memristor. Advanced Electronic Materials, 2022, 8, 2100843.	5.1	21
132	Research progress of protein-based memristor. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 178702.	0.5	3
133	Recent advances in silk-based wearable sensors. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 178703.	0.5	6
134	Aqueous Supramolecular Binder for a Lithium–Sulfur Battery with Flame-Retardant Property. ACS Applied Materials & Interfaces, 2021, 13, 55092-55101.	8.0	15
135	Effects of interfacial oxide layer formed by annealing process on WORM characteristics of Ag/CuxO/SiOx/n+–Si devices. Journal of Alloys and Compounds, 2022, 898, 162918.	5.5	6
136	Environment-friendly regenerated cellulose based flexible memristive device. Applied Physics Letters, 2021, 119, .	3.3	7
137	Transient WORM Memory Device Using Biocompatible Protamine Sulfate with Very High Data Retention and Stability. ACS Applied Electronic Materials, 2021, 3, 5248-5256.	4.3	10
138	Flexible Wearables for Plants. Small, 2021, 17, e2104482.	10.0	34
139	Silk Protein Based Volatile Threshold Switching Memristors for Neuromorphic Computing. Advanced Electronic Materials, 2022, 8, .	5.1	21
140	Threshold Switching Memristor Based on the BaTiO ₃ /Nb:SrTiO ₃ Epitaxial Heterojunction for Neuromorphic Computing. ACS Applied Electronic Materials, 2022, 4, 982-989.	4.3	14
141	NASICON-based solid state Li-Fe-F conversion batteries enabled by multi-interface-compatible sericin protein buffer layer. Energy Storage Materials, 2022, 47, 551-560.	18.0	31
142	Silver-Doped Citrus Pectin Resistive Random Access Memory with Multilevel Characteristics. ECS Journal of Solid State Science and Technology, 2022, 11, 055003.	1.8	1
143	Applications of biomemristors in next generation wearable electronics. Nanoscale Horizons, 2022, 7, 822-848.	8.0	19
144	Synthetic Powder-Based Thin (<0.1 μm) Cs ₃ Bi ₂ Br ₉ Perovskite Films for Air-Stable and Viable Resistive Switching Memory. ACS Applied Electronic Materials, 2022, 4, 2388-2395.	4.3	21

#	Article	IF	CITATIONS
145	Biomemristors-based synaptic devices for artificial intelligence applications. Organic Electronics, 2022, 106, 106540.	2.6	15
146	Potential soluble substrates for transient electronics applications: A review. AIP Advances, 2022, 12, .	1.3	9
147	Robust Artificial Interphases Constructed by a Versatile Proteinâ€Based Binder for Highâ€Voltage Naâ€Ion Battery Cathodes. Advanced Materials, 2022, 34, e2202624.	21.0	17
148	Multi-factor-controlled ReRAM devices and their applications. Journal of Materials Chemistry C, 2022, 10, 8895-8921.	5.5	22
149	Electrochemical Preparation of Porous Organic Polymer Films for Highâ€Performance Memristors. Angewandte Chemie - International Edition, 2022, 61, .	13.8	7
150	Electrochemical Preparation of Porous Organic Polymer Films for Highâ€Performance Memristors. Angewandte Chemie, 0, , .	2.0	0
151	Tunable Volatile to Nonâ€Volatile Resistive Switching in PbZrO ₃ Antiferroelectric Thin Film for Neuromorphic Computing. Advanced Materials Interfaces, 2022, 9, .	3.7	5
152	Electrochemical-tunable and mesostructure-dependent abrupt-to-progressive conversion in fibroin-based transient memristor. Applied Physics Letters, 2022, 121, .	3.3	7
153	Optically modulated dualâ€mode memristor arrays based on coreâ€shell CsPbBr ₃ @graphdiyne nanocrystals for fully memristive neuromorphic computing hardware. SmartMat, 2023, 4, .	10.7	16
154	Controllable volatile-to-nonvolatile memristive switching in single-crystal lead-free double perovskite with ultralow switching electric field. Science China Materials, 2023, 66, 241-248.	6.3	7
155	Memristors with Biomaterials for Biorealistic Neuromorphic Applications. Small Science, 2022, 2, .	9.9	16
156	Resistive switching of two-dimensional NiAl-layered double hydroxides and memory logical functions. Journal of Alloys and Compounds, 2023, 933, 167745.	5.5	3
157	Nonvolatile memory based on functional materials. Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering, 2019, 36, 221-229.	0.2	0
158	Threshold switching in nickel-doped zinc oxide based memristor for artificial sensory applications. Nanoscale, 2023, 15, 1900-1913.	5.6	11
159	Conversion of bipolar resistive switching and threshold switching by controlling conductivity behavior and porous volumes of UiO-66 thin films. Journal of Science: Advanced Materials and Devices, 2023, 8, 100528.	3.1	1
160	Promising Materials and Synthesis Methods for Resistive Switching Memory Devices: A Status Review. ACS Applied Electronic Materials, 2023, 5, 2454-2481.	4.3	10
161	Functional Materials for Memristorâ€Based Reservoir Computing: Dynamics and Applications. Advanced Functional Materials, 2023, 33, .	14.9	7
162	Multilevel resistive switching memristor based on silk fibroin/graphene oxide with image reconstruction functionality. Chemical Engineering Journal, 2023, 471, 144678.	12.7	7

#	Article	IF	CITATIONS
163	A high linearity and multilevel polymer-based conductive-bridging memristor for artificial synapses. Nanoscale, 2023, 15, 13411-13419.	5.6	2
164	Effect of long chain fatty acids on the memory switching behavior of tetraindolyl derivatives. RSC Advances, 2023, 13, 26330-26343.	3.6	1
165	Advances in memristor based artificial neuron fabrication-materials, models, and applications. International Journal of Extreme Manufacturing, 2024, 6, 012002.	12.7	1
166	Bio-inspired artificial synapses: Neuromorphic computing chip engineering with soft biomaterials. , 2023, 6, 100088.		0
167	Enhanced resistive switching characteristics of conductive bridging memory device by a Co–Cu alloy electrode. Applied Physics Letters, 2023, 123, .	3.3	2
168	Biomemristors as the Next Generation Memory Devices. , 2023, , 37-59.		0
169	Bio-Organic Based Resistive Switching Random-Access Memory. Solid State Phenomena, 0, 352, 85-93.	0.3	0
170	Nonvolatile Bioresistive Random Access Memory Based on <i>Glycine max</i> and Graphene Oxide. ACS Applied Electronic Materials, 2023, 5, 5814-5822.	4.3	0
171	Achieving Reliable and Ultrafast Memristors via Artificial Filaments in Silk Fibroin. Advanced Materials, 0, , .	21.0	0
172	Noncytotoxic WORM Memory Using Lysozyme with Ultrahigh Stability for Transient and Sustainable Electronics Applications. ACS Omega, 2024, 9, 618-627.	3.5	0
173	Organic mixed conductors for bioinspired electronics. Nature Reviews Materials, 2024, 9, 134-149.	48.7	3
174	Multilevel Logic Operation and Artificial Synaptic Plasticity Based on Pectin Transient Memristor. ACS Applied Electronic Materials, 2024, 6, 1262-1273.	4.3	0
175	Carrier-doping-driven insulator-metal transition in disordered materials for memristive switching with high uniformity. Applied Physics Reviews, 2024, 11, .	11.3	0